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Abstract— In this paper, the minimal control placement prob-
lem for Turing’s reaction-diffusion model is studied. Turing’s
model describes the process of morphogens diffusing and
reacting with each other and is considered as one of the most
fundamental models to explain pattern formation in a devel-
oping embryo. Controlling pattern formation artificially has
gained increasing attention in the field of development biology,
which motivates us to investigate this problem mathematically.
In this work, the two-dimensional Turing’s reaction-diffusion
model is discretized into square grids. The minimal control
placement problem for the diffusion system is investigated first.
The symmetric control sets are defined based on the symmetry
of the network structure. A necessary condition is provided
to guarantee controllability. Under certain circumstances, we
prove that this condition is also sufficient. Then we show that the
necessary condition can also be applied to the reaction-diffusion
system by means of suitable extension of the symmetric control
sets. Under similar circumstances, a sufficient condition is given
to place the minimal control for the reaction-diffusion system.

I. INTRODUCTION

The Turing’s reaction-diffusion (RD) system [1] has been
widely used to explain the fundamental question about
generation of spatial patterns in organisms. The core idea
of Turing’s model is that patterns can be formed by mor-
phogens, diffusing and reacting in a field of identical cells.
Convincing experimental studies [2]–[5] that involve the
Turing mechanism in system biology have been conducted.
Though other models [6]–[8] with nonlinear reaction terms
have been proposed to investigate the mystery of spatial
patterns, the idea of Turing’s model still plays an important
role in the theoretical investigation of pattern formations.

Different properties of Turing’s model have been studied
and one of the active aspects is controllability. It is believed
that understanding controllability of Turing’s model is a
useful first step in achieving the ultimate goal of under-
standing the self-organization mechanisms that generate so
diversified patterns as are observed in nature. Besides it
has been shown in [9] that some of the behaviors in the
model can not be observed unless certain control is applied.
Furthermore, in its own right controlling the Turing’s RD
system can contribute to real applications, not only in biology
[10] but also in the field of processing units, sensors and
memory [11]. A spatially discretized RD system can be

1 Yuexin Cao and Xiaoming Hu are with Department of Mathematics,
KTH Royal Institute of Technology, Sweden. Email:{yuexin, hu}@kth.se

2 Yibei Li is with School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore. E-mail: yibei.li@ntu.edu.sg

3 Zhixin Liu is with Key Laboratory of Systems and Control, Academy
of Mathematics and Systems Science, Chinese Academy of Sciences, China.
Email: lzx@amss.ac.cn

4 Lirong Zheng is with School of Information Science and Technology,
Fudan University, China. E-mail: lrzheng@fudan.edu.cn

considered as a network of cells (agents) in which we
have the possibility to inject a control signal to cells of
our choice. In order to fully control the given network, a
critical issue is to find the suitable number and placement
of controls. Various methods have been proposed to locate
the minimal number of control (we hereafter refer to this as
minimal control for brevity). Structural controllability [12]
of the network has been widely studied and it is ideal for
network systems in which only the underlying topology is
known. A ground-breaking contribution is made in [13]. The
minimum inputs theory is developed to map the structural
controllability problem of a directed network into a graph-
theoretical problem.

Based on the Popov-Belevitch-Hautus (PBH) test and
geometric multiplicity, a universal tool is provided in [14]
to assess state controllability of (directed and undirected)
networks. To analyze state controllability from the graph-
theoretic perspective, the symmetry of the network structure
is a useful property. In [15], the network with a single leader
is proved to be uncontrollable if it is leader symmetric. The
relationship between the symmetry structure of the network
and its controllability is shown in [16] and network equitable
partitions are introduced as a tool to extend the conclusion to
the multi-leader systems. In [17], the eigenvalues of the sys-
tem matrix are classified by their geometric multiplicity and
the structure of the eigenvectors is characterized by means of
suitable decomposition of the network. Simple routines are
also given to choose controls to guarantee controllability.
However, among the existing results of minimal control
problems, most papers focus on providing routines to choose
a set of minimal control. The more general rules of minimal
control placement problems remain to be investigated.

