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Abstract— This paper explores the problem of training a
recurrent neural network from noisy data. While neural net-
work based dynamic predictors perform well with noise-free
training data, prediction with noisy inputs during training
phase poses a significant challenge. Here a sequential training
algorithm is developed for an echo-state network (ESN) by
incorporating noisy observations using an ensemble Kalman
filter. The resultant Kalman-trained echo-state network (KalT-
ESN) outperforms the traditionally trained ESN with least
square algorithm while still being computationally cheap. The
proposed method is demonstrated on noisy observations from
three systems: two synthetic datasets from chaotic dynamical
systems and a set of real-time traffic data.

I. INTRODUCTION

The current interest in data-driven modeling and fore-
cast of complex systems has motivated a wide array of
machine-learning algorithms for different problems, e.g.,
classification, speech recognition [1], board games [2], and
even discovering mathematical algorithms [3]. In particular,
recurrent neural networks (RNNs) have proved to be useful in
dynamical systems and time-series prediction. For example,
an echo-state network (ESN) [4] can model chaotic systems
very effectively [5], [6]. However, these prediction tech-
niques rely on relatively noise free training data in order to
effectively tune the model parameters. But in many practical
cases, the training data is noisy. Such scenarios include
atmospheric modeling and traffic systems.

Neural network predictors, instead of using a physics-
based handcrafted dynamic model, utilize the rich training
dataset to build a parametric surrogate model, and then uti-
lizes it to predict the future states. An ESN is a special type of
RNN that uses a reservoir of nonlinear, randomly connected
neurons to process time-varying input signal. Such a network
with a convergence property, known to the ESN literature as
echo-state property (ESP), can uniformly approximate any
nonlinear fading memory filter [7]. The ESN is attractive
as a neural predictor due to its ability to be tuned via
output connections (also called the readout map) with min-
imal computing resources. Also, a reservoir can be directly
implemented by hardwares using field programmable gate
arrays (FPGAs) or a photonic reservoir, thereby increasing
efficiency and reducing computational overhead [8]. It is also
extended to quantum computing realm via quantum reservoir
computers (QRCs) [9], [10]. The effectiveness of ESN-based
approaches for sparse estimation of chaotic systems and
traffic network prediction is shown in [5], [11], and [12].
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However, the training of an ESN implicitly assumes a high
fidelity training dataset representing the actual system states
and therefore sensitive to the measurement noise. Although
ESN-based methods [11] are developed to utilize noisy
measurements to predict the unmeasured states during the
testing phase, they rely on relatively clean data for training.

On the other hand, in a model-based estimation problems
from noisy measurements, the state estimate is computed in
two steps. First, the motion update step facilitated by the
model yields a forecast estimate. Then, the final estimate is
generated by assimilating a noisy measurement via Bayesian
update. For a linear system with Gaussian process and
measurement noise, the optimal estimator is given by the
celebrated Kalman filter [13], whereas for a nonlinear sys-
tem, optimal filtering is usually infinite dimensional requiring
the solution of a stochastic partial differential equation.
A variety of suboptimal finite dimensional techniques are
usually employed for nonlinear estimation, e.g., the extended
Kalman filter (EKF) [14], unscented Kalman filter (UKF)
[15], ensemble Kalman filter (EnKF), and particle filter.
However, these methods require a dynamic model to perform
the motion update of the state estimate.

This paper develops a sequential training method for an
ESN by combining its strength of modeling an unknown
dynamical system with a nonlinear filtering algorithm. An
ESN is particularly well suited for modeling a dynamical
system with faster and cheaper training that does not require
backpropagation through time (BPTT). An ESN with fading
memory can universally model nonlinear dynamics [16], [7].
The ESN architecture adopts an input-output neural network
with a randomly generated recurrent reservoir where only
output layer is trained. The training is usually done via a least
square linear regression that implicitly assumes noise free
training data. The proposed method transforms the training
problem of an ESN to a combined state-parameter estimation
problem where the output weights are sequentially updated
with the incoming noisy observations along with the system
states.

