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Abstract— This paper exploits the Negative Imaginary sys-
tems theory to develop a novel affine formation manoeuvre
control framework for multi-agent systems using dynamic
output feedback. The framework begins by deriving affine
transformation matrices for leader agents, enabling dynamic
adjustments from the nominal formation to the target forma-
tion. An output-feedback distributed Strictly Negative Imag-
inary control law is then proposed for follower agents to
achieve affine formation manoeuvres. Unlike existing affine
formation manoeuvre control schemes, which typically rely
on full-state feedback (including both position and velocity
measurements), the proposed approach requires only relative
position measurements. In addition, it offers more freedom
in choosing a dynamic controller transfer function, thereby
improving formation tracking performance. A comprehensive
simulation case study is provided to test the effectiveness of the
proposed output-feedback-based affine formation manoeuvre
control framework.

I. INTRODUCTION

Formation control of multi-agent systems (MASs) has
been a major focus of research within the control com-
munity over the past two decades. It is generally divided
into two main sub-problems: (a) formation shape control
and (b) formation manoeuvre control [1]. Formation shape
control involves steering networked agents to maintain a
specific geometric shape. In contrast, formation manoeuvre
control is more complex, as it requires not only maintaining
the geometric shape but also enabling transitional, rotational,
scaling, shearing, and combined movements [2], as illustrated
in Fig. 1. These manoeuvres have practical applications in
many real-world scenarios, such as search and navigation
missions, where networked agents must adapt their speed,
direction, orientation and the size of the entire formation
shape to navigate through obstacles and corridors in cluttered
environments [3]–[5]. Existing formation controllers that use
graph Laplacian matrices are typically categorised into three
types based on how formation constraints are specified,
such as displacement-based [4]–[6], distance-based [7] and
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bearing-based [8]. However, these approaches have limita-
tions in tracking formation translational, rotational, scaling,
and shearing movements, as they often require changes to
the formation constraints [1] or additional observer designs
[9] to handle these movements effectively.

(a) (b) (c)

(d) (e) (f)

Fig. 1. Affine formation manoeuvres in a two-dimensional space. (a) The
nominal formation; (b) Formation translation; (c) Formation rotation;
(d) Formation scaling; (e) Formation shearing along the X coordinate; and
(f) Formation shearing along the Y coordinate.

The concept of affine formation manoeuvre control that
applies the trick of stress matrices has recently emerged to
address the challenges of formation manoeuvres for MASs.
Unlike the conventional Laplacian matrix, the weight of each
edge in a stress matrix can be any real number. This unique
property provides a straightforward yet useful approach for
formulating a distributed affine formation manoeuvre con-
troller for MASs. Pioneering research on affine formation
manoeuvres for single and double integrator MASs was
done in [1]. Chen et al. expanded on this by exploring
affine formation manoeuvre control for general linear MASs
connected via undirected graphs [3]. In parallel, Xu et al.
investigated the same problem but considered directed graphs
and the issue of communication time delays [10]. More
recently, in [11], historical velocity information was applied
in designing a distributed controller for single integrator
MASs, aiming to improve the efficiency of affine formation
manoeuvres. However, previous research on affine formation
manoeuvres for MASs either requires full-state feedback [1],
[3], [10] or relies on velocity information [11], which may
not be applicable in scenarios where such information is
unavailable.

Lately, Negative Imaginary (NI) systems theory has
shown promising applications in controlling MASs, includ-
ing robotic arms [12], mobile vehicles [13], unmanned
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aerial vehicles [14]–[16], and aircraft platoons [17]. The
NI systems property, first introduced in [18], is commonly
observed in flexible structures with collocated force actuators
and position sensors [19], [20]. The idea of employing the NI
systems theory in controlling MASs has stemmed from the
fact that many MASs can be feedback-linearised or modelled
as single or double integrator systems, which inherently
exhibit NI properties. Therefore, a distributed Strictly Nega-
tive Imaginary (SNI) controller can be designed to stabilise
such networked systems [14]. This work is motivated by the
limitations associated with the full-state feedback require-
ment in previous research on affine formation manoeuvre
control and builds on advancements made in applying the
NI systems theory to control MASs. This paper develops
a novel output-feedback-based control framework using the
NI systems theory to achieve affine formation manoeuvres
for MASs. Compared to existing approaches, the proposed
control framework provides several advantages.

