
NMPC Strategy for Safe Robot Navigation in Unknown Environments
using Polynomial Zonotopes

Iuro B. P. Nascimento1, Brenner S. Rego2, Luciano C. A. Pimenta3, and Guilherme V. Raffo3

Abstract— This work proposes a nonlinear model predictive
control (NMPC) strategy for robot navigation in cluttered
unknown environments using polynomial zonotopes. The infor-
mation provided by a laser sensor is used in the computation of
the collision-free area. The procedure splits the area into convex
subregions which are converted into polynomial zonotopes (PZs)
to generate constraints for the NMPC optimal control problem.
The PZ is a set representation that can describe polytopes using
fewer constraints than conventional half-space representations,
thus being more efficient while maintaining the accuracy equiv-
alent to the polytopic case. Numerical experiments demonstrate
the advantages of the proposed strategy.

I. INTRODUCTION

In recent decades, the interest in mobile robots has surged,
and a wide range of applications has emerged, including
assistive robots [1], search and rescue missions [2], and
power line inspections [3]. For applications in known en-
vironments, a prevalent two-layer solution involves offline
trajectory planning, followed by trajectory tracking using a
control system [4]. However, in unknown environments, the
two-layer approach becomes unsuitable due to computation-
ally expensive planning algorithms [5], [6] and the need to
frequently recalculate trajectories due to changing environ-
ments. An alternative strategy is Model Predictive Control
(MPC), which integrates optimal trajectory planning and
optimal control into a unified optimization problem. MPC
calculates optimal control signals and trajectories by min-
imizing a performance index while considering constraints
such as system dynamics and admisible states, control inputs,
and obstacles.

Different approaches exist for incorporating collision-free
areas (CFA) into the MPC optimal control problem (OCP).
The complexity, constraints, and accuracy of representations
are influenced by how the CFAs are described. A trade-off
between accuracy and efficiency is typically present, as more
precise descriptions increase complexity and constraints, im-
pacting computational efficiency. Simpler descriptions might

∗This work was in part supported by the project INCT (National Institute
of Science and Technology) under the grant CNPq (Brazilian National
Research Council) 465755/2014-3 and FAPESP (São Paulo Research Foun-
dation) grant numbers 2014/50851-0 and 2022/05052-8. This work was also
supported in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior (CAPES) (Finance Codes 001 and 88887.136349/2017-00),
CNPq (grant numbers 315258/2020-9, 315695/2020-0, and 407063/2021-8),
and FAPEMIG, under grant APQ-03090-17.

1 Iuro B. P. Nascimento is with Graduate Program in Electrical engineer-
ing, Federal University of Minas Gerais, Brazil iuro@ufmg.br

2Brenner Santana Rego is with Department of Electrical and Computer
Engineering, University of São Paulo, Brazil, brennersr7@usp.br

3Luciano Cunha de A. Pimenta and Guilherme Vianna Raffo are with
Department of Electronic Engineering, Federal University of Minas Gerais,
Brazil lucpim@ufmg.br and raffo@ufmg.br

suffice for sparse environments but prove inadequate in clut-
tered environments where narrow passages can be obstructed,
rendering optimization infeasible due to oversimplification.

Since the CFA is often nonconvex, representing the CFA
with linear constraints requires partitioning into convex sub-
regions. Union formulations in OCPs often adopt a combina-
torial approach by introducing binary variables, subsequently
addressed through mixed-integer (MI) solvers [7]. In both
trajectory planning [8], [9] and MPCs [10]–[12], numerous
works have adopted combinatorial representations for the
CFA. In the work of [13], a safe corridor of potentially
overlapping convex subregions has been proposed connecting
to the goal position. Binary variables have been used to
make a union of the subregions to select the next step of
a bipedal robot. The constraints of the convex regions have
been represented as half-spaces. Similarly to [13], the authors
in [14] have utilized convex lifting to create a partition of
space, generating a feasible path that orients the creation of
convex partition forming a corridor to the goal. Although
this approach finds a path toward the goal, it may not yield
the best path as a significant portion of the CFA remains un-
explored. Additionally, the hyperplane arrangements scheme
obtains the regions through a combinatorial algorithm, which
may result in an exponential number of regions relative
to the original polytope sides. In [15], the obstacles have
been approximated as rectangles and binary variables have
been used in big-M formulation to make sure the trajectory
is out of at least one barrier for each obstacle in the
environment. The representation conservativeness can make
passages obstructed. In [16], binary variables are added to
convey different security areas near obstacles, where different
constraints are used depending on how close the robot is to
obstacles.

