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Abstract—This paper examines the cluster consensus design
problem on higher-order interaction networks. Specifically, the
higher-order interaction mechanism is captured by matrix-
weighted networks that allow the interdependency across the
dimensions of the agents’ states, and the matrix-valued weight
matrices Aij ∈ Rd×d associated with specific edges are further
assumed to share the same nullspace for design purposes. Under
mild assumptions on network connectivity, we first examine the
case that the nullspace of positive semi-definite edges is spanned
by a nonzero vector ξ ∈ Rd and show that the predictable
cluster consensus can be achieved, which is eventually located
in the 1−dimensional linear space determined by span {ξ} and
the average of agents’ initial states. Moreover, the transient state
of agents in each cluster can also be explicitly characterized.
Namely, the derivative of the average state of agents in each
cluster is perpendicular to span {ξ}. To generalize the above
results, we proceed to examine the case that the nullspace of
positive semi-definite edges is spanned by more than one linearly
independent d−dimensional vector, in which case, analogous
results can be obtained, and the explicit geometric interpretation
is also provided.

I. INTRODUCTION

The fundamental principle of how collective behavior
emerges from local interactions plays a vital role in both
the analysis and design of multi-agent systems [1], [2],
[3]. In literature, the scalar-weighted consensus-type protocol
is a critical routine of distributed algorithms for control,
optimization, and learning over networks [4], [5], [6], [7], [8].
However, the traditional scalar-weighted interaction protocols
fail to characterize high-order interactions amongst agents,
such as the interdependency across the dimensions of the
agents’ states, which is ubiquitously observed in both natural
and artificial multi-agent systems [9], [10], [11]. For instance,
in opinion dynamics analysis of social networks, the logic
interdependency amongst a set of topics can be naturally cap-
tured by the higher-order interaction networks via employing
a matrix-weighted inter-agent coupling mechanism [10].

In the linear case, matrix-weighted networks turn out to
be a reasonable implementation for higher-order interac-
tion networks [12], [13], [14], [15], [16], [17], [18], [19].
Recently, multi-agent systems on matrix-weighted networks
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have been examined [13], [14]. For instance, it has been
pointed out that the network connectivity cannot guarantee
the consensus in the matrix-weighted networks due to the ex-
istence of edges that are weighted by positive/negative semi-
definite matrices, a notable difference from scalar-weighted
networks [13], [16], [17]. Recently, a variety of works on
matrix-weighted networks have emerged in the community,
such as consensus on time-varying matrix-weighted networks
[18], [19], controllability of matrix-weighted networks [20],
matrix-weighted consensus subject to physical constraints
[21], [22] and so forth.

Notably, the cluster consensus turns out to be a ubiquitous
collective behavior for matrix-weighted networks, which can
naturally capture the behavioral diversity of swarms such as
schools of fish or flocks of birds [3]. Here, the algebraic
structure of the nullspace of matrix-valued edge weights plays
a central role [19], [23], [3]. In this paper, we examine the
cluster consensus design problem on homogeneous higher-
order interaction networks. By homogeneity, we mean that
a specific subset of matrix-valued edge weights are homo-
geneous in the sense that they all share the same nullspace.
The motivation for this assumption concerns the freedom of
cluster consensus design.

A notable distinction of the matrix-weighted networks is
that the nullspace of matrix-valued Laplacian (which deter-
mines the collective behaviors of matrix-weighted networks)
is not only influenced by network topology but also by the
nullspace of matrix-valued edge weights. Inspired by this
fact, this paper proposes a novel interaction protocol design
paradigm for cluster consensus by manipulating the nullspace
corresponding to the matrix-valued weight associated with
specific edges in the network. We first examine the case that
the nullspace of positive semi-definite matrix-valued edges
is spanned by a nonzero vector ξ ∈ Rd and show that the
predictable cluster consensus can be achieved on a “line-
shape” formation determined by span {ξ} and the average
of initial states of all agents. Moreover, the derivative of the
average state of agents in each cluster is perpendicular to
span {ξ}. Then, we proceed to examine the case that the
nullspace of positive semi-definite matrix-valued edges is
spanned by two linearly independent vectors, and analogous
results are obtained and discussed.