In our previous work [18], we provide the minimal control
that ensures the spatially discretized RD system to be con-
trollable and examples are given to illustrate its effectiveness.
In this work, the minimal control placement problems for the
discretized RD system are studied in a more general setup.
The contribution of this paper is three-fold. Firstly, we iden-
tify the relationship of the eigenvectors of system matrices
from the diffusion system and the reaction-diffusion system.
Then we characterize the structure of the eigenvectors of
the diffusion matrix. Secondly, to investigate generality of
the minimal control placement problem, symmetric control
sets are defined based on the properties of the eigenspaces
and we provide accordingly the necessary condition to place
the minimal control for the diffusion system. Furthermore,
under certain circumstances, this condition is also proved
to be sufficient to guarantee controllability. Thirdly, based
on the results of the diffusion system, the minimal control
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placement problem for the reaction-diffusion model is stud-
ied. We prove that the necessary condition can be applied to
the reaction-diffusion model by means of suitable extension
of the symmetric control sets. Under similar circumstances,
an effective sufficient condition is also given.

Notations: Let N, R and C denote natural numbers, real
numbers and complex numbers respectively. For i ∈ N, let
ei denote the i-th element of the canonical basis. We denote
⊗ and ⊕ as the Kronecker product and the Kronecker sum
respectively. We let I and 0 denote the identity matrix and the
zero matrix whose dimension are inferred from the context
respectively. For ρ ∈ Rn, we denote diag(ρ) as an n × n
diagonal matrix with diag(ρ)ii = ρi for all i = 1, . . . , n. For
A ∈ Rn×n, let σ(A) denote the set of eigenvalues of A.

II. PROBLEM FORMULATION

In this section, the Turing’s reaction-diffusion model of
two morphogens is introduced and the minimal control
placement problems are formulated.

The Turing’s RD model describes the process of reaction
and diffusion between two morphogens, denoted as X and
Y , with their concentration denoted by x and y respectively.
In this paper, the RD model in two dimensions which is
spatially discretized into N ×N grids is considered, where
N ∈ N and N ≥ 3. The nodes in the outermost layer are
naturally considered as control candidates, except for the
corner nodes, since they do not interact with the inner nodes.
The set of control candidates on morphogen X is denoted
as Ux = {ux(1, i1), ux(N, i2), ux(i3, 1), ux(i4, N), 2 ≤
i1, i2, i3, i4 ≤ N −1} and Uy is defined similarly. The inner
nodes x(i, j) and y(i, j) are considered as the states, where
2 ≤ i, j ≤ N−1. The illustration of morphogen X is shown
in Fig. 1 and morphogen Y is of the same structure.

The diffusion process is one of the most fundamental
phenomena in the real world. We follow the natural mech-
anism of the diffusion process that morphogens will pass
from the nodes with higher concentration to the neighboring
nodes with lower concentration. The diffusion parameters for
morphogen X and Y are denoted as p and q respectively.
Considering the phenomena of self-decay, the diffusion sys-
tem of morphogen X can be expressed as

dx(i, j)

dt
= ax(i, j) + p(

∑
(m,n)∈Ωij

x(m,n)− 4x(i, j)), (1)

where Ωij = {(i+1, j), (i−1, j), (i, j+1), (i, j−1)} denotes
the adjacent node set of the node (i, j), 2 ≤ i, j ≤ N − 1.

The state x is built by rows x =
[
x⊤
r2, x

⊤
r3, . . . , x

⊤
rN−1

]⊤
,

where x⊤
ri =

[
x(i, 2), . . . , x(i,N − 1)

]
consists of the nodes

in i-th row. The input vector ux is formed by choosing k
controls in Ux and the diffusion system can be rewritten as

ẋ = Axxx+Bxxux, (2)

where Axx is the diffusion matrix and the input matrix Bxx

consists of the columns pel1 , . . . , pelk , where lm is equal to
(i1 − 1), (N − 2)(N − 3)+ (i2 − 1), (i3 − 2)(N − 2)+ 1 or
(i4−1)(N−2) when the control is from ux(1, i1), ux(N, i2),

𝑢𝑥(𝑁, 1) 𝑢𝑥(𝑁, 2) 𝑢𝑥(𝑁, 3) 𝑢𝑥(𝑁,𝑁)

𝑢𝑥(1,1) 𝑢𝑥(1,2) 𝑢𝑥(1,3) 𝑢𝑥(1, 𝑁)

𝑢𝑥(2,1) 𝑥(2,2) 𝑥(2,3) 𝑢𝑥(2, 𝑁)

𝑢𝑥(3,1) 𝑥(3,2) 𝑥(3,3) 𝑢𝑥(3, 𝑁)

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

•••

Fig. 1. Illustration of RD model discretizing into N × N grids using
morphogen X as an example. The yellow nodes in the outermost layer are
considered as control candidates and the blue nodes are considered as states.

ux(i3, 1) or ux(i4, N) respectively, where 1 ≤ m ≤ k and
2 ≤ i1, i2, i3, i4 ≤ N − 1.