The primary contribution of this work is the development
of a nonlinear model predictive control (NMPC) strategy for
safe navigation in unknown environments using a mixed-
integer formulation to describe the CFA. This strategy com-
bines methods for processing the CFA and employs polyno-
mial zonotopes (PZ) [17], a non-convex set representation, to
describe the CFA. This approach aims to reduce the computa-
tional complexity of the method. We incorporate polynomial
zonotopes as constraints directly, eliminating the need to
revert to half-space representation as done with zonotopes in
[14]. This results in a significant reduction in the number of
constraints compared to half-space presentations such as in
[7], [11], [13]. Consequently, this leads to a decrease in the
computational complexity of the method while preserving
the polytopic accuracy of representation. Our goal is to

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 7094

maintain the entire safe search space to prevent unfeasibility,
unlike corridor approaches [13], [14]. Our tests with 2D
environments have demonstrated a reduction in the number
of regions by using a dynamic programming algorithm to
obtain the smallest number of partitions. This contrasts with
hyperplane arrangement approaches such as [14], which uses
a combinatorial algorithm that can potentially generate an
exponential number of convex regions with respect to the
obstacle sides.

II. PRELIMINARIES

A convex polytope P with nv vertices vi ∈ Rn
in vertex representation (V-rep) is described as PV ≜
{
∑nv

i=1 λivi | λi ≥ 0,
∑nv

i=1 λi = 1}.
A convex polytope P in half-space representation (H-

rep) is written as PH ≜
{
x ∈ Rn

∣∣ Ax ≤ b
}

, where A ∈
Rnh×n and b ∈ Rnh . Using this H-rep as a constraint
leads to nh equations being employed in the OCP. A
constrained zonotope (CZ) [18] is a representation (called
CG-rep) of a convex polytope in the form PCZ ≜ {c +∑h
i=1 αiG(·,i) |

∑h
i=1 αiA(·,i) = b, αi ∈ [−1, 1]}, where

c ∈ Rn is the center, n being the set dimension, and the
matrix G ∈ Rn×h is the generator matrix, with each column
corresponding to a generator. The matrix A ∈ Rs×h and
the column vector b ∈ Rs represent the constraints, where
h and s are the numbers of generators and constraints,
respectively. CZs have the advantage of being composed
of linear equations, and they have explicit and efficient
solutions to operations like linear maps, Minkowski sums,
and intersections.

A sparse polynomial zonotope [19] is a compact efficient
representation of a polynomial zonotope in the form

PPZ ≜

{
c+

h∑
i=1

(
p∏
k=1

α
E(k,i)
k

)
G(·, i) +

q∑
j=1

βjGI(·, j)∣∣∣∣ αk, βj ∈ [−1, 1]

}
,

(1)

called polynomial generator representation (PG-rep). The
matrix G ∈ Rn×h contains the h dependent generators,
G(., i) is the column generator i of G, the matrix GI ∈
Rn×q contains q independent column generators, GI(., i),
and E ∈ Np×h is the exponential matrix with p expo-
nential factors. PZs have exact efficient solutions to linear
maps, Minkowski sum, exact addition, quadratic map, and
convex hull. A PZ is written in compact form as PPZ =
⟨c,G,GI ,E⟩PZ.

Polytopes in V-rep, H-rep, zonotopes, and others, can be
converted into PZs exactly. A polytope in V-rep can be
converted to PG-rep by first converting each vertex to PZ and
later making a convex hull of all the resulting PZs using Al-
gorithm 1 of [20]. A vertex v can be converted to PZ by mak-
ing PZ = ⟨v, [], [], []⟩PZ, where [] is an empty matrix. The
convex hull [19] of two PZs without independent generators,
PZ1 = ⟨c1,G1, [],E1⟩PZ and PZ2 = ⟨c2,G2, [],E2⟩PZ, is
given by Hull(PZ1, PZ2) =