The remainder of this paper is organized as follows. The
preliminaries and interaction protocol are introduced in §2
and §3, respectively. We provide the main results on the
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collective behaviors of homogeneous higher-order interaction
networks in terms of the dimension of nullspace of positive
semi-definite matrix-valued weight in §4 and §5, respectively.
The concluding remarks are finally given in §6.

II. PRELIMINARIES

A. Notations

Let R and N be real and natural numbers, respectively.
Denote n = {1, 2, . . . , n} for an n ∈ N. We use M > 0
(respectively, M ≥ 0) to denote that a symmetric matrix
M is positive definite (respectively, positive semi-definite).
The nullspace of a matrix M ∈ Rn×n is null(M) =
{z ∈ Rn | Mz = 0}. For a vector x ∈ Rd, we use [x]i to
denote the component on i-th dimension in x. Let W⊥ denote
the orthogonal complement of a subspace in vector space V ,
namely, W⊥ = {v ∈ V : ⟨u, v⟩ = 0,∀u ∈ W} where ⟨·, ·⟩
denotes the inner product.

B. Higher-order Interaction Networks

Consider a higher-order interaction network G = (V, E , A)
where the node set and the edge set of G are denoted by
V = {1, 2, . . . , n} and E ⊆ V × V , respectively. The matrix-
valued weight for each edge (i, j) ∈ E in G is a symmetric
matrix Aij ∈ Rd×d such that Aij ≥ 0 or Aij > 0 and
Aij = 0 otherwise. An edge (i, j) ∈ E is positive definite or
positive semi-definite if the associated matrix-valued weight
Aij is positive definite or positive semi-definite. Thereby, the
matrix-weighted adjacency matrix A = [Aij ] ∈ Rdn×dn is a
block matrix such that the block located in the i-th row and
the j-th column is Aij . Note that a matrix-weighted network
degrades into a scalar-weighted network if Aij = Id for all
(i, j) ∈ E . We shall assume that Aij = Aji for all i ̸̸=
j ∈ V and Aii = 0 for all i ∈ V . The neighbor set of an
agent i ∈ V is denoted by Ni = {j ∈ V | (i, j) ∈ E}. Denote
C = diag {C1, C1, · · · , Cn} ∈ Rdn as the matrix-weighted
degree matrix of a graph where Ci =

∑
j∈Ni

Aij ∈ Rd×d.
The matrix-weighted Laplacian matrix of a matrix-weighted
network is defined as L = C − A. For any orientation of
an edge (i, j) ∈ E in G, the nodes j and i are referred to
as head and tail, respectively. The edge set of G can also be
referred to as E =

{
e1, e2, . . . , e|E|

}
where ei represents the

i-th edge in E for an arbitrary order. The incidence matrix of
G is denoted by H = [hij ] ∈ R|E|×|V| such that hij = 1 if
node j is the head of the i-th edge, hij = −1 if node j is the
tail of the i-th edge, and hij = 0 otherwise. A positive path
in a graph G is a path such that every edge in this path is
a positive definite. A tree in a matrix-weighted network is a
positive tree if every edge contained in this tree is a positive
definite edge. A positive spanning tree of a matrix-weighted
network G is a positive tree containing all nodes in G. The
induced subgraph G(S) of graph G is the graph whose node
set is S ⊂ V and whose edge set consists of all of the edges
incident to nodes in S .