For the reaction process, the concentration of morphogen
X and Y will increase at the rate of fr(x, y) and gr(x, y)
respectively. We follow the assumption in [1] that the con-
centration of morphogens in the cells is supposed to be small
enough that the terms in high powers of x and y will have
little effect, which leads us to the following assumption.

Assumption 1. fr(x, y) and gr(x, y) are linear functions,

fr(x, y) = ax(i, j) + by(i, j)

gr(x, y) = cx(i, j) + dy(i, j),
(3)

where a, b, c, d are reaction parameters and b2 + c2 ̸= 0
since morphogen X and Y will interact with each other.

With the reaction terms, the Turing’s reaction-diffusion
system of two morphogens can be expressed as (4).

dx(i, j)

dt
= fr(x, y) + p(

∑
(m,n)∈Ωij

x(m,n)− 4x(i, j))

dy(i, j)

dt
= gr(x, y) + q(

∑
(m,n)∈Ωij

y(m,n)− 4y(i, j)),

(4)

where Ωij is the adjacent node set of the node (i, j) defined
before, 2 ≤ i, j ≤ N − 1.

The state vector y has the same structure as the state vector
x. With ux and uy formed by choosing k1 and k2 controls
from Ux and Uy respectively, the reaction-diffusion system
(4) can be rewritten as[

ẋ
ẏ

]
=

[
Axx bI
cI Ayy

] [
x
y

]
+

[
Bxx 0

0 Byy

] [
ux

uy

]
, (5)

where Axx, Ayy are the diffusion matrices and Bxx, Byy

can be derived by the controls in ux, uy respectively.
We have shown in our previous work [18] that for the

diffusion system (2) and the reaction-diffusion system (5),
the minimal control is both N − 2 and an intuitive example
to locate N−2 controls is given as choosing the nodes in xr1,
i.e., ux(1, 2), . . . , ux(1, N − 1). But this is not the only way
to locate minimal control to guarantee controllability. In this
paper, minimal control placement problems are investigated
in a more general setup. Our aim is to: (a) provide a universal
tool to identify the uncontrollable choices from the graph-
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theoretic perspective; (b) introduce a systematic method to
locate the minimal control to ensure controllability.

III. MAIN RESULTS

In this section, we present the main results of the minimal
control placement problem. In Section III-A, some useful
properties of the eigenspace of the system matrices from the
diffusion system (2) and the reaction-diffusion system (5)
are introduced first. In Section III-B, the minimal control
placement problem for the diffusion system is investigated.
We provide a necessary condition based on the symmetric
control sets, which are defined naturally by the symmetry of
the topology. Under certain circumstances, we prove that this
condition is also sufficient. In Section III-C, we show that
the necessary condition can also be applied to the reaction-
diffusion system with the extension of the symmetric control
sets. Under similar circumstances, the sufficient condition is
also proved to be effective for the reaction-diffusion system.

A. Some Properties of Eigenspace

Before investigating the control placement problems, some
useful properties of the eigenspace of the system matrices of
(2) and (5) are provided in this subsection.

Eigenvalues and eigenvectors of the system matrix in (5)
are first investigated. If b = 0 or c = 0, the system matrix
turns into a triangular block matrix, whose eigenvalues and
eigenvectors are easy to compute. The situation of b ̸= 0 and
c ̸= 0 is discussed in Proposition 1.

Proposition 1. Let A1, A2 ∈ Rn×n be real symmetric
matrices and share the same eigenvectors. Let b and c be
non-zero constants. If w⊤

i A1 = λ1,iw
⊤
i , w⊤

i A2 = λ2,iw
⊤
i ,

then
[
w⊤

i , αijw
⊤
i

]
is a left eigenvector of A =

[
A1 bIn
cIn A2

]
,

where αij satisfies cα2
ij + αij(λ1,i − λ2,i) − b = 0, i =

1, . . . , n, j = 1, 2.