〈
0.5(c1 + c2), 0.5G, [],E

〉
PZ,

where G ≜ [(c1 + c2) G1 G1 G2 −G2], with G1 ≜
0.5[G1 G1 G1 −G1], G2 ≜ 0.5[G2 G2 G2 −G2], and

E ≜

0 E1 E1 0 0
0 0 0 E2 E2

1 0 1 0 1

 ,
with

E1≜

E1 E1 0 0
0 0 E1 E1

0 1 0 1

, E2≜

E2 E2 0 0
0 0 E2 E2

0 1 0 1

.
Since PG-rep is a polynomial representation, PZs can repre-
sent nonconvex and non-polytopic sets. Besides, polytopes in
H-rep generate the number of constraints proportional to the
number of facets of the polytope. In contrast, the PG-rep has
the number of constraints proportional to the set dimension
and can scale better in cluttered environments than polytopic
representations.

III. PROBLEM STATEMENT AND CONTROL STRUCTURE

Consider a nonlinear continuous-time system described by

ẋ(t) = f(x(t),u(t)), (2)

where x ∈ X ⊆ Rn is the state vector, u ∈ U ⊆ Rm is
the input vector, and f : Rn × Rm → Rn is a nonlinear
function. The objective is to design an NMPC strategy to
safely navigate system (2) through an unknown environment,
in order to reach a target position as fast as possible.

The control structure proposed in this work is composed
of two main tasks as it is shown in Fig. 1, which are: (i)
Constraint generation (CG); and (ii) NMPC.

NMPCCG Robot

Control System

Inputs

Internal StatesObstacle Information

Fig. 1: Control Structure.

A. Constraint Generation Task

The CG task generates constraints describing the CFA,
where the robot is allowed to navigate, using the raw data
from the laser sensor (LIDAR, Light Detection And Ranging)
and sensors to read the robot’s position and orientation. The
LIDAR scans its surroundings at regular angle intervals θinc,
generating a point cloud of no distances oi from obstacles
measured at the angle θi, with θi = θi−1 + θinc, where each
tuple ηi ≜ (oi, θi) forms a point in polar coordinates. The no
points ηi are converted to cartesian coordinates ξi ≜ (x, y) to
form a polytope that defines the CFA, also called safe region
(SR), as its interior is the area where the LIDAR did not
find any obstacles. Additionally, the LIDAR has a maximum
detectable distance Rsensor, and the set of reachable points by
the LIDAR is called the sensor field of vision (FOV), and the
system’s full state vector is assumed to be available through
sensors.

Fig. 2 (a) shows an example of a 2D LIDAR output with
two obstacles in gray and the possible openings that the

7095

system can go through to reach the target position ξgoal =
(xgoal, ygoal). The vector ξ0 is the current position of the
system and the baseline of the sensor is the red line. The

Obstacle

Sensor

Safe region

Obstacle

Opening

Opening

Opening

Obstacle

Sensor

Safe region

Obstacle
Safety margin

Opening

Opening

Opening

Expansion
of openings

Expansion of the sensor baseline

(a)

(b)
ξ0

ξgoal

Baseline

Fig. 2: Obstacle Polygon Expansion. (a) Original polygon with the baseline in red; (b)
Expansion of the openings and the sensor baseline (dashed blue line) and its deflation
into the red polygon.

CG is composed by three main subtasks:
1) Safe Region Creation: Creating the SR is the process

of transforming the point cloud into a polytope. The 2D
algorithm removes redundant points by using the line simpli-
fication algorithm [21]. The algorithm starts by receiving as
input the list of points of the polytope and starts by building
a line with the first and last points denoted as p1 and p2.
Next, the furthest point from the line p1p2, denoted as pt, is
selected. If the distance between pt and p1p2 is smaller than
a tolerance value ϵ, the line can contain only its endpoints.
Otherwise, pt is maintained and two lines p1pt and ptp2 are
created. The algorithm iteratively repeats these steps with
each new line until all lines contain only two points.