III. HIGHER-ORDER INTERACTION PROTOCOL

Consider a higher-order interaction network consisting of
n ∈ N agents, where the state of agent i ∈ n is denoted by
xi(t) = [xi1, xi2, . . . , xid]

T ∈ Rd (d ∈ N). The interaction
protocol of agent i ∈ V admits

ẋi(t) = −
∑
j∈Ni

Aij(xi(t)− xj(t)), (1)

and the overall dynamics of the network can be dictated by
the matrix-weighted Laplacian as follows

ẋ(t) = −Lx(t), (2)

where x(t) = [xT
1 (t),x

T
2 (t), . . . ,x

T
n (t)]

T ∈ Rdn. We shall
also refer to (2) as the matrix-weighted network in the upcom-
ing discussions. We note that the matrix-weighted Laplacian
L can be viewed as a block matrix derived from matrix-
valued edge weights Aij . For matrix-weighted networks,
the cluster consensus on agents’ states can be ubiquitously
achieved even if the underlying network is connected [13],
[19], [4]. This is due to the nullspace expansion of matrix-
weighed Laplacian L, as dictated by the following lemma.

Lemma 1. [16], [17], [13] Let G = (V, E , A) be a higher-
order interaction network in the form of (2). Then the
Laplacian matrix L of G is positive semi-definite and its
nullspace is

null(L) = span {R,H}

where

R = range{1⊗ Id} (3)

and

H = {v = [vT
1 ,v

T
2 , · · · ,vT

n ]
T ∈ Rdn |

(vi −Aijvj) ∈ null(Aij), (i, j) ∈ E}. (4)

Definition 1 (Node partition). A node partition of a network
G = (V, E , A) consists of s ∈ N subsets of nodes Cl ⊂ V
such that V = C1 ∪ C2 ∪ · · · ∪ Cs and C1 ∩ C2 ∩ · · · ∩ Cs = ∅,
where l ∈ s.

Definition 2 (Cluster consensus). The higher-order inter-
action network (2) admits a cluster consensus solution if
there exists a partition {Cl}sl=1 of node set V such that
lim t→∞xi(t) = lim t→∞xj(t), ∀i, j ∈ Cl, for all l ∈ s
and s ∈ N.

We shall first make the following assumption in this paper.
Assumption 1. There exists a node partition {Cl}sl=1 of
G such that each induced subgraph G(Cl) has a positive
spanning tree for all l ∈ s. Moreover, for any (i, j) ∈ E
such that i and j are in different node partitions, we have
Aij ≥ 0.
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Fig. 1. An illustrative example for demonstrating Assumption 1. Solid lines
highlight positive definite edges, while dashed lines represent positive semi-
definite edges. Agents belonging to the same cluster are color-coded for
clarity.

Example 1. We provide an example to illustrate Assumption
1. Consider a matrix-weighted network satisfying Assump-
tion 1 (as shown in Figure 1). One can see that the associated
node partition is

{Cl}sl=1 = {{1, 3, 6, 7, 12} , {2, 8, 11} ,
{4} , {5} , {9} , {10}}.

Note that positive semi-definite edges are allowed within a
node cluster, e.g., A3,12 ≥ 0.

We introduce a preliminary lemma from [24] to show that
the matrix-weighted network (2) admits a cluster consensus
solution if Assumption 1 is satisfied.

Lemma 2. [24] If there exists a positive tree T in a
higher-order interaction network G. Then, the higher-order
interaction network (2) admits

lim
t→∞

xi(t) = lim
t→∞

xj(t)

for all i, j ∈ T .

According to Lamma 2, if there exists a positive tree within
each cluster in a higher-order interaction network (Assump-
tion 1), then the cluster consensus solution is feasible.

IV. CLUSTER CONSENSUS ON HIGHER-ORDER
INTERACTION NETWORK: 1-DIMENSIONAL CASE

In this section, we first discuss the case where the dimen-
sion of the nullspace of semi-definite matrix-valued weight
is one, which is dictated in the following assumption.
Assumption 2. There exists a nonzero vector ξ ∈ Rd (d ≥ 2)
such that null(Aij) = span {ξ} for all Aij ≥ 0 where
(i, j) ∈ E .

We shall use xCl
(∞) as the abbreviation for the con-

sensus state of agents in cluster Cl, namely, xCl
(∞) =

lim t→∞|xi(t)| for all i ∈ Cl where l ∈ s. Moreover, let

x̄Cl
(t) = 1

|Cl|

∑
i∈Cl

xi(t) and x̄(t) =
1

n

∑
i∈V

xi(t) denote the

average state of agents in cluster Cl and all nodes at time
t ≥ 0, respectively, where l ∈ s.