Proof. Since A1 and A2 are symmetric and share the same
eigenvectors, they can be diagonalized as A1 = QΛ1Q

⊤ and
A2 = QΛ2Q

⊤, where Λ1 = diag{λ1,1, . . . , λ1,n} and Λ2 =
diag{λ2,1, . . . , λ2,n}, λ1,i and λ2,i are the i-th eigenvalues of
A1 and A2 respectively, the i-th column of Q denoted by wi

is the corresponding i-th common eigenvector, i = 1, . . . , n.
The eigenvalues of A are determined by solving

0 =det(A− λI2n) = det((A1 − λIn)(A2 − λIn)− bcIn)

=det(Q((Λ1 − λIn)(Λ2 − λIn)− bcIn)Q
⊤),

which yields λ2
i −(λ1,i+λ2,i)λi+(λ1,iλ2,i−bc) = 0, where

i = 1, 2, · · · , n. The solutions of i-th equation are given by

λij =
(λ1,i + λ2,i)±

√
(λ1,i − λ2,i)2 + 4bc

2
, (6)

which can be written as λij = λ1,i+cαij , where αij satisfies
cα2

ij+(λ1,i−λ2,i)αij−b = 0, j = 1, 2. For λij = λ1,i+cαij ,
we can obtain that

[
w⊤

i , αijw
⊤
i

]
(A− λijI2n) = 0.

Thus, all the eigenvalues of A can be written in the form
of λ1,i + cαij and

[
w⊤

i , αijw
⊤
i

]
is a corresponding left

eigenvector, i = 1, 2, . . . , n and j = 1, 2. ■

Proposition 1 reveals that eigenvalues and eigenvectors of
A can be expressed by those of A1 and A2. In the RD system
(5), the diffusion process is denoted as Axx and Ayy, which
are related to tridiagonal Toeplitz matrices and the Kronecker
sum. We state eigenvalues and eigenvectors of tridiagonal
Toeplitz matrices [19] in Lemma 1 and some properties of
the Kronecker sum [20] are stated in Lemma 2.

Lemma 1. The tridiagonal Toeplitz matrix is denoted by
T = (n; γ, δ, τ), where T ∈ Cn×n and the elements on
the diagonal, superdiagonal and subdiagonal of T are δ, τ
and γ respectively, while the other elements are zero. The
eigenvalues of T are given by λh = δ + 2

√
γτ cos hπ

n+1 ,
h = 1, · · · , n. When γτ ̸= 0, the components of the right
eigenvector vh =

[
vh,1, vh,2, · · · , vh,n

]⊤
corresponding with

λh are given by vh,k = (γτ )
k
2 sin hkπ

n+1 , h, k = 1, · · · , n.

Lemma 2. Let A ∈ Rn×n and B ∈ Rm×m be given. If λ ∈
σ(A), µ ∈ σ(B) and x, y are the corresponding eigenvectors
respectively, then λ+µ is an eigenvalue of A⊕B and y⊗x is
a corresponding eigenvector. Furthermore, every eigenvalue
of the Kronecker sum can be expressed as a sum of some
eigenvalues of A and B respectively.

Next, the symmetry of the eigenspaces corresponding with
simple eigenvalues and the eigenvalues of maximum geomet-
ric multiplicity are shown in the following proposition.

Proposition 2. Let T = (n; τ, δ, τ) be a tridiagonal Toeplitz
matrix and τ ̸= 0. Then T ⊕ T has 2δ as an eigenvalue of
maximum geometric multiplicity n, and it also has simple
eigenvalues, namely eigenvalues of multiplicity one. Let w
be an eigenvector of T ⊕ T corresponding to either 2δ or
simple eigenvalues, then the elements in w satisfy

|wi| = |wn(i−1)+1| = |wn2+1−i| = |wn(n−i+1)|, (7)

where i = 1, 2, · · · , n.

Proof. By Lemma 1 and Lemma 2, the eigenvalues of T⊕T
and the corresponding eigenvectors are given by

λ(h1,h2) = λh1
+ λh2

= 2δ + 2|τ | cos h1π

n+ 1
+ 2|τ | cos h2π

n+ 1
w(h1,h2) = vh2

⊗ vh1
,

(8)

where λh1
, λh2

are the eigenvalues of T and vh1
, vh2

are
the corresponding eigenvectors, h1, h2 = 1, · · · , n.

The i-th, (n(i−1)+1)-th, (n2+1−i)-th and (n(n−i+1))-
th elements in w(h1,h2) are shown below

wi = sin
h2π

n+ 1
sin

ih1π

n+ 1

wn(i−1)+1 = sin
ih2π

n+ 1
sin

h1π

n+ 1

wn2+1−i = sin
nh2π

n+ 1
sin

(n+ 1− i)h1π

n+ 1

wn(n−i+1) = sin
(n+ 1− i)h2π

n+ 1
sin

nh1π

n+ 1
.

