
Algebraic prescribed-time KKL observer for continuous-time
autonomous nonlinear systems

Yasmine Marani1, Ibrahima N’Doye1, IEEE Senior Member, and Taous Meriem Laleg Kirati2

IEEE Senior Member

Abstract— Designing observers for nonlinear systems is chal-
lenging, especially when prescribed convergence is required.
Such a convergence is crucial for some applications, such
as tactical missile guidance, communication networks, and
robot assembly lines. The nonlinear prescribed time observers
reported in the literature focus on specific classes of nonlinear
systems with mainly linear outputs and rely on a scaling
function or a time-varying gain that goes to infinity as the
time approaches the prescribed convergence time, rendering
the observer highly sensitive to measurement noise. This paper
proposes an algebraic prescribed time observer for a general
class of nonlinear systems that does not require any scaling
function or exploding gain. The observer design relies on
the KKL (Kazantzis-Kravaris/Luenberger) transformation that
writes the system in a linear form in another set of coordinates.
Then modulating functions, combined with an integral operator
are applied over a window specified by the desired convergence
time to provide a closed-form solution of the state estimate at
the prescribed time. Moreover, we study the performance of
the proposed algebraic prescribed time observer to guarantee
a disturbance attenuation level in the presence of measurement
noise. The effectiveness of the proposed observer is evaluated in
numerical simulations and its performance is further assessed
in the presence of measurement noise.

I. INTRODUCTION

State estimation for dynamical systems is crucial for control
design, monitoring, and fault detection. Algorithms called
observers are designed to estimate the unmeasured states
of a given system. However, observer design for nonlinear
systems is challenging and most of the existing methods
target specific classes of nonlinear systems or require strong
assumptions. Only a few observers suitable for a general
class of nonlinear systems exist in the literature, such as the
Extended Kalman Filter [1] which relies on the linearization
of the system providing, therefore, only local convergence
guarantees. Furthermore, nonlinear observer design becomes
significantly more challenging when additional performances
are required, such as non-asymptotic convergence. Depend-
ing on the nature of the convergence we distinguish asymp-
totic and non-asymptotic observers.
Among the existing nonlinear asymptotic observers,
Kazantzis-Kravaris-Luenberger (KKL) observer is increas-
ingly gaining popularity, as it is one of the most powerful
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observers that offers a general estimation scheme for a wide
class of nonlinear systems satisfying weak observability con-
ditions [2]. The KKL observer resulted from the extension
of the original method of the Luenberger observer [3] to
nonlinear systems [4]. The observer relies on finding an
injective nonlinear map of the states that transforms the
nonlinear system into a stable linear system in another set of
coordinates of possibly higher dimensions, where an observer
already exists. Thanks to the injectivity of the transformation,
the state estimate in the original coordinates is obtained
by computing the left-inverse. The conditions of existence
and injectivity of the transformation were first established
locally around the equilibrium point in [4]–[6]. Then, the
local nature of the development was dropped in [7] where
global results were proposed under the strong observability
condition of finite complexity. The conditions were further
relaxed [8] by introducing the mild observability condition
of backward distinguishability. Moreover, exponential con-
vergence and tunability of the observer can be achieved under
additional conditions [9].
The literature abounds of non-asymptotic or finite time
observers, such as higher-order sliding mode observers [10]–
[12], homogeneity-based observers [13]–[15], and algebraic
estimators such as the so-called Modulating Function Method
(MFM) [16]–[20]. The MFM is of particular interest due to
its robustness features and its independence from any initial
condition. Through an integral operator, the MFM transforms
the estimation problem from differential equations into solv-
ing a set of algebraic equations. Therefore, instead of solving
the direct problem, a closed-form solution of the variable of
interest is derived without requiring any initial condition.
The MFM was first introduced for parameter identification
of linear systems in the late fifties in [21], and was then
generalized to various classes of systems [22]–[26]. Only a
decade ago, was the MFM proposed for state estimation.
It was first extended for state estimation of linear ODEs
[27] and nonlinear ODE where the nonlinearity depends
solely on the output [16]. Then it was extended to linear
and nonlinear PDEs [28], [29], and linear descriptor systems
[30]. Recently, a MFM has been designed for triangular
nonlinear systems subject to disturbance [18]. Additionally,
a modulating function-based coordinate transformation that
transforms the system into an observer canonical was pro-
posed in [31]. Nevertheless, the MFM has not been extended
yet to a general class of nonlinear systems.
In a similar line of research, finite time observers that con-
verge in prescribed time independently of the initial condi-
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tion have recently attracted the attention of the control com-
munity. Prescribed time convergence is crucial in several ap-
plications, such as tactical missile guidance, communication
systems, and robot assembly lines, where initial conditions
are uncertain or unknown and accurate state estimation must
be achieved within a predefined finite time [32]. Inspired by
[33], where a prescribed time stabilization was achieved by
using feedback with a time-varying gain that tends to infinity
as the time approaches the prescribed convergence time, a
new approach to prescribed time observers was proposed
in [34] for linear time-invariant systems in an observer
canonical form. The observer was then extended to nonlinear
triangular systems in [35], where a prescribed time high
gain observer was proposed. Furthermore, a prescribed-time
sliding mode observer for triangular systems was proposed
in [36]. Recently, a prescribed-time safety filter was pro-
posed and implemented experimentally on a seven-degrees-
of-freedom robot [37]. The prescribed-time observer was
also extended to multi-agent systems [38] and linear time-
invariant systems subject to input or output delay [39], [40].
The advantage of the aforementioned observers is their ease
of implementation and the ability to define the convergence
time independently from the initial condition. However, they
rely on a time-varying grain that becomes unbounded as time
approaches the prescribed convergence time which makes
the observer highly sensitive to measurement noise, which
alters the estimation accuracy. Moreover, to the best of our
knowledge, nonlinear prescribed time observers mostly con-
sider a specific class of nonlinear systems such as triangular
nonlinear systems, and have not been extended yet to a
general class of nonlinear systems.
Motivated by the above-mentioned methods, we propose
in this paper an algebraic prescribed-time KKL observer
for autonomous nonlinear systems that does not require
any scaling function or exploding gain design. Instead, it
relies on the modulating function method which provides
a closed-form solution of the state at a user-prescribed
time. Leveraging the power of the KKL observer with
the properties of the modulating function method, the pro-
posed prescribed time observer can be applied to a general
class of nonlinear systems with possibly nonlinear outputs.
Moreover, measurement noise is attenuated thanks to the
integral operator involved in the MFM (modulation operator).
Additionally, the proposed observer is easy to implement,
and the prescribed time convergence is a natural consequence
of the modulation operator applied on an integration window
whose length is specified by the prescribed convergence time
independently of any parameter or initial condition.
The present paper is organized as follows: Section II provides
some background on the KKL observer and the MFM.
Section III presents the proposed algebraic prescribed-time
KKL observer for autonomous nonlinear systems. The dis-
turbance attenuation analysis of the proposed observer in the
presence of measurement noise is provided in section IV and
numerical simulations are performed in section V. Finally,
concluding remarks and future work directions are provided
in section VI.