2) Addition of a Safety Margin: The obstacle size is
increased to account for the measurement and approximation
errors, besides the robot size, allowing the OCP to consider
the robot as a single point. We employ Vatti’s clipping
algorithm [22] to add a safety margin by inflating and
deflating polytopes by a desired value d. The algorithm uses
boolean operations to offset polytope border segments. It is
noteworthy that only the obstacles have to be expanded, not
the openings. In order to accomplish this, we first expand
the baseline of the sensor and the openings of the polytope
of Fig. 2 (a) to deflate later the whole polytope returning the
baseline and openings to their original size. The result is an
inward expansion of obstacles within the SR. The expanded
polytope is shown in blue and the final deflated polytope is
shown in red in Fig. 2 (b).

3) Safe Region Decomposition: The SR is divided into
convex subregions. This technique enables the conversion
of constraints into convex forms, leading to a simpler con-
straints. For 2D environments, the optimal convex partition

2

3

4

1

Sensor

Obstacle

Obstacle

O
pening

3

Opening 2

O
pe

ni
ng

1

Fig. 3: Subregions and openings formed by processing the LIDAR output.

algorithm introduced in [23] is utilized to obtain the mini-
mum number of convex partitions. The decomposition of the
polytope of Fig. 2 can be observed in Fig. 3.

B. Nonlinear MPC Task

Given the constraints from the CG task, the NMPC
executes the optimal control problem by using a nonlinear
optimization solver to obtain an optimal trajectory and the
corresponding optimal control signal, which is described as
follows:

1) Obtaining the subregion constraints: Since the output
of the decomposition consists of convex polytopes in V-rep,
it is necessary to convert from V-rep to PG-rep by using the
procedure from [19]. Therefore, we convert each vertex to
a PG-rep and compute a convex hull of all PZs to form the
subregion.

By using the PG-rep (1) as a constraint and adding the
α as decision variables, we need to find α that makes the
PZ equation equal to the desired test point ξ = Cx ∈ Rn,
ensuring it is inside the PZ. The set dimension is n, the
matrix C = [In, 0n×Nx−n], with In being an identity
matrix of size n. The β variables in (1) are not used in
the conversion from V-rep to PG-rep, therefore they are not
used in this constraint, which is defined as

P(x,α) = c−Cx+

h∑
i=1

p∏
k=1

(
α
E(k,i)

k G(·,i)

)
= 0n×1,

αk ∈ [−1, 1]

(3)

Eq. (3) results in n constraints per PZ per point ξ, with
ξ ∈ Rn being the position of the robot. If there exist any α
that make (3) feasible, then the PZ equation can be equal to
ξ. Therefore, ξ is inside the PZ.

2) NMPC Strategy: The OCP is formulated aiming to
obtain an optimal trajectory and optimal control signals with
respect to the cost functional criteria. The constraints are
imposed to maintain the trajectory inside the SR, which is
generally nonconvex when obstacles are present and this
may generate multiple local optima solutions. Given the
subregions constraints of Eq. (3), the strategy consists of
using binary variables in a mixed-integer formulation to
build the union of all subregions, forming the nonconvex
SR. Each state x(tk) at time point tk of the trajectory
is constrained by all subregions Sl with its own vector
αk =

[
α[k,1], . . . , α[k,pl]

]
in the OCP as objective variables.

The goal is to find the best opening to reach the target
point according to the criteria defined in the cost functional.

7096

Since we may have multiple local minima, we formulate
d OCPs with initial guess trajectory toward each of the
d openings to reach solutions with different local minima.
Since each OCP is independent of the others, all OCPs can
be solved in parallel. The solution with the lowest cost is
chosen.

IV. NMPC FORMULATION

The OCP formulation is given by

min
x,u,α,
β,λ,Tp

T (x(Tp),xgoal, Tp) +

∫ Tp

0

I (x(t),u(t),xgoal) dt (4)

s.t. ẋ(t) = f (x(t),u(t)) , (5)
xmin ≤ x(t) ≤ xmax, (6)
umin ≤ u(t) ≤ umax, (7)
N∑
l=1

Pl(x(t),αl)λl = 0, (8)

αl(j) ∈ [−1, 1] ,∀ j ∈ Npl , l ∈ NN , (9)
N∑
l=1

λl = 1, (10)