• It relies only on output feedback, specifically relative
position measurements, making it suitable for scenar-
ios where full-state measurements are unavailable. In
addition, it minimises the sensor requirements;

• It provides more freedom in choosing a dynamic trans-
fer function for formulating the distributed controller,
thereby improving the formation tracking performance;

The set of real numbers is denoted by R. The column
vector with all N entries equal to 1 is denoted by 1N . The
2-norm of a vector is denoted by ∥ ·∥. A positive definite (or
semidefinite) matrix A = A⊤ is denoted by A > 0 (or ≥ 0).
The complex conjugate transpose of a matrix A is denoted by
A∗. The ith eigenvalue of a matrix A is denoted by λi[A]. The
rank of a matrix A is denoted by rank(A). The Kronecker
product of matrices A and B is represented by A⊗B. Rm×n

denotes the space of all real, rational, proper transfer function
matrices of dimension (m× n).

II. TECHNICAL BACKGROUND AND PROBLEM
FORMULATION

A. Graph, configuration, and formation

We use an undirected graph, denoted by G = {V, E},
to describe the interaction topology among the networked
agents, where V = {1, 2, · · · , N} is the set of nodes, and
E ⊆ V ×V is the set of all edges. The edge eij = (i, j) ∈ E
indicates information exchange between the ith and jth nodes.
For an undirected graph, the existence of eij ∈ E implies the
existence of eji ∈ E . The set Ni = {j : (i, j) ∈ E} stands
for the set of all neighbours of the ith node.

A configuration is a pattern in the n-dimensional Eu-
clidean plane Rn, expressed by the coordinates of the
nodes, denoted as yi ∈ Rn ∀i ∈ {1, 2, . . . , N}. In this
work, this configuration is represented by the cumulative
position vector of the networked agents, represented as y ≜
[y⊤1 , y

⊤
2 , · · · , y⊤N ] ∈ RnN . A formation in Rn, denoted by

F = (G,y), is generated from a configuration y with an
undirected graph G having N nodes and l edges.

B. Affine span and affine image

For a set of coordinates {yi}Ni=1 in Rn, the associated
affine span is defined as

S =

{
N∑
i=1

siyi : si ∈ R ∀i and
N∑
i=1

si = 1

}
, (1)

where si is a scalar. If the dimension of S is equal to n,
the set of coordinates {yi}Ni=1 is said to affinely span Rn.
This set is called affinely independent if there exists a set of
scalars {si}Ni=1, which contains at least one non-zero value,
such that

∑N
i=1 siyi = 0 and

∑N
i=1 si = 0; otherwise, it is

called affinely dependent. If {yi}Ni=1 affinely span Rn, there
must be at least (n+1) affinely independent coordinates [1].

A nominal configuration is defined by the cumulative
vector r ≜ [r⊤1 , r

⊤
2 , · · · , r⊤N ]⊤ ∈ RnN . The affine image of

this nominal configuration r is defined as

H(r) =
{
y ∈ RnN : y = (IN ⊗A) r+ 1N ⊗ b

}
, (2)

where A ∈ Rn×n and b ∈ Rn. The affine image contains all
possible affine transformations of the nominal configuration
r, as shown in Fig. 1.

C. Stress matrix

Let a scalar ωij = ωji ∈ R be the weight of the edge eij
in the formation F . According to [1], [2], a stress matrix,
denoted by Ω = [Ωij ] ∈ RN×N , is defined as follows:

Ωij =


0, if i ̸= j and eij /∈ E ,
−ωij , if i ̸= j and eij ∈ E ,∑

k∈Ni
ωik, if i = j.