(9)

For the simple eigenvalues, it only holds for λ(k,k) with the
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eigenvector w(k,k), where 2k ̸= n+1. Then the eigenvectors
are w

′
= α1w(k,k), where α1 ̸= 0. For i = 1, · · · , n, the

elements in w
′

satisfy

|w
′

i| = |w
′

n(i−1)+1| = |w
′

n2+1−i| = |w
′

n(n−i+1)|

= |α1|| sin
kπ

n+ 1
sin

ikπ

n+ 1
|.

(10)

By (8), λ(h1,h2) = 2δ if and only if h1+h2 = n+1. The
corresponding eigenvector of λ(h1,n+1−h1) is w(h1,n+1−h1).
The eigenvectors v1, . . . , vn are linearly independent since
T is a real symmetric matrix. Then w(h1,n+1−h1), h1 =
1, . . . , n, are also linearly independent. The geometric mul-
tiplicity of 2δ is n. The eigenvectors corresponding with 2δ
are w

′′
=

∑n
h1=1 αh1

w(h1,n+1−h1), where α1, α2, · · · , αn

are not all zero. For i = 1, . . . , n, the elements in w
′′

satisfy

|w
′′

i | = |w
′′

n(i−1)+1| = |w
′′

n2+1−i| = |w
′′

n(n−i+1)|

= |
n∑

h1=1

αh1 sin
h1π

n+ 1
sin

ih1π

n+ 1
|.

(11)

Then we prove that for the Kronecker sum T ⊕ T , if
the geometric multiplicity of the eigenvalue is 1 or n, the
elements in the corresponding eigenvectors satisfy (7). ■

B. Minimal Control Placement for the Diffusion System

In this part, the minimal control placement problem of
the diffusion system (2) is investigated. To place the min-
imal control, the following definition is first introduced to
characterize control candidates by symmetry.

Definition 1. For i = 2, · · · , N − 1, the symmetric control
set Ti consists of the control candidates

{ux(1, i), ux(i, 1), ux(N−i+1, N), ux(N,N−i+1)}. (12)

Controllability of the linear system can be investigated by
PBH test [21] and we state it as Lemma 3.

Lemma 3. The linear system ẋ(t) = Ax(t) + Bu(t) is
uncontrollable if and only if there exists a left eigenvector v
of A, i.e., v⊤A = λv⊤ for some λ, such that v⊤B = 0.

Based on the symmetric control sets, we are now ready
to provide the necessary condition for the minimal control
placement problem for the diffusion system (2).

Theorem 1. For the diffusion system (2), it is controllable
only if the control set is formed by choosing at least one con-
trol from every symmetric control set Ti, i = 2, 3, · · · , N−1.

Proof. In (2), Axx can be expressed as

Axx = (a− 4p)I(N−2)2 + P ⊗ I(N−2) + I(N−2) ⊗ P, (13)

where P = (N − 2; p, 0, p) is a tridiagonal Toeplitz matrix.
The diffusion matrix Axx shares the eigenvectors with P⊕P .

To prove necessity, the null space of P ⊕P is considered.
By Proposition 2, 0 is an eigenvalue of P ⊕ P with the
geometric multiplicity of N−2 and w(1,N−2), · · · , w(N−2,1)

form a basis of the corresponding eigenspace, which is
denoted as W =

[
w(1,N−2), w(2,N−3), · · · , w(N−2,1)

]
.

Let W̄ denote the first N − 2 rows of W , i.e.,

W̄ =
[
vN−2,1v1, vN−3,1v2, · · · , v1,1vN−2

]
, (14)

where vi denotes i-th eigenvector of P and vi,j denotes the
j-th element in vi, 1 ≤ i, j ≤ N − 2.

The matrix W̄ is non-singular since v1, · · · , vN−2 are the
linearly independent eigenvectors of P and the first elements
vi,1 ̸= 0, according to Lemma 1. Thus, there always exists a
non-zero vector ᾱ =

[
α1, α2, · · · , αN−2

]
such that W̄ ᾱ =

ei, for all 1 ≤ i ≤ N − 2.
The eigenvector of Axx corresponding with a − 4p is

w̄ = Wᾱ. In the first N − 2 elements of w̄, the only
non-zero element is w̄i. By Proposition 2, none of the
elements w̄(i−1)(N−2)+1, w̄(N−2)2+1−i and w̄(N−2)(N−1−i)

is zero. These four elements correspond to control candidates
ux(1, i+ 1), ux(i+ 1, 1), ux(N,N − i) and ux(N − i,N),
which form the symmetric control set Ti+1. All the other
elements corresponding to the other control candidates in
the outermost layer are zero.