λl ∈ {0, 1}, ∀l ∈ NN , (11)
|u̇(t)| ≤ amax, (12)
F (x(Tp)) ≤ 0, (13)

with Ng ≜ {1, , 2, . . . , g} for any g ∈ N, with N being
the number of subregions, pl is the number of α variables
in subregion l, and TP is the time horizon. Eq. (4) is the
cost functional, (5) is the system dynamics, Eqs. (6) and
(7) are the physical limits of state and control signals. Eqs.
(8) to (11) are the constraints associated to the union of
the subregions Sl, where (8) is the PG-rep constraint (as
(3)) for the points x(t). The external summation of (8) is
over the subregions Sl, adding N PZl terms that constrain
x(t) inside each Sl for each time t ∈ [0, TP]. N binary
variables λl are associated to each t. Eq. (10) states that
only one λl is selected for a particular t, ensuring that only
one PZl is selected to constrain x(t). For example, for two
subregions, we have PZ1(x(t1))λ1 + PZ2(x(t1))λ2 = 0,
λ1+λ2 = 1. If a solution gives λ1 = 0, and λ2 = 1, x(t1) is
constrained inside PZ2, while if λ1 = 1, and λ2 = 0, x(t1)
is constrained inside PZ1. Additionally, in order to make the
inputs physically realizable, we impose a maximum absolute
value for the input derivatives of Eq. (12), where u̇(t) ∈ Rm
are the input derivatives, the vector amax ∈ Rm is the vector
of maximum input derivatives.

The terminal constraint (13) depends on whether the target
is inside the sensor FOV or not. If the target xgoal is outside
of the sensor FOV, the terminal constraint is given by

Rsensor − δ ≤ ∥ξ(N)(TN)− ξ(1)(T0)∥ ≤ Rsensor, (14)

where Rsensor is the sensor range, δ is a tolerance value to
allow the terminal region to be close to Rsensor , and ξ(t) =
(x(t), y(t)).

If the target is inside the sensor field of vision, the
constraint is described as

B(ξgoal, σ) ≜ {ξ : ∥ξ − ξgoal∥∞ ≤ σ}, (15)

where B is a ball of infinity norm smaller than or equal
to σ, centered at ξgoal. Additionally, the horizon TN = TP
is a decision variable, thus, the optimization can obtain a
TP large enough to allow the system the reach the terminal
region.
A. Cost Functional

In the proposed method, the cost functional contains: (i) a
weighted time horizon term to penalize the final horizon time
TP ; and (ii) a terminal cost that penalizes the distance from
the last trajectory point to the target point (xgoal), yielding

T(x(TP),xgoal, TP) ≜ wtTP + ∥x(TP)−xgoal∥2P . (16)

The stage cost penalizes the distance from each state point
to the target, and the control signals energy, resulting in

I(x(t),u(t),xgoal) ≜ ∥x(t)−xgoal∥2Q + ∥u(t)∥2R, (17)

where P is obtained by solving the Ricatti algebraic equation
ATP +PA−PBR−1BTP +Q = 0, where we linearize
the system around the current state x0 and control signal
u0 to obtain the matrices A ≜ ∂f(x,u)

∂x

∣∣∣x=x0
u=u0

, and B ≜

∂f(x,u)
∂u

∣∣∣x=x0
u=u0

.

V. NUMERICAL EXPERIMENTS

This section presents numerical results that demonstrate
the performance of the proposed control strategy. The ex-
periments were executed on a desktop computer with a 12
cores Intel i7 12700 4.8 GHz CPU, and 16 GB of RAM.
The simulation is performed using Simulink and MATLAB
R2023a, with the Robotics System Toolbox emulating the
LIDAR sensor. The nonlinear dynamical equations of the
system are simulated in Simulink and the controller is
implemented using the CasADi toolbox [24] to formulate
the OCP. The CGAL library is used to perform tasks such
as the polytope partition [25], while the Clipper library [26]
is used to add the safety margin to the obstacles.

Each OCP is transformed into a Mixed-Integer Nonlin-
ear Programming (MINLP) problem using the hp-adaptive
pseudospectral method, as described in [27]. These MINLP
problems are subsequently solved using the Basic Open-
source Nonlinear Mixed Integer Programming (Bonmin) [28]
algorithm, which is built upon the Coin-or Branch and
Cut open-source software [29]. Bonmin utilizes the interior-
point filter line-search method implemented in IPOPT [30]
(Interior Point OPTimizer).