Theorem 1. Let G be a higher-order interaction network
satisfying Assumptions 1 and 2. Then the consensus state of
agents in cluster Cl (l ∈ s) satisfies

xCl
(∞)− x̄(0) ∈ span {ξ} . (5)

Moreover, the derivative of the average state of agents in
cluster Cl (l ∈ s) is perpendicular to span {ξ}, namely,

˙̄xCl
(t) ∈ span {ξ}⊥ , for all t ≥ 0. (6)

Remark 1. To better understand this theorem, we shall first
discuss the system under d = 2. In this case,

dim {span {ξ}} = dim
{
span {ξ}⊥

}
= 1,

which implies that xCl
(∞)−x̄(0) is restricted to a line space

spanned by ξ. Similarly, the trajectory of x̄Cl
is restricted

to move on the line that is orthogonal to ξ. In fact, let
ξ∗ = [[ξ]2,−[ξ]1]

T , the equation (5) can be expressed in the
following form, which shows that xCl

(∞) for each Cl ∈ s
lies on the same line in R2

a1[xCl
(∞)]1 + a2[xCl

(∞)]2 = b, (7)

where a1 = [ξ∗]1, a2 = [ξ∗]2, b = ⟨ξ∗, x̄(0)⟩. Moreover, by
combining equations (6) and (7), we can solve the equations
and obtain the explicit consensus state for each cluster as

xCl
(∞) =


[ξ]1 ⟨ξ, x̄Cl

(0)⟩+ [ξ]2 ⟨ξ∗, x̄(0)⟩
∥ξ∗∥22

[ξ]2 ⟨ξ, x̄Cl
(0)⟩+ [ξ]1 ⟨ξ∗, x̄(0)⟩
∥ξ∗∥22

 , l ∈ s. (8)

Example 2. We now provide an example to illustrate Theo-
rem 1. Consider a higher-order interaction network shown
in Figure 2(a) where d = 2, n = 6 and ξ = [1, 1]T .
Similar to Figure 1, in Figure 2(a), the positive definite
edges are highlighted by solid lines, and positive semi-
definite edges are highlighted by dashed lines, and we shall
continue to use this representation in the upcoming examples.
Different colors are used to distinguish nodes inside different
clusters according to the node partition {Cl}sl=1 of G, where
C1 = {1, 6}, C2 = {2, 3, 5}, C3 = {4}. The positive defi-
nite matrix weights between connected clusters are matrix
weights between connected clusters are

A16 =

[
30 −30
−30 60

]
, A23 =

[
6 −3
−3 15

]
,

and
A25 =

[
19 −1
−1 31

]
.

The positive semi-definite matrix weights are

A12 =

[
16 −16
−16 16

]
, A13 =

[
10 −10
−10 10

]
,

A14 =

[
18 −18
−18 18

]
, A24 =

[
3 −3
−3 3

]
,

A35 =

[
15 −15
−15 15

]
, A36 =

[
7 −7
−7 7

]
,

A45 =

[
35 −35
−35 35

]
, A56 =

[
10 −10
−10 10

]
.
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Fig. 2. (a) The network structure in 2. (b) The corresponding trajectories
of agents’ states.

The initial states for nodes are

x1 =
[
18 15

]T
,

x2 =
[
32 27

]T
,

x3 =
[
25 38

]T
,

x4 =
[
20 50

]T
,

x5 =
[
10 30

]T
,

x6 =
[
34 8

]T
.

Figure 1(b) illustrates the simulation trajectory result for
the 6 nodes. The dashed lines represent the trajectory of
nodes, whose equilibrium state is denoted by a small star
mark with the same color. Solid lines that start from triangle
marks denote the trajectories of x̄Cl

. The black star mark
denotes the average initial state of all nodes, i.e., x̄(0). The

initial and consensus states for all clusters are

xC1
(0) =

[
26 11.5

]T
,

xC1(∞) =
[
16.33 21.17

]T
,

xC2(0) =
[
22.33 31.67

]T
,

xC2
(∞) =

[
24.58 29.42

]T
,

xC3
(0) =

[
20 50

]T
,

xC3
(∞) =

[
32.58 37.42

]T
.