If the system (2) is controllable and the control set does
not have any control from the symmetric control set Tk,
2 ≤ k ≤ N − 1, there exists another non-zero vector
ᾱ

′
=

[
α

′

1, . . . , α
′

N−2

]
such that w̄

′

k−1 ̸= 0 is the only non-
zero elements in the first N−2 elements of w̄

′
= Wᾱ

′
. Then

(w̄
′
)⊤Bxx = 0, which contradicts with the assumption. ■

Under certain circumstances, we prove in the next theorem
that it is also sufficient to guarantee (2) controllable.

Theorem 2. For the diffusion system (2), when all the
eigenvalues of Axx have the geometric multiplicity 1, 2 or
N − 2, it is controllable if the control set is formed by
choosing at least one control from every symmetric control
set Ti, i = 2, 3, · · · , N − 1.

Proof. The eigenvalues and the corresponding eigenvectors
of Axx in (13) can be expressed as

λ(h1,h2) = a− 4p+ λh1
+ λh2

w(h1,h2) = vh2
⊗ vh1

,
(15)

where λh1
, λh2

are the eigenvalues of P and vh1
, vh2

are
the corresponding eigenvectors, h1, h2 = 1, . . . , N − 2.

Theorem 2 is proved by characterizing eigenvalues by their
geometric multiplicity. For simple eigenvalues, it holds when
the eigenvalues are λ(k,k), where 2k ̸= N−1. By Proposition
2, the eigenvectors can be expressed as w

′
= αw(k,k), α ̸=

0. Its first element is w
′

1 = α sin kπ
N−1 sin

kπ
N−1 ̸= 0, then

|w′

1| = |w′

(N−2)2 | ̸= 0. There is at least one control chosen
from T2, which means that at least one of e1 and e(N−2)2 is
the column of Bxx. Then (w

′
)⊤Bxx ̸= 0.

For eigenvalues with geometric multiplicity of 2, it holds
for λ(k1,k2) when k1 ̸= k2 and k1 + k2 ̸= N − 1. With
α1, α2 not both zero, the eigenvectors can be expressed
as w

′′
= α1w(k1,k2) + α2w(k2,k1). Its first element is

w
′′

1 = (α1 + α2) sin
k1π
N−1 sin

k2π
N−1 . If |w′′

1 | ≠ 0, then
|w′′

(N−2)2 | = |w′′

1 | ̸= 0, which means (w
′′
)⊤Bxx ̸= 0.

Otherwise, we can obtain that α1 + α2 = 0. Its second
element w

′′

2 = α1(sin
k2π
N−1 sin

2k1π
N−1−sin k1π

N−1 sin
2k2π
N−1 ) ̸= 0.
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Then w
′′

(N−2)+1 can be computed as w
′′

(N−2)+1 = −w
′′

2 ̸= 0.
One can check |w′′

(N−3)(N−2)| = |w′′

(N−2)2−1| = |w′′

2 | ≠ 0.
Since at least one control chosen from T3, at least one
column from e2, e(N−2)+1, e(N−3)(N−2) and e(N−2)2−1 is
the column of Bxx. Then (w

′′
)⊤Bxx ̸= 0.

For eigenvalues a−4p with geometric multiplicity of N−
2, the corresponding eigenvectors are generally expressed
as w̄ =

∑N−2
j=1 αjw(j,N−1−j), where α1, . . . , αN−2 are not

all zero. Since W̄ in (14) is non-singular, there is at least
one non-zero elements in the first N − 2 elements. We can
assume that w̄i ̸= 0, 1 ≤ i ≤ N − 2, then w̄(i−1)(N−2)+1,
w̄(N−2)2+1−i and w̄(N−2)(N−1−i) are all not zero, which
means w̄⊤Bxx ̸= 0.

Thus, we prove that if the geometric multiplicity of all the
eigenvalues of Axx can only be 1, 2 or N − 2, the system
(2) is controllable if the control set is formed by choosing
at least one control from all Ti, i = 2, 3, · · · , N − 1. ■

Remark 1. As the eigenvalues and the corresponding eigen-
vectors of Axx are given in (15), the geometric multiplicity
of λ(h1,h2) can only be 1, 2 or N − 2 if and only if when
h1 + h2 ̸= N − 1, there does not exist h3 and h4 such that

λ(h1,h2) = λ(h3,h4), (16)

where 1 ≤ h3, h4 ≤ N − 2, h3 ̸= h1 and h3 ̸= h2.
The solutions of (16) are discussed in [22]. Based on the

results, for the most of N ∈ N and N ≥ 3, the circumstance
described in Theorem 2 is satisfied.