A. Wheeled Mobile Robot in a 2D Unknown Environment
A wheeled mobile robot is simulated in a 2D environment

to reach a target position. A differential-drive robot kinematic
model, based on [31], is used in this study, considering a
tracking point displaced by a distance of r in front of the
geometric center of the robot. The equations of motion can
be expressed as:
ẋ(t) = (vr(t) + vl(t)) (cos(ψ(t))− d sin(ψ(t))) /2,

ẏ(t) = (vr(t) + vl(t)) (sin(ψ(t)) + d cos(ψ(t))) /2,

ψ̇(t) = (vr(t)− vl(t)) /Wdist,

(18)

7097

where vr(t) and vl(t) are the right and left wheel’s linear
velocities, respectively, x(t) ≜ (x(t), y(t), ψ(t)) is the state
vector of the system, where x and y are the linear translations
of the robot from the inertial frame, ψ is the orientation of
the robot, Wdist is the distance between the robot wheels, and
u(t) ≜ (vr, vl) is the input vector. The robot starts at x(0) =
(0.2, 0.2, π/2), while the target state is xgoal = (20, 20, π/2).
The obstacles are rectangles with randomly generated centers
and shapes, on a map of side of 20×20 m. The obstacle facet
lengths are randomly chosen from 1 to 1.6 m with uniform
distribution.

B. Results and Discussion

The simulation considered the following disturbances:
(i) the 2D LIDAR has 0.1 m as uncertainty ampli-
tude of LIDAR measurement; and (ii) an additive white
noise to measured state vector of maximum amplitude[
0.1 0.1 1.5 · 10−3

]T
. The simulation parameters are:

Wdist = 1.0 m, σ = 0.1 m, δ = 0.5 m, ϵ = 0.1,
Rsensor = 5 m, wt = 0.1, Q = diag(1/52, 1/52, 1/(40π2)),
R = diag(1/(2)2, 1/(2)2), P = diag(1, 1, 1), Umax = 1 m/s,
Umin = −1 m/s, and amax = [3, 3] are input rate limit vector.

Figs. 4 to 6 illustrate the simulation outcomes using PZs
for CFA representation. The robot navigates through all
obstacles while respecting the safety margins. Fig. 5 displays
the positions and velocities, and Fig. 6 depicts the control
signals produced during simulation. The characteristic abrupt
on/off behavior often observed in optimal solutions of OCPs
with minimal time cost is mitigated by the input rate con-
straints of Eq. (12).

x (m)

y
(m

)

0 5 10 15 20
0

2

4

6

8

10

12

14

16

18

20

Fig. 4: Robot trajectory during simulation. The black areas represent the obstacles, the
red × is the starting point, and the green circle is the target region around the target
point. The blue line is the trajectory obtained in simulation.

Next, we verify the effect of using different representations
of the CFA on the performance of the NMPC task, which
involves the time solving the OCPs. We compare three
representations of the CFA used in the constraints (8) to
(10): (i) H-rep, (ii) PG-rep using Eq. (3), and (iii) CG-rep
using a similar approach to Eq. (3), by using a CZ to restrain

Time (s)
0 2010 30 40

-1

0

1

ψ̇
(r
a
d
/
s
)

Time (s)
0 2010 30 40

0
0.5

1
1.5

ψ
(r
a
d
/
s
) Time (s)

0 2010 30 40
Time (s)

0
2010 30 40

Time (s)
0 2010 30 40

Time (s)
0 2010 30 40

10

20

y
(m

)

0

0

10

20

x
(m

)

0

0.5

1

ẏ
(m
/
s
)

0

0.5

1

ẋ
(m
/
s
)

Fig. 5: Position and velocities during the experiment.

Time (s)
0 5 10 15 20 25 30 35 40

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

v
r
(m
/
s
)

v
l
(m
/
s
)

Time (s)
0 5 10 15 20 25 30 35 40

Fig. 6: Control signals applied to the robot during the experiment.

the point ξ obtaining the constraints

c−Cx+

p∑
i=1

αiG(·,i) =0d×1, (19)

p∑
i=1

αiA(·,i) =b, (20)

αi ∈ [−1, 1] . (21)

While the Eq. (19) uses n constraints, the same as with PZs
of Eq. (3), the Eq. (20) adds hs constraints, where hs is the
number of half-spaces present in the H-rep (Theorem 1 of
[18]).