The combined estimation problem is, however, no longer
linear. Hence, a nonlinear data-assimilation method is re-
quired for the measurement update. While the EKF and UKF
perform well in model-based scenarios, the computation of
the linearized dynamics is challenging for an ESN. The en-
semble Kalman filter [17] is thus chosen for the measurement
update for its strength in representing the posterior distri-
bution of states by its sample means and covariances. The
resulting algorithm is called Kalman training of the echo-
state network (KalT-ESN). The algorithm is also extended
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Fig. 1: Architecture and training of an ESN: (a) the basic ESN, (b) least square training from a batch of noiseless data, and (c) Kalman
filter based sequential training from noisy data

to partial noisy measurements as training data by using a
delay-embedding at the input layer [18].

The contributions of this paper are (1) providing a se-
quential training algorithm for an ESN via combined state
and parameter estimation when the training data is noisy;
(2) combining the prediction power of a recurrent neural
network with the traditional Bayesian measurement update
model of an ensemble Kalman filter; (3) improving the
prediction accuracy over time for a chaotic nonlinear system
from its noisy measurements; (4) extension of the algorithm
for noisy partial measurements as the training data by delay-
embedding; and (5) application of the proposed method to a
real set of mobility data in order to predict daily cycles of
traffic volume. The model-free estimation algorithm devel-
oped here has wide applications for estimation of complex
dynamics from noisy observations when a reliable model is
unavailable.

The paper is organized as follows. Section II provides
a brief overview of the echo-state network (ESN). Section
III presents the combined state and parameter estimation
problem and the KalT-ESN algorithm. Section IV illustrates
the applications to three different problems: two synthetic
data streams generated by chaotic nonlinear systems and one
real set of data traffic sensor data. Section V concludes the
manuscript and discusses ongoing and future work.

II. ECHO-STATE NETWORKS: A UNIVERSAL PREDICTOR

Echo-state networks are a type of recurrent neural network
used for dynamical systems prediction. It consists of a large
dynamic reservoir of randomly connected neurons driven
nonlinearly by input signals. These neuronal responses are
then linearly combined to match a desired output signal. Due
to its dependence on the richness of the dynamic reservoir,
it is also called a reservoir computer (RC). An ESN consists
of an input layer u ∈ Rm, coupled through input coupling
matrix Win ∈ Rn×m with a recurrent nonlinear reservoir
r ∈ Rn. The output y ∈ Rp is generated from n neurons
of the reservoir via a readout matrix Wout ∈ Rn×p. The
reservoir network evolves nonlinearly in following fashion
[16], [11]

r(t+∆t) = (1− α)r(t) + αψ(Wr(t) +Winu(t)). (1)

The time-step ∆t denotes the sampling interval of the
training data. The leakage rate parameter α ∈ (0, 1] helps
slowing down the evolution of the reservoir states as α→ 0.
The nonlinear activation function ψ(·) is usually a sigmoid
function, e.g., tanh(·). The output y(t) is linearly read out
from the reservoir states [16], [11], i.e.,

y(t) =Woutr(t). (2)

The weights Win and W are initially randomly drawn and
then held fixed. The weight Wout is adjusted during the
training process. The reservoir weight matrix W is usually
kept sparse for computational efficiency.

During the training phase, an ESN is driven by an input
sequence {u(t1), . . . ,u(tN )} that yields a sequence of reser-
voir states {r(t1), . . . , r(tN )}. The reservoir states are stored
in a matrix R = [r(t1), . . . , r(tN )]. The correct outputs
{y(t1), . . . ,y(tN )}, which are part of the training data, are
also arranged in a matrix Y = [y(t1), . . . ,y(tN )]. The
training is carried out by a linear regression with Tikhonov
regularization as follows [4]:

Wout = YRT (RRT + βI)−1, (3)

where β > 0 is a regularization parameter that ensures non-
singularity.

Remark 1. For an ESN to be a universal approximator, i.e.,
to be able to realize any nonlinear operator with bounded
memory arbitrarily accurately, it must satisfy the echo-state
property (ESP) [4]. An ESN is said to have the ESP if the
reservoir asymptotically washes out any information from
the initial conditions. For the tanh(·) activation function, it
is empirically observed that the ESP holds for any input if
the spectral radius of W is smaller than unity [4]. To ensure
this condition, W is normalized by its spectral radius.