C. Minimal Control Placement for the RD System

The minimal control placement problem for the reaction-
diffusion system (5) is investigated in this part. When two
morphogens are considered, the symmetric control sets are
dependent on the reaction parameters b and c. When b = 0
and c ̸= 0, the RD system becomes

ẋ = Axxx+Bxxux

ẏ = Ayyy + cx.
(17)

Morphogen X is controllable by choosing at least one
control from every symmetric control set defined in (12).
Morphogen Y is also controllable by using feedback control
x = 1

c (−Ayyy + z), where z may be a function of time.
When b ̸= 0 and c = 0, the symmetric control set can be

similarly defined on morphogen Y . For i = 2, . . . , N − 1,
Ti consists of the control candidates

{uy(1, i), uy(i, 1), uy(N − i+ 1, N), uy(N,N − i+ 1)}.

When b ̸= 0 and c ̸= 0, according to Proposition 1,
the necessary condition for the diffusion system still holds
for the reaction-diffusion system with some extension of the
symmetric control sets and we state it in the Theorem 3.

Theorem 3. Consider the RD system (5), when b ̸= 0 and
c ̸= 0. For i = 2, . . . , N − 1, the symmetric control set Ti

consists of the control candidates

{ux(1, i), ux(i, 1), ux(N − i+ 1, N), ux(N,N − i+ 1),

uy(1, i), uy(i, 1), uy(N − i+ 1, N), uy(N,N − i+ 1)}.

Then the RD system is controllable only if the control
set is formed by choosing at least one control from every
symmetric control set Ti, i = 2, 3, · · · , N − 1.

Proof. Similar to (13), Ayy can be written as

Ayy = (d− 4q)I(N−2)2 +R⊗ I(N−2) + I(N−2) ⊗R, (18)

where R = (N − 2; q, 0, q) whose eigenvectors are the same
as those of P . Then Axx and Ayy share the eigenvectors.

In the necessity proof in the Theorem 1, we show that
a−4p is the eigenvalue of Axx and w̄ is a corresponding left
eigenvector, where w̄i ̸= 0 is the only non-zero elements in
the first N-2 elements, 1 ≤ i ≤ N −2. By Proposition 1, the
vector w̄ is a left eigenvector of Axx and Ayy of eigenvalue
a − 4p and d − 4q respectively, then (w̄⊤, αkw̄

⊤) is a left
eigenvector of the system matrix of (5) corresponding with
the eigenvalue λk, where λk = a−4p+cαk, and αk satisfies
cα2

k + (a− 4p− d+ 4q)αk − b = 0, k = 1, 2.
If the RD system (5) is controllable, we can obtain that

(w̄⊤, αkw̄
⊤)

[
Bxx 0
0 Byy

]
= (w̄⊤Bxx, αkw̄

⊤Byy) ̸= 0.

If the control set is not formed by choosing at least one
control from every Ti, we assume that the control set does
not have any control from Tk, 2 ≤ k ≤ N − 1. Then there
exists a left eigenvector w̄, where w̄k−1 ̸= 0 and w̄j = 0
for all 1 ≤ j ≤ N − 2 and j ̸= k − 1, such that w̄⊤Bxx =
w̄⊤Byy = 0, which contradicts with our assumption. Hence,
we prove that it is a necessary condition. ■

Following (13) and (18), the eigenvalues of Axx, Ayy and
the corresponding common eigenvectors are given below

λx
(h1,h2)

= a− 4p+ p(λh1
+ λh2

)

λy
(h1,h2)

= d− 4q + q(λh1
+ λh2

)

w(h1,h2) = vh2 ⊗ vh1 ,

(19)

where λh1
, λh2

are the eigenvalues of (N − 2; 1, 0, 1)
and vh1

, vh2
are the corresponding eigenvectors, h1, h2 =

1, . . . , N − 2.
By Proposition 1, the eigenvalues of the system matrix in

(5) can be expressed as λ(h1,h2),j = λx
(h1,h2)

+ cα(h1,h2),j ,
where α(h1,h2),j , j = 1, 2, satisfies

cα2
(h1,h2),j

+ (λx
(h1,h2)

− λy
(h1,h2)

)α(h1,h2),j − b = 0. (20)

The discriminant of (20) is shown as

∆(h1,h2) = (λx
(h1,h2)

− λy
(h1,h2)

)2 + 4bc

=[(a− d) + (p− q)(λh1 + λh2 − 4)]2 + 4bc.
(21)

Based on the Theorem 2, a sufficient condition for minimal
control placement problem for the reaction-diffusion system
(5) is given to ensure controllability.