We conduct CG and NMPC tasks for each test using
the three representations on randomly generated maps with
No obstacles. The NMPC task’s execution time, which
incurs higher computational costs, is measured. The tests are
repeated 20 times per No, and the average time is computed.
The speedup is defined as SNo ≜ TNo,H-rep/TNo,X-rep, where
X-rep ∈ {H-rep,PG-rep,CG-rep}. TNo,X-rep denotes the
average optimization time across 20 maps with No obstacles
using X-rep. SNo

> 1 implies that X-rep requires, on aver-
age, less time for OCP optimization than H-rep, signifying
a reduced computational cost.

The maps are generated with dimensions of 20 × 20 m
containing No uniformly distributed obstacles with random
sizes, as in the previous experiment. Six different No values
(5 to 50) are used, as shown in Table I. It is observed that
employing PG-rep and CG-rep as OCP constraints generally

7098

increases the NMPC task speedup compared to H-rep for
all No, with PG-rep outperforming CG-rep. This results in
reduced computational costs. As the obstacle count increases,
both CG-rep and PG-rep exhibit increased speedups, high-
lighting the inferior scalability of H-rep in complex settings.

Rep. \ No 5 10 20 30 40 50
H-rep 1.00 1.00 1.00 1.00 1.00 1.00

PG-rep 7.13 9.18 17.63 16.18 17.92 12.23
CG-rep 3.52 4.98 10.82 10.23 13.90 10.72

TABLE I: Speedup SN of optimization per safe region representation and per number
of obstacles.

VI. CONCLUSION

This work developed an NMPC strategy which was able to
navigate a mobile robot work in a cluttered 2D environment.
Due to the minimum time cost, the control signals tend to
be aggressive, but these were physically realizable thanks
to the input rate constraints. Additionally, the optimization
speedup using polynomial zonotopes indicates a clear re-
duction of computational burden. Besides, the optimization
problem scaled better than other set representations when the
environment was more cluttered.

REFERENCES

[1] D. P. Losey, K. Srinivasan, A. Mandlekar, A. Garg, and D. Sadigh,
“Controlling assistive robots with learned latent actions,” in IEEE
ICRA. IEEE, 2020, pp. 378–384.

[2] F. Niroui, K. Zhang, Z. Kashino, and G. Nejat, “Deep reinforcement
learning robot for search and rescue applications: Exploration in
unknown cluttered environments,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 610–617, 2019.

[3] M. Perez-Jimenez, MA. Montes-Grova, P. Ramon-Soria, BC. Arrue,
and A. Ollero, “POSITRON: Lightweight active positioning compliant
joints robotic arm in power lines inspection,” in IEEE ICUAS, 2020,
pp. 729–736.

[4] B. Wang, Y. Zhang, and W. Zhang, “Integrated path planning and
trajectory tracking control for quadrotor UAVs with obstacle avoidance
in the presence of environmental and systematic uncertainties: Theory
and experiment,” Aerospace Science and Technology, vol. 120, p.
107277, 2022.

[5] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” IJRR, vol. 30, no. 7, pp. 846–894, 2011.

[6] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[7] D. Ioan, S. Olaru, S.-I. Niculescu, I. Prodan, and F. Stoican, “Naviga-
tion in a multi-obstacle environment. From partition of the space to a
zonotopic-based MPC,” in IEEE ECC, 2019, pp. 1772–1777.

[8] T. Wang, R. M. Lima, L. Giraldi, and O. M. Knio, “Trajectory planning
for autonomous underwater vehicles in the presence of obstacles and
a nonlinear flow field using mixed integer nonlinear programming,”
Computers & Operations Research, vol. 101, pp. 55–75, 2019.

[9] J. Tordesillas, B. T. Lopez, M. Everett, and J. P. How, “FASTER:
Fast and Safe Trajectory Planner for Navigation in Unknown Environ-
ments,” IEEE Transactions on Robotics, vol. 38, no. 2, pp. 922–938,
Apr. 2022.

[10] R. Deits and R. Tedrake, “Efficient mixed-integer planning for UAVs
in cluttered environments,” in IEEE ICRA. IEEE, 2015, pp. 42–49.