II. PRELIMINARIES

This section gives background on the KKL observer
design for autonomous nonlinear systems and the Modulating
Functions Method.

A. KKL observer for autonomous nonlinear systems

Consider the following nonlinear autonomous system{
ẋ(t) = f(x(t))

y(t) = h(x(t))
(1)

where x(t) ∈ Rn is the state, y(t) ∈ Rp is the output,
f : Rn → Rn and h : Rn → Rp are smooth vector fields.
The solution of (1) at time t, initialized with x(0) = x0 is
denoted by X (t, x0).

The KKL observer design relies on finding an injective map
T that transforms the nonlinear system (1) into a linear
form in another set of coordinates z, where an observer is
designed. Finally, using the left-inverse T−1, one obtains the
state estimate x̂(t).
In what follows, we briefly provide the conditions of exis-
tence and injectivity of the transformation T by considering
the following assumptions [8]:

Assumption 1: System (1) is forward invariant within X
i.e. there exist a compact set X ⊂ Rn, such that for all initial
conditions x(0) ∈ X0 ⊂ X and all t > 0, X (t, x0) ∈ X .

Assumption 2: System (1) is backward O-distinguishable
on X i.e, Given open set O ⊃ X , for any pair of initial
condition (xa, xb) ∈ Xa × Xb, if xa ̸= xb, then there exists
τ < 0 such that (X(t, xa), X(t, xb)) ∈ O2 is well defined
for t ∈ [τ ; 0] and h (X(τ, xa)) ̸= h (X(τ, xb)).

We recall the following theorem from [2] establishing the
existence and injectivity of the KKL transformation T .

