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Abstract— In this paper, we introduce the solver
ConvexFlows for the convex flow problem first defined
in the authors’ previous work. In this problem, we aim to
optimize a concave utility function depending on the flows
over a graph. However, unlike the classic network flows
literature, we also allow for a concave relationship between
the input and output flows of edges. This nonlinear gain
describes many physical phenomena, including losses in
power network transmission lines. We outline an efficient
algorithm for solving this problem which parallelizes over
the graph edges. We provide an open source implementa-
tion of this algorithm in the Julia programming language
package ConvexFlows.jl. This package includes an
interface to easily specify these flow problems. We conclude
by walking through an example of solving the optimal
power flow using ConvexFlows.

I. INTRODUCTION

Theorists and practitioners both apply network flow
models to describe, analyze, and solve problems from
many domains—from routing trucks to routing bits. For
linear flows, an extensive academic literature developed
the associated theory, algorithms, and applications. (See,
e.g., [AMO88], [Wil19], and references therein.) How-
ever, these linear models often fail to describe real
systems. For example, in electrical systems, the power
lost increases as more power is transmitted; in com-
munications systems, the message failure rate increases
as more messages are transmitted; and, in financial
systems, the price of an asset increases as more of that
asset is purchased. In each of these cases, the output of
the system is a concave function of its input.

In this work, we focus on solving this more general
convex flow problem, an important special case of the
authors’ previous work [DAE24], and provide a package
with a clean interface to do so. Although this problem is
a convex optimization problem, for which many open-
source and commercial solvers exist, the convex flow
problem has additional structure that can be exploited.
Following this prior work [DAE24], we use a dual
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decomposition approach, which allows us to decompose
the problem over the network edges. In contrast with
the previous approach, though, we solve this problem
using the Broyden–Fletcher–Goldfarb–Shanno (BFGS)
method [NW06, §6]. This method has been shown to be
robust against non-smooth objective functions [LO13]
that often appear in practical instances of the convex
flow problem. To specify these problems, we provide
an easy-to-use interface that, unlike in previous work,
does not require specifying conjugate functions or the
support functions for feasible sets. We provide an open-
source implementation of the method and this interface
in the Julia programming language1with extensive doc-
umentation. We conclude with two optimal power flow
examples and associated numerical experiments. Ad-
ditional examples are available in the ConvexFlows
documentation.

II. THE CONVEX FLOW PROBLEM

We consider a directed graph with n nodes and m
edges. Each edge, i = 1, . . . ,m, in the graph has an
associated strictly concave, nondecreasing gain function
hi : R+ → R+ ∪ {−∞}, which denotes the output
flow hi(z) of edge i given some input flow z ∈ R+.
(We assume strict concavity, but this can be achieved
generally by, say, subtracting a small quadratic term
from the gain function.) We use infinite values to encode
constraints: an input flow z over edge i such that hi(z) =
−∞ is unacceptable. We denote the flow across the edge
by the vector xi ∈ R2, where x1 ≤ 0 is the flow into
edge (equivalently, out of edge i’s source node) i and
x2 ≥ 0 is the flow out of the edge (equivalently, into
edge i’s terminal node). These flows are connected by
the relationship

x2 = hi(−x1).

With each edge i we associate a matrix Ai ∈ {0, 1}n×2

that maps the ‘local’ indices of nodes to their global
indices. More specifically, if edge i connects node j
to node j′, then we define Ai =

[
ej ej′

]
, where ej

denotes the jth unit basis vector. After mapping each

1Available online at https://github.com/tjdiamandis/
ConvexFlows.jl.
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Fig. 1: A concave gain function h with implicitly bounded
domain (left), and the corresponding set of allowable flows
(right).

edge flow to the global index and summing across all
edges, we obtain the net flow vector y ∈ Rn, defined as

y =

m∑
i=1

Aixi.