III. SEQUENTIAL TRAINING OF AN ECHO-STATE
NETWORK: AN ENSEMBLE KALMAN FILTER APPROACH

An ESN can be trained to predict a time-series {x(ti) ∈
Rd : i ∈ N} generated by a dynamical system by setting
u(t) and y(t) as the current and next state value (i.e.,
x(tk) and x(tk+1)) respectively. The network is trained for
a certain training length N of the time-series data {x(ti, i =
1, . . . , N}, which can then run freely by feeding the output
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Algorithm 1 KalT-ESN: Sequential Training of an ESN with
EnKF
Input: Noisy training data {y(t1), . . . ,y(tN )}, y(ti) ∈ Rd

Hyperparameters: Training length N , leaking rate α, regulariza-
tion parameter β, reservoir connection probability p ∈ (0, 1), reser-
voir size n, activation ψ, ensemble size M , initial data covariance
Σx ∈ Rd×d, initial weight covariance Σw ∈ Rdn×dn, measurement
noise covariance Σv ∈ Rd×d

Output: Win, W , Wout

1: procedure TRAIN( {y(t1), . . . ,y(tN )}; α, β, p, n, ψ, M , Σx,
Σw, Σv)

2: Generate W ∼ G(n, p) ▷ Adjacency matrix of an
Erdös-Renyi random graph

3: Generate Win ∈ Rn×d random matrix
4: Generate X̂(t1) = [x̂(1)(t1), . . . , x̂

(M)(t1)]
∼ N (y(t1),Σx) ▷ Data ensemble generation

5: Generate R(t1) = [r(1)(t1), . . . r
(M)(t1)] = 0n×M

6: Generate Ŵo(t1) = [ŵ(1)
o (t1), . . . , ŵ

(M)
o (t1)]

∼ N (0dn,Σw) ▷ Weight ensemble generation
7: for k = 1 to N − 1 do
8: for i = 1 to M do
9: Ŵ

(i)
o (tk)← reshape(ŵ(i)

o (tk), d, n)

10: x(i)(tk+1)← Ŵ
(i)
o (tk)ψ(Wr(i)(tk)

+Winx̂
(i)(tk))

11: end for
12: Xf (tk+1)← [x(1)(tk+1), . . . ,x

(M)(tk+1)]
13: Wf

o (tk+1)←Wo(tk)
14: Ew(tk+1) = (Wf

o (tk+1)− W̄f
o (tk+1))

15: Ex(tk+1) = (Xf (tk+1)− X̄f (tk+1))
16: Pwx(tk+1)← Ew(tk+1)Ew(tk+1)

T /(M − 1)
17: Pxx(tk+1)← Ex(tk+1)Ex(tk+1)

T /(M − 1)
18: Kx(tk+1)← Pxx(tk+1) [Pxx(tk+1) + Σv]

−1

19: Kw(tk+1)← Pwx(tk+1) [Pxx(tk+1) + Σv]
−1

20: X̂(tk+1)← Xf (tk+1)
+Kx(tk+1)

(
y(tk+1)−Xf (tk+1)

)
21: Ŵo(tk+1)←Wf

o (tk+1)
+Kw(tk+1)

(
y(tk+1)−Xf (tk+1)

)
22: end for
23: Wout ← reshape

(
¯̂
Wo(tN ), d, n

)
▷ Final output weights

24: end procedure

y(tk) back to the input u(tk+1) of the reservoir. In this case,
both u and y have the same dimension d as that of the time-
series data. This setup is shown in Fig. 1(a)-(b).

An ESN proves to be a powerful tool for dynamical
systems prediction when trained with noiseless data [5],
[6]. Its performance is significantly improved when partial
observations are available during the testing phase by assim-
ilating them through an ensemble Kalman filter [11]. It can
also be modified to accommodate partial state measurements
as training data by a higher dimensional delay-embedding
in the input layer [18]. However, a significant challenge
is posed when noisy data is present during the training
phase. A simple approach is to ignore the noise and train
the network using the least square method (3). But this
simplistic approach disregards the fact that the training data
might contain rapid variations and outliers that might impart
large errors in the weights of the ESN. The problem becomes
particularly worse for chaotic time-series where the training
noise can drive the network away from the chaotic attractor.