Theorem 1: Consider system (1) and let Assumptions
1 and 2 hold. Then, for almost any pair (Ã, B̃) ∈(
R(2n+1)×(2n+1),R(2n+1)×1

)
\J such that Ã+ δI(2n+1) is

Hurwitz for some δ > 0, and J ⊂ R(2n+1)×(2n+1) ×
R(2n+1)×1 is a set of zero Lebesgue measure, there exists a
uniformly injective map T : X → R(2n+1)p satisfying

∂T

∂x
(x)f(x) = AT (x) +Bh(x), ∀x ∈ X (2)

with A = Ip ⊗ Ã ∈ R(2n+1)p×(2n+1)p and B = Ip ⊗ B̃ ∈
R(2n+1)p×p.

Based on the result of Theorem 1, system (1) is transformed
into a linear system in the new coordinates z = T (x) ∈
R(2n+1)p given by

ż = Az +By. (3)
Where A and B are as in Theorem 1, where Ã is a diagonal-
izable matrix and (Ã, B̃) controllable, which is satisfied for
almost any a pair (Ã, B̃) ∈

(
R(2n+1)×(2n+1),R(2n+1)×1

)
[41]. Furthermore, we consider the following assumption

Assumption 3: The left-inverse T−1 of the map T satis-
fying (2) is locally Lipschitz∥∥T−1(z)− T−1(ẑ)

∥∥ ⩽ l∥z(k)− ẑ(k)∥,
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where l > 0 is the Lipschitz constant.
Typically, the KKL observer in the new coordinates is a copy
of (3), where the Hurwitz and controllability of the design
matrices ensure the exponential convergence of the KKL
observer in the z-coordinates. Additionally, if Assumption
3 holds, the KKL observer converges exponentially in the
original coordinates [9]. Moreover, if the observer is initial-
ized at time t0 ⩾ 0 with ẑ(t0) = z(t0) then the convergence
of the KKL observer is exact for t ⩾ t0.
Based on the above observation, the objective is to design
an estimation scheme that can perfectly reconstruct the state
z at a given time Tp chosen by the user independently of
the initial condition. One way to do this is to combine
the KKL observer with the so-called modulating functions
approach which allows to obtain a closed-form solution of
the state at a given specified time Tp without requiring any
initial condition. As a result, an exact convergence of the
observer will be obtained for t ⩾ Tp. More details about
the Modulating Functions Method are given in the next
subsection.

B. Modulating Function Method

The Modulating Functions Method is an algebraic method
that transforms the model differential equation into an al-
gebraic equation, which provides a closed-form solution of
the estimate of the variable of interest. Therefore, no initial
condition is needed. In what follows and based on [26],
the definition of the modulating functions and their main
property are established.

Definition 1: (Modulating function) A non-zero function
ϕ(t) : [0, T ] → Rn, for a fixed T > 0, is said to be a kth

order modulating function, with k ∈ N∗, if it satisfies the
following
(P1): ϕ ∈ Ck([0, T ])
(P2): ϕ(i)(0) = ϕ(i)(T ) = 0, i = 0, 1, . . . , k − 1.

Definition 2: (Modulation operator) Let y : [0, T ] ⊂
R+ → R be an integrable signal and ϕ(t) ∈ Ck([0, T ]) a kth

order modulating function. The corresponding modulation
operator is given by the following inner product over the
interval I = [0;T ]:

⟨ϕ, y⟩I =

∫ T

0

ϕ(t)y(t)dt.

Property 1: Using integration by parts and the boundary
conditions (P2), one can derive the following

⟨ϕ, y(i)⟩I =

∫ T

0

ϕ(t)y(t)(i)dt

= (−1)i
∫ T

0

ϕ(t)(i)y(t)dt = (−1)i⟨ϕ(i), y⟩I .

Property 1 emphasises one of the main advantages of the
Modulating Functions Method, which consists of shifting
the derivatives from the unknown and possibly noisy signal
to the known and smooth modulating function. Moreover,
the mitigation of measurement noise on the estimation is
achieved thanks to the modulation operator.

III. ALGEBRAIC PRESCRIBED-TIME KKL OBSERVER

Assume that zi(t), k = 1, ..., d is a continuous and bounded
function of time. Using the Weierstrass approximation the-
orem [42], we decompose each state on I = [0;Tp] in
the space spanned by M known polynomial basis functions
αi,j(t), for M large enough

zi(t) =

M∑
j=1

ai,jαj(t), ∀i = 1, ..., d. (4)

Each state zi is a linear combination of M known polynomial
basis functions where the coefficients ai,j are estimated using
the MFM. Considering a copy of system (3) initialized at
ẑ(Tp) obtained by the MFM, the KKL observer estimation
will be exact for t ⩾ Tp, which leads to a prescribed time
KKL observer.