If yj > 0, then this node has flow coming into it and is
called a sink. If yj < 0, then this node provides flow to
the network and is called a source.

In the convex flow problem, we aim to maximize
some utility function U : Rn → R ∪ {−∞} over
all feasible net flows y. Infinite values again denote
constraints: any flow with U(y) = −∞ is unacceptable.
We require this utility function to be strictly concave
and strictly increasing. (The nondecreasing utility case
also follows directly from this setup but requires some
additional care.) The convex flow problem is

maximize U(y)

subject to y =
∑m

i=1 Aixi

(xi)2 ≤ hi (−(xi)1) , i = 1, . . . ,m.

(1)

An important consequence of this setup is that a so-
lution {x⋆

i } to (1) will always saturate edge inequality
constraints; i.e., (x⋆

i )2 = h(−(x⋆
i )1). To see this, note

that any flow xi satisfying (xi)2 < h (−(xi)1), can have
its second component increased to (xi)2 + ε for some
ε > 0. Since U is strictly increasing in y, and y is
(elementwise) strictly increasing in the xi, this change
would increase the objective value, so these flows xi

could not have been optimal.
In what follows, we will call a flow xi over edge i

an allowable flow if it satisfies the constraint in (1):

(xi)2 ≤ hi(−(xi)1).

Note that in prior work [DAE24], we instead defined a
closed convex set of allowable flows Ti for each edge i.
This set can be constructed directly from the inequality
above; figure 1 shows an example.

III. DUAL PROBLEM

Observe that the convex flow problem (1) only has
one constraint coupling the edge flows xi. This struc-
ture suggests that we should relax the linear equality
constraint to a penalty and consider the resulting dual
problem [BV04, §5.2]:

minimize Ū(ν) +

m∑
i=1

fi(A
T
i ν). (2)

The only variable in this problem is ν ∈ Rn and the
functions Ū and fi are defined

Ū(ν) = sup
y
(U(y)− νT y), (3a)

fi(η) = sup
w≥0

(−η1w + η2h(w)), (3b)

for i = 1, . . . ,m. Note that Ū(ν) = (−U)∗(−ν) is
the is the Fenchel conjugate [BV04, §3.3] of −U with
a negated argument, while fi is essentially the support
function for the set

{(z1, z2) | z2 ≤ hi(−z1)},

if η ≥ 0. This fact follows from problem (2) if AT
i ν ≥ 0

for all i, or, equivalently, if ν ≥ 0, which we show next.

A. Properties

Assuming that there exists a point in the relative
interior of the feasible set (Slater’s condition), the dual
problem (2) has the same optimal value as the primal
problem (1). This assumption typically holds in practice,
so we will focus on solving (2). We will show two
things: first, that any optimal ν⋆ is nonnegative (and,
indeed, that ν⋆ > 0) since U is strictly increasing, and,
second, that, given ν solving (2), the solutions to the
subproblems (3) are feasible for the primal problem
and therefore optimal. The first fact will be useful in
solving the dual problem, while the second fact will
imply that, by solving the dual problem (2), we can
recover a solution to the original problem (1).

First, let y be any point with U(y) > −∞. If νj < 0
for some j, we would have

Ū(ν) ≥ U(y + tej)− (y + tej)
T ν

≥ U(y)− νT y − tνj → ∞.

as t → ∞, where, in the second inequality, we have
used the fact that U is increasing. Therefore, for Ū(ν)
to be finite, we must have ν ≥ 0. We will show soon that
the second claim implies that any optimal dual variables
satisfy ν > 0, if the primal problem (1) has a finite
solution.
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For the second claim: it is not hard to show that Ū
and fi are differentiable, when finite, since U and the
hi are strictly concave [Roc70, Thm. 25.1]. Let ν⋆ be
dual optimal, then the first order optimality conditions
applied to problem (2) give

−y⋆(ν⋆) +

m∑
i=1

Aix
⋆
i (ν

⋆) = 0, (4)

where
y⋆(ν) = ∇Ū(ν)

is the maximizer for subproblem (3a) and

x⋆
i (ν) = ∇fi(A

T
i ν) = (−w⋆(ν), h(w⋆(ν))),

where w⋆ is the maximizer for subproblem (3b). Since
these points are feasible for (1) then they must also be
optimal.