Noted that the initial state of the overall system, x̄(0), and
the equilibrium states of individual clusters, {x̄Cl

(∞)}sl=1, lie
on the same line with the slope of k = 1 = [ξ]2

[ξ]1
. Therefore,

(5) holds for all clusters, and (6) is also confirmed as the
average states of each cluster move orthogonally towards the
line. Furthermore, (7) and (8) can be easily verified through
straightforward computation.

Remark 2. In Example 2, we choose d = 2 to illustrate
Theorem 1. However, with the dimension restriction of d = 2,
there is only one degree of freedom to design the connection
weight matrix between clusters based on Assumption 2. To
gain further insights into Theorem 1, we provide another
simulation result with d = 3.

Example 3. Consider a higher-order interaction network G =
(V, E , A) where n = 6, d = 3, and ξ = (1, 2, 3)T . The
connection matrix weights for edges are arranged according
to Assumption 2, while the initial states are chosen randomly.
As shown in Figure 3(a), the node partition {Cl}sl=1 of G is
C1 = {1}, C2 = {2, 6}, C3 = {3, 4, 5}. The equilibrium states
of clusters {xCl

(∞)}sl=1 and x̄(0) fall on the same gray line,
whose direction vector is [1, 2, 3]T . Thus, it is evident that
Equation (5) still holds for d = 3. According to 6, the mean
derivation direction inside clusters ˙̄xCl

must be orthogonal to
ξ, which implies that the trajectory of x̄Cl

moves on planes
that are perpendicular to ξ = [1, 2, 3]T . We plot the planes
with the corresponding color for each cluster respectively
in Figure 3(b) to illustrate this point. Therefore, it is still
easy to predict the equilibrium states for all nodes in higher
dimensions, given the connection states and initial states.

V. CLUSTER CONSENSUS ON HIGHER-ORDER
INTERACTION NETWORK: 2-DIMENSIONAL CASE

In this section, we proceed to discuss the case where the
dimension of the nullspace of semi-definite matrix-valued
weight is equal to 2, which is dictated in the following
assumption.
Assumption 3. There exists two linearly independent
nonzero vectors ξ1, ξ2 ∈ Rd (d ≥ 2) such that null(Aij) =
span {ξ1, ξ2} for all Aij ≥ 0 where (i, j) ∈ E .

Then, we have an extension of Theorem (1) from the
1-dimensional to the 2-dimensional case, as stated in the
following theorem.
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Fig. 3. (a) The network structure in Example 3. (b) The corresponding
trajectories of agents’ states.

Theorem 2. Let G be a higher-order interaction network
satisfying Assumptions 1 and 3. Then the consensus state of
agents in cluster Cl (l ∈ s) satisfies

xCl
(∞)− x̄(0) ∈ span {ξ1, ξ2} . (9)

Moreover, the derivative of the average state of agents in
cluster Cl (l ∈ s) is perpendicular to span {ξ1, ξ2}, namely,

˙̄xCl
(t) ∈ span {ξ1, ξ2}

⊥
, for all t ≥ 0. (10)

Remark 3. To better understand the geometric interpretation
of Theorem 2, we will examine the case where d = 3 in
detail. The vector orthogonal to ξ1 and ξ2 is denoted by
ξ∗ = ξ1 × ξ2, namely, ξ∗ ∈ span {ξ1, ξ2}

⊥. Note that

dim {span {ξ1, ξ2}} = 2,

and

dim
{
span {ξ1, ξ2}

⊥
}
= 1,

which implies that xCl
(∞)− x̄(0) lies in a plane spanned by

ξ1 and ξ2. Similarly, the trajectory of x̄Cl
(t) is constrained

to move on the line with the same direction of ξ∗. In fact, the
equation (5) can be expressed in the following form, which
shows that xCl