Remark 1: The boundedness of the state z is ensured
by assumption 1, the smoothness of the function h(x), and
the Hurwitz property of the matrix A, which imply that
the trajectories z(t, T (x0)) ∈ Z ⊂ R(2n+1)p are bounded,
∀t > 0 and ∀x0 ∈ X0 ⊂ X .

Without loss of generality, the following proposition pro-
vides the structure of the proposed algebraic prescribed-time
KKL observer for system (1) with a diagonal matrix A =

diag
( [

λ1, ..., λd

] )
, with d = (2n+1)p. Moreover, we

consider the following notation B =
[
bT1 .... bTd

]T
.

Proposition 1: Consider system (1) and let Assumptions 1
and 2 hold. Denote by {ϕi}i=M

i=1 a set of modulating functions
of order l ⩾ 1, T the injective KKL transformation, and T−1

its left-inverse satisfying Assumption 3. Then, the following
observer is a prescribed-time observer for system (1)

˙̂z(t)=Aẑ(t) +By t > Tp

ẑ(t)=0; t < Tp

ẑ(Tp)=Θ̂M;

x̂(t)=T−1(ẑ(t))

(5)

where A is Hurwitz, (A,B) is controllable, and Tp is the
prescribed convergence time. The coefficient matrix and the
basis functions vector denoted by Θ̂ ∈ Rd×M and M ∈
RM×1, respectively, are given by

Θ̂ =


− θ̂T1 −
− θ̂T2 −

...

− θ̂Td −

 and M =


α1(t)

α2(t)
...

αM (t)

 . (6)

The parameter vectors θ̂i ∈ RM×1, i = 1, ..., d are given by
the closed-form solution

θ̂i=−Φ−1
i


⟨ϕ1(t), biy(t)⟩

...

⟨ϕM (t), biy(t)⟩

 , (7)

with Φi as in equation (‡).
Proof: Assuming that system (1) satisfies Assumptions
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Φi =


⟨ϕ̇1(t) + λiϕ1(t), α1(t)⟩I · · · ⟨ϕ̇1(t) + λiϕ1(t), αM (t)⟩I

...

⟨ϕ̇M (t) + λiϕM (t), α1(t)⟩I · · · ⟨ϕ̇M (t) + λiϕM (t), αM (t)⟩I

 (‡)

1 and 2, then according to theorem 1, there exists an
injective map T transforming the system into the stable
linear system (3).
Step1: Non-asymptotic estimation of z(Tp)
Exploiting the diagonal structure of the matrix A, the
equations of (3) can be decoupled in the z-coordinates, and
the steps of the MFM are identical for zi, i = 1, ...d.

Consider the following equation
żi(t) = λizi(t) + biy(t). (8)

Multiplying both sides of (3) with a modulating function ϕ(t)
of order l ≥ 1, one obtains

ϕ(t)żi(t) = λiϕ(t)zi(t) + ϕ(t)biy(t). (9)
Applying the modulation operator to the above equation on
I = [0;Tp], with Tp representing the prescribed convergence
time defined independently of the initial condition, and using
Property 1, one can shift the derivative from the unknown
state żi to the known modulating function ϕ(t).
−⟨ϕ̇(t), zi(t)⟩I = ⟨λiϕ(t), zi(t)⟩I + ⟨ϕ(t), biy(t)⟩I , (10)

substituting zi(t) by (4) for M big enough, one obtains

⟨ϕ̇(t) + λiϕ(t), zi(t)⟩I =

M∑
j=1

ai,j⟨ϕ̇(t) + λiϕ(t), αj(t)⟩I

= −⟨ϕ(t), biy(t)⟩I , (11)
which is equivalent in vector notations to

[
⟨ϕ̇(t) + λiϕ(t), α1⟩I . . . ⟨ϕ̇(t) + λiϕ(t),αM ⟩I

] 
ai,1

...

ai,M


= −⟨ϕ(t), biy(t)⟩I .

(12)
The estimation of the coefficients ai,j , j = 1, . . . ,M is
achieved by solving M linearly independent equations (12).
Therefore, we use M different modulating functions ϕi of
order l ⩾ 1, leading to the following:

Φi


âi,1

...

âi,M


︸ ︷︷ ︸

θ̂i

=−


⟨ϕ1(t), biy(t)⟩

...