(3)

Definition 1: (Equilibrium stress matrices) [21]. For a
given formation F , its associated stress matrix Ω is called
an equilibrium stress matrix if (Ω⊗ IN )y = 0.

Remark 1: The structure of a stress matrix is similar to
that of a Laplacian matrix. However, the weights of the edges
forming a stress matrix can be any real number, unlike the
constraints in a Laplacian matrix, which are limited to non-
negative numbers.

Lemma 1: (Universal rigidity) [21]. A formation F is
said to be universally rigid if and only if there exists a stress
matrix Ω ≥ 0, satisfying rank(Ω) = N − n− 1.

D. NI and SNI definitions

Definition 2: (NI definition) [18]. An LTI system with
D(s) ∈ Rm×m is called an NI system if: (a) there are no
right-half plane poles; (b) j[D(jω) − D(jω)∗] ≥ 0 ∀ω ∈
(0,∞) except the values of ω where s = jω is a pole of
D(s); (c) s = jω0 with ω0 ∈ (0,∞) is a pole of D(s), then
it is at most a simple pole and lim

s→jω0

(s−jω0)jD(s) ≥ 0; and

(d) s = 0 is a pole of D(s), then lim
s→0

skD(s) ≥ 0 ∀k ≥ 3

and lim
s→0

s2D(s) ≥ 0.
Definition 3: (SNI definition) [18]. An LTI system

with D(s) ∈ RHm×m
∞ is called an SNI system if

j [D(jω)−D(jω)∗] > 0 ∀ω ∈ (0,∞).
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E. Characteristic loci theory

The characteristic loci of a transfer function matrix Γ(s),
denoted as ρi(s) ∀i ∈ {1, 2, . . . ,m}, characterise a con-
formal mapping of the complex function det[Γ(s)] onto a
complex plane as s moves along the s-plane D-contour in
a clockwise direction. Utilising the characteristic loci theory
to establish the asymptotic stability of MIMO LTI systems
can be linked to employing a multi-loop Nyquist criterion,
providing a graphical stability tool for analysing MIMO
system stability [22].

F. Problem statement

Consider a MAS consisting of N agents in Rn, where n ≥
2 and N > n+1. These networked agents are connected by
an undirected graph G, with nl leader agents and nf follower
agents. Let Vl = {1, . . . , nl} and Vf = {nl+1, . . . , N} be the
sets of leader agents and follower agents, respectively. The
cumulative vectors yl = [y⊤1 , · · · , y⊤nl

]⊤ ∈ Rnnl and yf =
[y⊤nl+1

, · · · , y⊤N ]⊤ ∈ Rnnf denote respectively the positions
of all leader agents and follower agents. The dynamics of
each follower agent are represented by a double integrator
system: ẏi = vi, v̇i = ui, ∀i ∈ Vf , where yi is the position,
vi is the velocity, and ui is the control input to be designed.
Let Ω̄ = Ω⊗Id be the associated stress matrix, which can be

partitioned as Ω̄ =

[
Ω̄ll Ω̄lf

Ω̄fl Ω̄ff

]
, where Ω̄ll ∈ Rnnl×nnl ,

Ω̄lf ∈ Rnnl×nnf , Ω̄fl ∈ Rnnf×nnl and Ω̄ff ∈ Rnnf×nnf .
The primary control objective is to develop a dynamic

output-feedback cooperative control framework for follower
agents to achieve affine formation manoeuvres, relying only
on relative position measurements of the agents. The pro-
posed framework aims to drive the follower agents to reach
their desired positions y∗

f (t) within the target formation F ,
that is

lim
t→∞

(
yf (t)− y∗

f (t)
)
= 0. (4)

We will now introduce a crucial condition guaranteeing that
the desired positions of the leader agents, denoted as y∗

l (t),
uniquely determine (in fact, dictate) the desired positions of
the follower agents, denoted as y∗

f (t).
Lemma 2: (Affine localisability) [1]. Given a nominal

formation Fr = (G, r) and a configuration y = [y⊤
l ,y

⊤
f ]

⊤ ∈
H(r), yl can uniquely determine yf if and only if {ri}i∈Vl

affinely span Rn.
Assumption 1: We assume that the nominal formation Fr

is universally rigid and {ri}i∈Vl
affinely span Rn.