(∞) (l ∈ s) lies on the same plane in R3

a1[xCl
(∞)]1 + a2[xCl

(∞)]2 + a3[xCl
(∞)]3 = b, (11)

where a1 = [ξ∗]1, a2 = [ξ∗]2, a3 = [ξ∗]3 and b = ⟨ξ∗, x̄(0)⟩.
Moreover, combining equations (11) and (10), we can obtain
the explicit expression of consensus state for each cluster as

xCl
(∞) =



[ξ∗]1 ⟨ξ∗, x̄(0)− xCl
(0)⟩

∥ξ∗∥22
+ [xCl

(0)]1

[ξ∗]2 ⟨ξ∗, x̄(0)− xCl
(0)⟩

∥ξ∗∥22
+ [xCl

(0)]2

[ξ∗]3 ⟨ξ∗, x̄(0)− xCl
(0)⟩

∥ξ∗∥22
+ [xCl

(0)]3


, l ∈ s.

(12)

1 2 3
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Fig. 4. (a) The network structure. (b) The trajectories of agents’ states.

Example 4. We provide the following simulation example
to illustrate Theorem 2. We choose ξ1 = [1, 2, 3]T and
ξ2 = [2, 2, 1]T . Consider a higher-order interaction network
in Figure 4(a) whose node partition according to Assumption
1 is C1 = {1}, C2 = {2, 4}, C3 = {3} and C4 = {5, 6}. The
positive definite matrix-valued weights connecting different
clusters are

A24 =

46 30 25
30 29 20
25 20 24

 ,

and

A56 =

29 18 14
18 31 13
14 13 14

 .
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The positive semi-definite matrix-valued weights are

A14 =

 16 −20 8
−20 25 −10
8 −10 4

 ,

and

A23 = A35 =

 32 −40 16
−40 50 −20
16 −20 8

 .

The initial states for agents are

x1 =
[
48.81 21.89 46.96

]T
,

x2 =
[
10.27 6.59 37.09

]T
,

x3 =
[
23.12 24.34 6.88

]T
,

x4 =
[
36.88 24.91 23.66

]T
,

x5 =
[
49.04 45.44 31.55

]T
,

x6 =
[
49.95 33.37 9.54

]T
.

The initial and consensus states for all clusters are

xC1
(0) =

[
48.81 21.89 46.96

]T
,

xC1
(∞) =

[
38.78 34.43 41.94

]T
,

xC2
(0) =

[
23.57 15.75 30.38

]T
,

xC2(∞) =
[
22.73 16.80 29.96

]T
,

xC3(0) =
[
23.12 24.34 6.88

]T
,

xC3
(∞) =

[
30.43 15.20 10.54

]T
,

xC4
(0) =

[
49.49 39.41 20.55

]T
,

xC4
(∞) =

[
51.70 36.65 21.65

]T
.

Different from the Example 2, the consensus states of each
cluster and x̄(0) lie in the same plane instead of a single
line, as shown in Figure 4(b). Therefore, equation (9) holds
for all clusters. Note that the normal vector of the plane is
ξ∗. The average state for each cluster, x̄Cl

, will move on a
line that is perpendicular to this plane, thus confirming (10).
Note that equations (11) and (12) can also be verified by a
straightforward computation.

VI. CONCLUSION

This paper explored the cluster consensus design problem
on higher-order interaction networks. We proposed a novel
interaction protocol design paradigm that manipulates the
collective behaviors of higher-order interaction networks by
designing the nullspace of specific matrix-valued weights
associated with edges in the network. Two cases are investi-
gated, that is, the nullspace of semi-positive matrix-valued
edges is spanned by one d−dimensional nonzero vector
and by two linearly independent d−dimensional vectors,
respectively. The main results can be immediately extended
to the general case where the positive semi-definite edges
are spanned by q linearly independent d−dimensional vectors
where d− 1 ≥ q > 2.
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