Finally, if (1) has a finite solution y⋆, then the
first-order optimality condition for (3a) means that
∇U(y⋆) = ν⋆. But, since U is strictly increasing, we
have that ∇U(y⋆) > 0 so ν⋆ > 0 as required.

B. Solving the dual problem

The fact that ν⋆ > 0 suggests a natural way of
modifying a solution method to respect this constraint:
we simply modify a line search to ensure ν remains
positive. Specifically, we add an upper bound on the
step size which ensures that every iterate remains strictly
positive. This approach keeps the problem otherwise
unconstrained, which simplifies solution methods.

For small to medium-sized problems, we use the
quasi-Newton method BFGS, which has been shown to
work well for nonsmooth problems [LO13]. We use the
bracketing line search from Lewis and Overton [LO13],
modified to prevent steps outside of the positive orthant,
which also ensures that the step size satisfies the weak
Wolfe conditions. (We note that ConvexFlows also
includes an interface to L-BFGS-B [Byr+95; Zhu+97;
MN11] for larger problems, but this interface requires
more a more sophisticated problem specification, and
this method may be less robust to nonsmoothness in the
problem [AO21].)

Importantly, evaluating the dual objective function and
its gradient (4) parallelizes across all the edges, and each
individual subproblem can be solved very quickly—
often in closed form. This observation suggests a nat-
ural interface to specify the convex flow problem: we
only need a means of evaluating the subproblems and
computing their maximizers. Given user-specified utility
and gain functions, our software automatically computes
these subproblem evaluations.

IV. INTERFACE

It is unreasonable to expect most users to directly
specify conjugate-like functions and solutions to convex
optimization problems as in (3a) and (3b). Instead, we
develop an interface that allows the user to specify the
utility function U and the edge gain functions hi for
each edge i = 1, . . . ,m. With this, and the previous
discussion, we can now solve the dual problem and, from
there, recover a primal optimal solution.

A. The first subproblem

The first subproblem (3a) typically has a closed form
expression. Since, from before, Ū(ν) = (−U)∗(−ν),
where U∗ denotes the Fenchel conjugate of U , we can
use standard results in conjugate function calculus to
compute Ū from a number of simpler ‘atoms’. For
example, U is often separable, in which case we have
that U(y) = u1(y1) + · · ·+ un(yn), so

Ū(y) = ū1(y1) + · · ·+ ūn(yn),

where ūj is defined identically to (3a). Our package
ConvexFlows provides atoms that a user can use
to construct U . Some examples of scalar utility atoms
include the linear, nonnegative linear, and nonpositive
quadratic atoms. We also provide a number of cost
functions, including nonnegative quadratic cost. Note
that, since U is increasing, we can support lower bounds
on the variables but not upper bounds.

While it is most efficient to build U (and therefore
Ū ) from known atoms, more general functions without
constraints may be handled by solving (3a) directly. A
vector ỹ achieving the supremum must satisfy ∇U(ỹ) =
ν. This equation may be solved via Newton’s method,
and the gradient and Hessian may be computed via
automatic differentiation.

We can also incorporate constraints by writing U as
the solution to a conic optimization problem, which
may be expressed using a modeling language such as
JuMP [DHL17; Lub+23] or Convex.jl [Ude+14],
both of which can compile problems into a standard
conic form using MathOptInterface.jl [Leg+21].