[11] F. Stoican, T.-G. Nicu, and I. Prodan, “A mixed-integer MPC with
polyhedral potential field cost for obstacle avoidance,” in IEEE ACC,
2022, pp. 2039–2044.

[12] A. Bürger, C. Zeile, A. Altmann-Dieses, S. Sager, and M. Diehl,
“Design, implementation and simulation of an MPC algorithm for
switched nonlinear systems under combinatorial constraints,” Journal
of Process Control, vol. 81, pp. 15–30, Sep. 2019.

[13] K. S. Narkhede, A. M. Kulkarni, D. A. Thanki, and I. Poulakakis,
“A Sequential MPC Approach to Reactive Planning for Bipedal
Robots Using Safe Corridors in Highly Cluttered Environments,” IEEE
Robotics and Automation Letters, vol. 7, no. 4, pp. 11 831–11 838, Oct.
2022.

[14] D. Ioan, S. Olaru, I. Prodan, F. Stoican, and S.-I. Niculescu, “From
obstacle-based space partitioning to corridors and path planning. A
convex lifting approach,” IEEE Control Systems Letters, vol. 4, no. 1,
pp. 79–84, 2019.

[15] V. A. Battagello, N. Y. Soma, and R. J. M. Afonso, “Trajectory
planning with a dynamic obstacle clustering strategy using Mixed-
Integer Linear Programming*,” in 2021 American Control Conference
(ACC), 2021.

[16] L. Zong, J. Luo, M. Wang, and J. Yuan, “Obstacle avoidance handling
and mixed integer predictive control for space robots,” Advances in
Space Research, vol. 61, no. 8, pp. 1997–2009, 2018.

[17] N. Kochdumper, “Extensions of polynomial zonotopes and their ap-
plication to verification of cyber-physical systems,” Ph.D. dissertation,
Technische Universität München, 2022.

[18] J. K. Scott, D. M. Raimondo, G. R. Marseglia, and R. D. Braatz,
“Constrained zonotopes: A new tool for set-based estimation and fault
detection,” Automatica, vol. 69, pp. 126–136, 2016.

[19] N. Kochdumper and M. Althoff, “Sparse polynomial zonotopes: A
novel set representation for reachability analysis,” IEEE Transactions
on Automatic Control, vol. 66, no. 9, pp. 4043–4058, 2020.

[20] ——, “Representation of polytopes as polynomial zonotopes,” arXiv
preprint arXiv:1910.07271, 2019.

[21] U. Ramer, “An iterative procedure for the polygonal approximation of
plane curves,” Computer graphics and image processing, vol. 1, no. 3,
pp. 244–256, 1972.

[22] B. R. Vatti, “A generic solution to polygon clipping,” Communications
of the ACM, vol. 35, no. 7, pp. 56–63, 1992.

[23] D. H. Greene, “The decomposition of polygons into convex parts,”
Computational Geometry, vol. 1, pp. 235–259, 1983.

[24] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl,
“CasADi: A software framework for nonlinear optimization and opti-
mal control,” MPC, vol. 11, no. 1, pp. 1–36, 2019.

[25] S. Hert, “2D polygon partitioning,” in CGAL User and Reference
Manual, 5th ed. CGAL Editorial Board, 2021.

[26] R. Wein, A. Baram, E. Flato, E. Fogel, M. Hemmer, and S. Morr,
“CGAL: 2D minkowski sums,” in CGAL User and Reference Manual,
5th ed. CGAL Editorial Board, 2021.

[27] C. L. Darby, W. W. Hager, and A. V. Rao, “An hp-adaptive pseudospec-
tral method for solving optimal control problems,” Optimal Control
Applications and Methods, vol. 32, no. 4, pp. 476–502, 2011.

[28] P. Bonami and J. Lee, “BONMIN user’s manual,” Numerical mathe-
matics (Hong Kong, China), vol. 4, pp. 1–32, 2007.

[29] J. Forrest and R. Lougee-Heimer, “Cbc (Coin-or branch and cut) user
guide,” in Emerging Theory, Methods, and Applications. INFORMS,
2005, pp. 257–277.

[30] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25–57, 2006.

[31] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, and W. Burgard,
Principles of Robot Motion: Theory, Algorithms, and Implementations.
MIT press, 2005.

7099