According to [1], the following relationship between the
desired positions of leaders and followers can be readily
established:

y∗
f (t) = −Ω̄−1

ff Ω̄fly
∗
l (t) (5)

via the property Ω̄ff > 0 implied by Lemma 2.

III. FORMATION MANOEUVRES DESIGN

Consider a nominal formation Fr, which represents a
static formation as shown in Fig. 1(a). The desired configu-
ration y∗(t) within the target formation F can be described

as follows:

y∗(t) = (IN ⊗A(t)) r+ 1N ⊗ b(t), (6)

where A(t) ∈ Rn×n and b(t) ∈ Rn are defined as the
affine transformation matrices designed to achieve formation
manoeuvring actions. The desired position y∗i (t) of each
agent i can then be expressed as:

y∗i (t) = A(t)ri + b(t) ∀i ∈ V. (7)

We will now design the affine transformation matrices A(t)
and b(t) to achieve formation manoeuvres in R2, including
translation, rotation, scaling and shearing.

A. Formation translation design
To achieve formation translational motion, we design

b(t) =

[
bx(t)
by(t)

]
, ḃx(t) = ḃ∗x, ḃy(t) = ḃ∗y, (8)

where bx(t) and by(t) are the translational movements w.r.t.
the nominal formation Fr in the X and Y coordinates, as
shown in Fig. 1(b), and ḃ∗x and ḃ∗y are the desired velocities
in each coordinate, as specified by the users.

B. Formation rotation design
To achieve formation rotational motion, we design

A(t) = R(θ(t)) =

[
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]
, θ̇(t) = θ̇∗, (9)

where θ(t) denotes the rotation angle w.r.t. the nominal
formation Fr, as depicted in Fig. 1(c), and θ̇∗ is the desired
rotation rate, as specified by the users.

C. Formation scaling design
To achieve formation scaling motion, we design

A(t) =

[
sx(t) 0
0 sy(t)

]
, ṡx(t) = ṡ∗x, ṡy(t) = ṡ∗y, (10)

where sx(t) and sy(t) are the scaling factors w.r.t. the
nominal formation Fr in the X and Y coordinates, as shown
in Fig. 1(d), and ṡ∗x and ṡ∗y are the desired scaling rates in
each coordinate, as specified by the users.

D. Formation shearing design
To achieve formation shearing motion in the X coordinate,

we design

A(t) =

[
1 tanϕ(t)
0 ψy(t)

]
, ϕ̇(t) = ϕ̇∗, (11)

where ψy(t) ∈ {0, 1}, ϕ(t) denotes the shearing angle w.r.t.
the nominal formation Fr, as depicted in Fig. 1(e), and ϕ̇∗

is the desired shearing rate, as specified by the users. When
ψy(t) = 0, the target formation F is collinear in the X
coordinate. Similarly, to achieve formation shearing motion
in the Y coordinate, we design

A(t) =

[
ψx(t) 0

tanϕ(t) 1

]
, ϕ̇(t) = ϕ̇∗, (12)

where ψx(t) ∈ {0, 1}, ϕ(t) denotes the shearing angle w.r.t.
the nominal formation Fr, as depicted in Fig. 1(f), and ϕ̇∗

is the desired shearing rate. When ψx(t) = 0, the target
formation F is collinear in the Y coordinate.
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IV. OUTPUT AFFINE FORMATION MANOEUVRE CONTROL

A. Distributed SNI systems properties

The following two Lemmas establish the properties of
networked SNI systems with a nominal formation Fr that
satisfies Assumption 1.