⟨ϕM (t), biy(t)⟩

 (13)

where Φi ∈ RM×M is given by equation (‡).
The parameter vector θ̂i is obtained by solving equation

(13).
The estimated state in the z-coordinates at time Tp is then

given by
ẑ(Tp)=Θ̂M,

with Θ̂ and M as in (6).
Step 2: Estimation error at t = Tp

Let η(t) be the polynomial approximation error defined as
η(t) = z(t)− ẑ(t); t ⩽ TP

Given the boundedness and smoothness of z(t) (see Remark
1), there exist a positive finite number ηmax such that
||η(t)|| ⩽ ηmax; t ⩽ Tp.
For an appropriate choice of a large enough number of
polynomial basis functions M over the interval [0;Tp], one
obtains ηmax → 0. As a result, we obtain the following
estimation error in the z-coordinates
||ez(Tp)|| = ||z(Tp)− ẑ(Tp)|| = ||η(TP )|| ⩽ ηmax → 0

(14)
This leads to the prescribed time convergence of the state
estimation in z-coordinates at t = TP .

Considering Assumption 3, then the estimation error in the
original coordinates satisfies for t = Tp

||x̂(t)− x(t)|| = ||T−1(ẑ)− T−1(z)|| (15)
⩽ l||ẑ(t)− z(t)||

which ensures
lim
t→Tp

||x̂(t)− x(t)|| = 0.

Step 3: Estimation error for t ⩾ Tp

Given the Hurwitz nature of the matrix A, there exist two
positive constant α and β such that the observer error for
t > Tp satisfies

||ẑ(t)− z(t)|| ⩽ αe−β(t−Tp) ||ẑ(Tp)− z(Tp)||︸ ︷︷ ︸
=0

(16)

which is equivalent to
||ẑ(t)− z(t)|| = 0, t > Tp. (17)

Furthermore and provided that Assumption 3 holds, then the
estimation error in the original coordinates satisfies for t ⩾
Tp

||x̂(t)− x(t)|| = ||T−1(ẑ)− T−1(z)|| ≤ l||ẑ(t)− z(t)||
(18)

⩽ lαe−β(t−Tp)||ẑ(Tp)− z(Tp)|| = 0

As a result, observer (5) converges in prescribed time in the
original coordinates. This ends the proof.

Remark 2: The number of basis functions M is a hyper-
parameter in the proposed observer that has to be chosen big
enough and is often obtained by trial and error. In the case
where M is not chosen appropriately and the polynomial
approximation error is not negligible, this latter will be
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mitigated by the Hurwitz property of A as suggested by (16)
and (18), obtaining therefore in the worst case scenario a fast
convergence.

IV. DISTURBANCE ATTENUATION ANALYSIS OF THE
ALGEBRAIC PRESCRIBED TIME KKL OBSERVER TO

MEASUREMENT NOISE

Consider the following autonomous nonlinear dynamical
system with a noisy output{

ẋ(t) = f(x(t))

ye(t) = y(t) + v(t) = h(x(t)) + v(t)
(19)

where v(t) ∈ Rp is a bounded measurement noise satisfying
the following assumption.

Assumption 4: The output measurement noise v(t) pos-
sesses a finite bound on its:
(i): L∞ ∀t ≥ Tp: ||v(t)||L∞ ⩽ v̄1;
(ii): L2 ∀t ∈ [0;Tp]: ||v(t)||L2 ⩽ v̄2.
In the presence of output measurement noise, the design of
the KKL observer presented in section II remains the same
for system (19) (see for instance [43]).

Proposition 2: Consider system (19) satisfying assump-
tions 1 and 2, and consider the observer (5) with the noisy
output ye(t) and T−1 satisfying assumption 3. If v(t) satis-
fies assumption 4, then there exists finite positive constants
α, β, µ, and ρ such that the error in the original coordinates
attenuates the measurement noise through the modulating
function and satisfies

||x̂(t)− x(t)|| ⩽ lαµe−β(t−Tp)v̄2 + ρv̄1, (20)
where ρ is the disturbance attenuation level.

Proof: Relying on assumption 3 and the results of
Proposition 1, the proof of the error bound of ||ẑ(Tp) −
z(Tp)|| follows the same steps as [44], and the rest of the
error bound in (20) is derived following the approach of [43].