Corollary 1. For the reaction-diffusion system (5), assuming
the following conditions are satisfied
(1) all the eigenvalues of Axx and Ayy have the geometric

multiplicity 1, 2 or N − 2;
(2) ∆(h1,h2) ̸= 0;
(3) if λx

(h1,h2)
̸= λx

(h3,h4)
, λ(h1,h2),j1 ̸= λ(h3,h4),j2 ;
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where h1, h2, h3, h4 = 1, 2, . . . , N − 2, j1, j2 ∈ {1, 2}.
Then system (5) is controllable if the control set is formed

by choosing at least one control from every symmetric control
set Ti, i = 2, . . . , N − 1, as defined in (12).

Proof. With the condition (2) satisfied, there are two different
solutions α(h1,h2),j , j = 1, 2 in (20) for all h1, h2 =
1, 2, . . . , N − 2. With the condition (3) satisfied, the eigen-
values λ(h1,h2),j have the same geometric multiplicity as
λx
(h1,h2)

of Axx.
Similarly, we characterize eigenvalues λ(h1,h2),j by their

geometric multiplicity. For simple eigenvalues λ(h1,h1),j ,
where 2h1 ̸= N − 1, the left eigenvectors (w

′

(h1,h1),j
)⊤ are

(w
′

(h1,h1),j
)⊤ = β

[
w⊤

(h1,h1)
, α(h1,h1),jw

⊤
(h1,h1)

]
,

where βw⊤
(h1,h1)

is a left eigenvector of Axx.
For eigenvalues λx

(h1,h2)
, h1 ̸= h2 and h1 + h2 ̸= N − 1,

the geometric multiplicity of λ(h1,h2),j is 2. With β1, β2 not
both zero, the left eigenvectors (w

′′

(h1,h2),j
)⊤ are

(w
′′

(h1,h2),j
)⊤ =β1

[
w⊤

(h1,h2)
, α(h1,h2),jw

⊤
(h1,h2)

]
+β2

[
w⊤

(h2,h1)
, α(h1,h2),jw

⊤
(h2,h1)

]
,

where β1w
⊤
(h1,h2)

+ β2w
⊤
(h2,h1)

is a left eigenvector of Axx.
For eigenvalues λx

(h1,N−1−h1)
, the geometric multiplicity

of λ(h1,N−1−h1),j is N −2. With β1, . . . , βN−2 not all zero,
the left eigenvectors (w̄j)

⊤ are

N−2∑
h1=1

βh1

[
w⊤

(h1,N−1−h1)
, α(h1,N−1−h1),jw

⊤
(h1,N−1−h1)

]
,

where
∑N−2

h1=1 βh1
w⊤

(h1,N−1−h1)
is a left eigenvector of Axx.

The matrix Byy = 0 since controls are all from mor-
phogen x. By the results in Theorem 2, we can obtain that
(w

′

(h1,h1),j
)⊤B ̸= 0, (w

′′

(h1,h2),j
)⊤B ̸= 0 and w̄⊤

j B ̸= 0,
where B is the input matrix of (5). Then the reaction-
diffusion system (5) is controllable. ■

Remark 2. Similar sufficient conditions can be derived by
choosing the controls only from morphogen Y .

IV. CONCLUSIONS AND FUTURE WORKS
In this paper, the minimal control placement problem

for the Turing’s reaction-diffusion system is investigated.
The two-dimensional RD system is discretized into square
grids and the nodes in the outermost layer are considered
as control candidates. Symmetric control sets are defined
naturally using the property of symmetry of the network
structure. The minimal control placement problem for the
diffusion system is investigated first. The necessary condition
is provided based on the idea of symmetric control sets.
Then we prove that this condition is also sufficient to ensure
controllability when the multiplicity of eigenvalues satisfies
certain conditions. We show further that symmetric control
sets can be extended and prove that the necessary condition
can also be applied to the reaction-diffusion system, i.e.,
the Turing’s model. The sufficient condition is proved to

be effective for the reaction-diffusion system under similar
circumstances. Our conclusion can also be useful for other
multi-agent systems with the same topology. Directions of
future study include nonlinear reaction terms and time-
varying systems.
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