Lemma 3: Consider a distributed SNI system represented
by Σ̂c(s) ≜ Ω̄ff ⊗ Σc(s) with a nominal formation Fr

satisfying Assumption 1. Then, Σ̂c(s) is SNI if and only
if Σc(s) is SNI.
Proof. (Sufficiency) Given that Σc(s) is SNI, it satisfies
j[Σc(jω) − Σc(jω)

∗] > 0 ∀ω ∈ (0,∞). Assumption 1
ensures Ω̄ff = Ω̄⊤

ff > 0. Now, utilising the Kronecker
product property A ⊗ B > 0 when A = A∗ > 0 and
B = B∗ > 0 [23], we have j[Σ̂c(jω)− Σ̂c(jω)

∗] = j[Ω̄ff ⊗
Σc(jω)− Ω̄⊤

ff ⊗Σc(jω)
∗] = Ω̄ff ⊗ j[Σc(jω)−Σc(jω)

∗] >

0 ∀ω ∈ (0,∞). Therefore, Σ̂c(s) is SNI.
(Necessity). Staring with the condition that Σ̂c(s) is SNI,

that is, j[Σ̂c(jω) − Σ̂c(jω)
∗] > 0 ∀ω ∈ (0,∞), it implies

j[Σc(jω)−Σc(jω)
∗] > 0 ∀ω ∈ (0,∞) since Ω̄ff = Ω̄⊤

ff >
0 via Assumption 1. This completes the proof. ■

Lemma 4: Consider a distributed SNI system represented
by Σ̂c(s) ≜ Ω̄ff ⊗ Σc(s) with a nominal formation Fr

satisfying Assumption 1. Then, Σ̂c(0) < 0 (or > 0) if and
only if Σc(0) < 0 (or > 0).
Proof. (Sufficiency) We start with noting that Ω̄ff > 0
via Assumption 1. Utilising the property λk[A ⊗ B] =
λi[A]λj [B] where A ∈ Rm×m, B ∈ Rn×n and k ∈
{1, 2, . . . ,mn} (including the multiplicities) [23], we have
Σ̂c(0) = Ω̄ff ⊗ Σc(0) < 0 (or > 0) when Σc(0) < 0 (or >
0).

(Necessity) The condition Σ̂c(0) = Ω̄ff ⊗ Σc(0) <
0 (or > 0) readily implies Σc(0) < 0 (or > 0), as Ω̄ff > 0
via Assumption 1. This completes the proof. ■

B. Output-feedback affine formation manoeuvre control ap-
plying NI toolkit

Recall that the control objective for achieving output affine
formation manoeuvres is to steer the follower agents to their
desired positions y∗

f (t) within the target formation F using
only output feedback, i.e., relative position measurements.
Now, the formation tracking error for the follower agent,
denoted as ei(t), is defined as follows:

ei(t) = yi(t)− y∗i (t) ∀i ∈ Vf . (13)

Then, the formation tracking error for all follower agents,
denoted as e(t), can be expressed as follows:

e(t) = yf (t)− y∗
f (t) = yf (t) + Ω̄−1

ff Ω̄fly
∗
l (t). (14)

We are now prepared to introduce the main theorem, which
presents an SNI-based output-feedback affine formation ma-
noeuvre control framework, as shown in Fig. 2, employing
the NI systems theory. In the upcoming theorem, the nota-
tions Ui(s) and Yi(s) denote the Laplace Transform of the
real-valued time-domain signals ui(t) and yi(t), respectively,
for all t ≥ 0 and all i.

Fig. 2. An SNI-based output-feedback affine formation manoeuvre control
framework, where Σ(s) represents a double-integrator NI follower agent
and Σc(s) is an SNI controller.