B. The second subproblem

For each edge i we require the user to specify the
gain function hi in native Julia code. Denote the solution
point of the second problem (3b) by w⋆. We write h+(w)
and h−(w) for the right and left derivatives of h at w,
respectively. Specifically, we define

h+(w) = lim
δ→0+

h(w + δ)− h(w)

δ
,
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and h−(w) analogously. The optimality conditions for
problem (3b) are then that w⋆ is a solution if, and only
if,

h+(w⋆) ≤ η1/η2 ≤ h−(w⋆). (5)

(We may assume η2 > 0 from the previous discussion,
since ν > 0.) Note that the optimality condition suggests
a simple method to check if an edge will be used at all:
zero flow is optimal if and only if

h+(0) ≤ η1/η2 ≤ h−(0).

This ‘no flow condition’ is often much easier to check
in practice than solving the complete subproblem.

If the zero flow is not optimal, then we can solve (3b)
via a one-dimensional root-finding method. We assume
that h is differentiable almost everywhere (e.g., h is a
piecewise smooth function) and use bisection search or
Newton’s method to find a w⋆ that satisfies (5). Since
we use directed edges, and typically an upper bound
b on the flow exists for physical systems, we begin
with the bounds (0, b) and terminate after log2(b/ε)
iterations. (If no bound is specified, an upper bound
b may be computed with, for example, a doubling
method.) We compute the first derivative of h using
forward mode automatic differentiation, implemented in
ForwardDiff.jl [RLP16]. Computing a derivative
can be done simultaneously with a function evaluation
and, as a result, these subproblems can typically be
solved very quickly. Alternatively, the user may specify
a closed-form solution to the subproblem, which exists
for many problems in practice (see, for example, the
examples in [DAE24, §6].)

V. EXAMPLE: OPTIMAL POWER FLOW

We adapt the optimal power flow example of [DAE24,
§3.2]. This problem seeks to find a cost-minimizing plan
to generate power, which may be transmitted over a
network of m transmission lines, to satisfy the power
demand of n regions over some number of time periods
T . We use the transport model for power networks
along with a nonlinear transmission line loss function
from [Stu19], which results in a good approximation of
the DC power flow model.

The loss function models the phenomenon that, as
more power is transmitted along a line, the line dissi-
pates an increasing fraction of the power transmitted.
Following [Stu19, §2], we use the convex, increasing
loss function

ℓi(w) = αi (log(1 + exp(βiw))− log 2)− 2w,

where αi and βi are known constants for each line and
satisfy αiβi = 4. The gain function of a line with input
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1

3

2

1

t = 1 t = t′ t = T

Fig. 2: Graph representation of a power network with three
nodes over time. Each solid line corresponds to a transmission
line edge, and each dashed line corresponds to a storage edge.

w can then be written as

hi(w) = w − ℓi(w).

Each line i also has a maximum capacity, given by
bi. Figure 1 shows a power line gain function and its
corresponding set of allowable flows.

Each node j may also store power generated at time
t for use at time t+ 1. If w units are stored, then γjw
units are available at time t + 1 for some γj ∈ [0, 1].
These parameters may describe, for example, the battery
storage efficiency. We model this setup by introducing T
nodes in the graph for each node, with an edge from the
tth node to the (t+ 1)th node corresponding to node j
with the appropriate linear gain function, as depicted in
figure 2. (Note that, for numerical stability, we subtract
a small quadratic term, (ε/2)w2, from the linear gain
functions, where ε is very small.)

At time t = 1, . . . , T , node j = 1, . . . , n demands
dtj units of power and can generate power pj at a cost
cj : R → R+, given by

cj(p) =

{
(κj/2)p

2 p ≥ 0

0 p < 0,

which is a convex, increasing function parameterized by
κj > 0. Power dissipation has no cost but also generates
no profit. To meet demand, we must have that, for each
t = 1, . . . , T ,

dt = pt + yt, where yt =

m∑
i=1

Aixti.