V. NUMERICAL SIMULATIONS

To evaluate the performance of the proposed observer, we
consider the following system

ẋ1 = x2

ẋ2 = −x1

y = x2
1 − x2

2 + x1 + x2

(21)

System (21) is forward complete within X = [−1; 1]2.
Moreover, it has been shown in [45] that the system is weakly
differentially observable.
The KKL transformation T is given in [45] for d = (2n +
1) = 5 by

Ti(x) = xT

[
ai ci/2

ci/2 bi

]
x+

[
di ei

]
x; i = 1, .., d. (22)

with

ai = − λi

4 + λ2
i

, bi = −ai, ci = − 4

4 + λ2
i

di =
1− λi

1 + λ2
i

, ei = − 1 + λi

1 + λ2
i

An approximation of the inverse is given in [45] by solving
the following system

1 0 1 1

a1 c1 d1 e1

a2 c2 d2 e2

a3 c3 d3 e5



x2
1 − x2

2

x1x2

x1

x2

 =


y

T1(x)

T2(x)

T3(x)

 . (23)

We set the prescribed convergence time as
Tp = 0.8s and the design matrices as A =

diag
( [

−4, −5, −6, −7, −8,
] )

and B =[
1, 1, 1 1, 1

]T
.

As for the MFM part of the observer, we consider polynomial
basis functions αj(t) = tj−1, for j = 1, ...,M , with M = 7,
Moreover, polynomial normalized modulating functions are
considered [25]{

ϕj(t) =
φj(t)

∥φj(t)∥L2

φj(t) = (Tp − t)(q+j)t(q+M+1−j); j = 1, ..,M.

where q ∈ N∗ is a degree of freedom.
Fig. 1 shows the states in the z-coordinates and their
estimated values using the proposed prescribed-time
observer. One can see that the estimated state converges
to the real one at exactly Tp = 0.8s. This observation is
further confirmed through the error plot in Fig. 2, where
the error in both coordinates converges to the origin at the
prescribed convergence time Tp. Moreover, the errors in
both coordinates are represented in Fig. 3 in the log scale
to illustrate the nature of the convergence. One can see a
clear prescribed-type convergence in both coordinates.

Further simulations were performed by considering several
initial conditions and different prescribed convergence times.
Fig. 4 illustrates the error in both coordinates for three
different initial conditions, and one can see that all error
trajectories converge to the origin at Tp = 0.8s independently
from the initial condition considered. Moreover, for a given
initial condition x0 = [0, 5; 1]T Fig. 5 shows that the error
trajectories in both coordinates converge to the origin at
different chosen prescribed times. Which reaffirms, the
independence of the prescribed convergence time from the
initial condition.

The performance of the proposed algebraic prescribed-time
KKL observer is also assessed in the presence of measure-
ment noise. Figs. 6 and 7 show the estimation error in both
coordinates in the presence of 1% and 4% of white Gaussian
measurement noise, respectively. One can observe that even
in the presence of noise the proposed observer converges and
the estimation errors are bounded.

VI. CONCLUSION

In this work, we proposed an algebraic prescribed observer
for a general class of nonlinear systems with possibly non-
linear outputs, relying on the KKL observer design method
and the modulating function approach. The prescribed time
convergence of the proposed observer lies in the modulating
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Fig. 1. State estimates in the new coordinates using the proposed algebraic prescribed-time observer for Tp = 0.8s and x0 = [1; 0]T .

Fig. 2. Estimation error in z and x-coordinates for Tp = 0.8s and x0 =
[1; 0]T .

Fig. 3. Estimation error in log scale for Tp = 0.8s and x0 = [1; 0]T .

Fig. 4. Estimation error in z and x-coordinates for different initial
conditions for Tp=0.8 s

Fig. 5. Estimation error in z and x-coordinates for different prescribed
convergence times and x0 = [0.5; 1]T

Fig. 6. Estimation error in log scale with %1 of measurement noise for
Tp = 0.8s and x0 = [0.5; 0]T .

Fig. 7. Estimation error in log scale with %4 of measurement noise for
Tp = 0.8s and x0 = [0.5; 0]T .

functions combined with an integral operator applied over a
prescribed time window to provide a closed-form solution
to the estimated state at that specified time. Moreover, the
integral operator involved in the modulating function method
combined with the filtering properties of the KKL observer
allows the mitigation of the effect of measurement noise on
the estimation. Bounds on the estimation error were derived
in the case of measurement noise. The performance and noise
attenuation of the proposed observer were evaluated on a
numerical example with a nonlinear output. Future work will
extend the proposed algebraic observer to non-autonomous
nonlinear systems and compare it to finite-time observers.
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