Theorem 1: Consider a homogeneous MAS with nl leader
agents and nf followers agents whose dynamics can be rep-
resented by a networked double integrator system. Assume
that the interaction topology G and the nominal formation
Fr = (G, r) satisfy Assumption 1. Let Σc(s) be an SNI
controller with Σc(0) < 0, and α ∈ (0,∞) be a parameter.
Then, through the following output-feedback distributed SNI
control law:

Ui(s) = αΣc(s)
∑
j∈Ni

ωij (Yi(s)− Yj(s)) ∀i ∈ Vf , (15)

the follower agents achieve affine formation manoeuvres and
track their desired positions within the target formation.

Proof. We will first show the asymptotic stability of the
affine formation manoeuvre control framework, as depicted
in Fig. 2, by exploiting the characteristic loci theorem [22].
The proof builds on the arguments presented in [14, Theo-
rem 2]. The loop transfer function matrix in Fig. 2 can be
expressed as L(s) = Ω̄ff ⊗ (Σc(s)Σ(s)), where Σ(s) = 1

s2

is the model of each follower, Σc(s) is an SNI controller
selected such that Σc(0) < 0 and Ω̄ff > 0. Following the
proof of [14, Theorem 2], it can be established that none
of the characteristic loci of L(s) encircle the critical point
( 1
α + j0) for any α ∈ (0,∞). This confirms the asymptotic

stability of the overall closed-loop networked system.
Next, we will show the asymptotic convergence of the

formation tracking error e(t). From Fig. 2, we can readily
obtain the transfer function representation of the error dy-
namics as E(s) =

[
I −

(
Ω̄ff ⊗ (αΣc(s)Σ(s))

)]−1
. Then,

the expression for the steady-state error in the time domain
can be obtained as follows:

ess = lim
t→∞

e(t) = lim
s→0

sE(s)

= lim
s→0

s
[
I −

(
Ω̄ff ⊗ (αΣc(s)Σ(s))

)]−1 (
Ω̄flYl(s)

)
= lim

s→0
s2

[
s2I −

(
Ω̄ff ⊗ (αΣc(s))

)]−1 (
sΩ̄flYl(s)

)
= −

[
αΣ̂c(0)

]−1 (
lim
s→0

s2I
)
×

(
lim
s→0

sΩ̄flYl(s)
)
.

Since Σ̂c(0) < 0 via Lemma 4, Ω̄fl is a bounded real matrix,
and yl(t) is an L∞-bounded signal admitting a steady-state,
the above expression reduces to ess = [0, 0, . . . , 0]⊤. This
implies that lim

t→∞

(
yf (t) − y∗

f (t)
)
= 0, i.e., the condition
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given in (4) holds. Therefore, we conclude that all follower
agents track their desired positions within the target forma-
tion. This completes the proof. ■

Remark 2: Note that the affine transformation matrices
A(t) and b(t) are only shared among leader agents. Follower
agents do not directly access this information; however, they
achieve affine formation manoeuvres and track their desired
positions within the target formation by tracking the motions
of those leader agents via the proposed output-feedback
distributed SNI control law in (15).

C. An extension to heterogeneous NI MASs

To this end, we propose an extension of the SNI-based
affine formation manoeuvre control framework to hetero-
geneous NI agents, as depicted in Fig. 3. Assume that the
interaction topology G and the nominal formation Fr satisfy
Assumption 1. Let Ωff be decomposed as QffWQ⊤

ff ,
where Qff ∈ Rnf×l is an incidence matrix associated with
Ωff , and W = diag{wk} ∈ Rl×l is the weight matrix
containing the weights of the edges connecting the followers
among themselves and with the leaders. Choose a set of
stable controllers Σc,k(s) for k ∈ {1, 2, . . . , l} such that

l

diag
k=1

{wkΣc,k(s)} is SNI with wkΣc,k(0) < 0. Then, through

the following output-feedback distributed SNI control law

Ui(s) = αi

∑
j∈Ni

ωij Σc,k(s)
(
Yi(s)− Yj(s)

)
∀i ∈ Vf , (16)

the heterogeneous NI agents achieve affine formation ma-
noeuvres and track their desired positions.