In other words, the power produced, plus the net flow of
power, must satisfy the demand in each node. We write
the network utility function as

U(y) =

T∑
t=1

n∑
j=1

−cj(dtj − ytj). (6)

Since ci is convex and nondecreasing in its argument,
the utility function U is concave and nondecreasing in
y. This problem can then be cast as a special case of (1).
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Note that the subproblems associated with the optimal
power flow problem may be worked out in closed form.
The first subproblem is

Ū(ν) =

T∑
t=1

n∑
j=1

(
ν2tj
2κj

− dtjνtj

)
,

with domain ν ≥ 0. The second subproblem is

fi(ηi) = sup
0≤w≤bi

{−η1w + η2 (w − ℓi(w))} .

Using the first order optimality conditions, we can
compute the solution:

w⋆
i =

(
β−1
i log

(
3η2 − η1
η2 + η1

))
[0,bi]

,

where (·)[0,bi] denotes the projection onto the interval
[0, bi]. These closed form solutions can be directly
specified by the user in ConvexFlows for increased
efficiency.

A. Numerical examples

1) Multi-period power generation example: We first
consider an example network with three nodes over a
time period of 5 days. The first two nodes are users
who consume power and have a sinusoidal demand with
a period of 1 day. These users may generate power at a
very high cost (κj = 100). The third node is a generator,
which may generate power at a low cost (κj = 1) and
demands no power for itself. We equip the second user
with a battery, which can store power between time
periods with efficiency γ = 1.0. For each transmission
line, we set αi = 16 and βi = 1/4. The network has a
total of 360 nodes and 359 edges.

We display the minimum cost power generation
schedule in figure 3. Notice that during period of high
demand, the first user must generate power at a high
cost. The second user, on the other hand, purchases more
power during periods of low demand to charge their
battery and then uses this stored power during periods
of high demand. As a result, the power purchased by
this user stays roughly constant over time, after some
initial charging.

2) Larger network: We next consider the network
from [Kra+13], generated using the same parameters.
We use n = 100 nodes and T = 2 time periods.
For each time period t, we draw the demand dit for
each node uniformly at random from [1, 5]. For each
transmission line, we again set αi = 16 and βi = 1/4.
Each transmission line has maximum capacity drawn
uniformly at random from the set {1, 2, 3}. A line with
maximum capacity 1 operating at full capacity will loose
about 10% of the power transmitted, whereas a line

Fig. 3: Power generated (top), power used by the first node
(middle) and by the second node, which has a battery (bottom).

with maximum capacity 3 will loose almost 40% of
the power transmitted (cf., figure 1). We let all lines
be bidirectional: if there is a line connecting node j to
node j′, we add a line connecting node j′ to node j with
the same parameters. For each node, we allow it to store
power with probability 1/2 and then draw its efficiency
parameter γj uniformly at random from [0.5, 1.0]. In this
setup, there are a total of 452 edges.

Figure 4 shows the convergence of our method on
the optimal power flow problem for this network. The
primal feasible point used to compute the relative duality
gap is constructed as

ŷ =

m∑
i=1

Aix̃i,

where x̃i solves the subproblem (3b) with the current
iterate νk. There is a clear linear convergence region,
followed by quadratic convergence, similar to Newton’s
method. We note that L-BFGS does not exhibit good
convergence on our problem, which is consistent to the
results in [AO21]. (See [DAE24, §6.1] for additional
examples using L-BFGS-B to solve the convex flow
problem on very large networks.)

VI. CONCLUSION

This paper introduces the software package
ConvexFlows for solving the convex flow problem
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Fig. 4: Convergence of ConvexFlows with n = 100. The
primal residual measures the net flow constraint violation, with
{xi} from (3b) and y from (3a).

defined in [DAE24]. This package provides an easy-
to-use interface for specifying these problems, which
appear in many applications, including the transport
model optimal power flow problem discussed here.
We posit that additional structure of this problem may
be exploited in solution methods. For example, the
positivity of the dual variable suggests that a barrier
method may perform well. We leave this and other
numerical exploration for future work.
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