Fig. 3. An affine formation manoeuvre control framework for heterogeneous
NI MASs with a split-arrangement of its stress matrix Ωff = QffWQ⊤

ff .

V. SIMULATION CASE STUDY

We conducted a MATLAB simulation case study involving
a team of seven networked agents operating in a two-
dimensional space to demonstrate the feasibility of the
proposed SNI-based output-feedback affine formation ma-
noeuvre control framework. Fig. 4 describes the interaction
topology among these networked agents, with the weight ωij

assigned to each edge. The affine transformation matrices

2

3

1

4

5

6

7

0.5482

0.5482

0.2741

0.2741

0.137

0.0685

Fig. 4. The interaction topology, the weight of each edge, and the nominal
configuration for the MATLAB simulation case study. Agents 1−3 are the
leader agents, and agents 4− 7 are the follower agents

A(t) and b(t) were designed in advance using Equations (8)–
(12), ensuring that all networked agents could safely navigate
through a cluttered environment. The objective was for the
follower agents to achieve affine formation manoeuvres and
track their desired positions by implementing the proposed
control law in (15). In this simulation, we selected an SNI
controller transfer function Σc(s) = −

(
s+1
s+10

)
with Σc(0) <

0 and α = 200 to be implemented in (15).

-10 0 10 20 30 40 50
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15
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25

30

t = 0 s

t = 80 s t = 120 s t = 160 s

t = 180 s

t = 220 s
t = 270 s

t = 300 s

Fig. 5. The trajectories of all networked agents in a two-dimensional space.
Leader agents are denoted by blue circles, follower agents by orange circles,
and obstacles by black rectangles. Black dashed lines mark the formation
at each time stamp. A team of networked agents executed formation
translation, rotation, scaling, and shearing by implementing the proposed
SNI-based output-feedback affine formation manoeuvre control framework.

Fig. 5 shows the trajectories of networked agents in a
two-dimensional space, demonstrating how leader agents
dynamically adjusted the target formation through affine
transformations to enable different formation manoeuvres.
This adjustment ensures safe navigation through a cluttered
environment with obstacles. With the proposed SNI control
law in (15), all follower agents reached their desired positions
within the target formation using only relative position
measurements. Fig. 6(a) presents the 2-norm of the formation
tracking error, showing rapid convergence to zero. Fig. 6(b)
and Fig. 6(c) show the velocities of the followers. These
results indicate that the networked agents have achieved the

6943



0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1
agent 4

agent 5

agent 6

agent 7

(a) Formation tracking error.

0 100 200 300
-1.5

-1

-0.5

0

0.5

1

agent 4

agent 5

agent 6

agent 7

(b) Velocity along the X coordinate.

0 100 200 300
-1

-0.5

0

0.5

1

agent 4

agent 5

agent 6

agent 7

(c) Velocity along the Y coordinate.

Fig. 6. The 2-norms of the formation tracking errors and velocities for the follower agents.

desired affine formation manoeuvres via the proposed SNI-
based output-feedback affine formation control framework.

VI. CONCLUSIONS

This paper addresses the output affine formation ma-
noeuvre control problem for MASs by applying the NI
systems theory. The proposed control framework relies only
on output feedback, offering advantages such as reduced
sensor requirements and an ideal solution in scenarios where
full-state measurements are unavailable. The methodology
begins with formulating affine transformation matrices for
all leader agents, which dynamically adjusting from the
nominal formation to the target formation. Following this,
the proposed output-feedback distributed SNI control law
enables follower agents to achieve affine formation manoeu-
vres. A comprehensive simulation case study demonstrates
the feasibility and performance of the proposed control
framework. Future work will include a rigorous analysis of
extending this approach to heterogeneous NI MASs and its
implementation in physical multi-robot systems.
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