This paper proposes an alternative method for training
the ESN from noisy data by incorporating a filtering step

recursively in the training process. We assume that the
training data [y(t1), . . . ,y(tN )] can be modeled as y(tk) =
x(tk) + vk with vk as a zero-mean i.i.d. Gaussian random
variable with covariance Σv . A combined state and parameter
estimation method is then used via state augmentation. The
forecast model is formulated as

r(tk+1) = (1− α)r(tk) (4)
+αψ (Wr(tk) +Winx̂(tk))

x(tk+1) = Ŵout(tk)r(tk+1)

W out(tk+1) = Ŵout(tk)

where r(tk) is the known reservoir state, x̂(tk) and Ŵout(tk)
are the estimates of the true data and output weight at time
tk. Now, since we can observe the true r(tk), we can define
Φx

tk
(·) ≜ (1 − α)r(tk) + αψ(Wr(tk) +Win(·)) so that the

forecast model (4) becomes

x(tk+1) = Ŵout(tk)Φ
x
tk
(x̂(tk)) (5)

W out(tk+1) = Ŵout(tk),

with x(tk+1) and W out(tk+1) as the data and output weight
forecast at tk+1 respectively. Thus, we now have a dynamic
forecast model (5) which can be formulated into a Kalman
filter step for the analysis part. First, we vectorize the Wout

matrix as wo ∈ Rnd and define the new augmented state
variable z =

[
xT wT

o

]T
. The forecast model (5) with this

augmented variable z becomes

z(tk+1) = Φtk(ẑ(tk)), (6)

where
Φtk(z) =

[
WoutΦ

x
tk
(x)

wo

]
,

with Wout as wo reshaped into a d × n matrix. Since
this is a nonlinear forecast model, a nonlinear modification
of the Kalman filter algorithm is employed to jointly es-
timate the true training data x(tk) and the output weight
Wout. In particular, an ensemble Kalman filter (EnKF) is
utilized to estimate the covariance of z(tk) from a Gaus-
sian ensemble realization. An initial ensemble Ẑ(t1) =
[ẑ(1)(t1), . . . ẑ

(M)(t1)] is generated with members drawn
from N

(
[y(t1)

T 0T
nd]

T ,Σz

)
. The initial covariance Σz is a

hyperparameter and assumed to be block diagonal, i.e., Σz =
bdiag(Σx,Σw). Algorithm 1 presents the procedure for the
sequential training of an ESN with EnKF. The inputs are
the noisy training data [y(t1), . . . ,y(tN )]. After N training
steps, the procedure returns the trained ouput matrix Wout.

Remark 2. A block diagonal Σz with only direct measure-
ments of the state x explicitly separates the Kalman update
step between the state x and parameters wo as shown in
Algorithm 1, line 18-19.

Remark 3. In addition to noisy training data, Algorithm 1
works with sequentially available data in a recursive fashion,
unlike the static least square training (3).
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Fig. 2: prediction of the noisy time-series x(tk) and z(tk) from
Lorenz system (7) with σ2

v = 1.0: (a) true and predicted signal with
KalT-ESN, (b) true and predicted signal with least square training
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Fig. 3: Error profile of Lorenz time-series prediction: NRMSE with
different measurement noise covariance σ2

v

Remark 4. The Kalman based training of an ESN can
assimilate the partial state measurements during the testing
phase to keep improving the output weights Wout and the
subsequent time series estimates x̂(tk).

IV. NUMERICAL EXAMPLES

This section illustrates the performance and ablation study
of a the KalT-ESN algorithm on three time series data
corrupted with noise. The first two are time-series generated
by chaotic dynamical systems and the last one is a real-
time traffic flow data obtained by Numina sensor nodes [19]
installed on the University of Maryland campus.

A. Lorenz System

The KalT-ESN algorithm is tested on a time-series
[x(tk) y(tk) z(tk)] generated by the Lorenz system:

ẋ = σ(y − x) (7)
ẏ = x(ρ− z)− y

ż = xy − βz,

where σ = 10, ρ = 28, and β = 8/3 produces chaotic
behavior. The training data is corrupted by a measurement
noise v(tk) ∼ N (0, σ2

vI3×3). Table I lists the hyperparame-
ters used to train the ESN. The prediction via KalT-ESN and
least square training is depicted in Fig. 2. Fig. 3 provides a
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Fig. 4: prediction of the noisy time-series x(tk) and z(tk) from
Rössler system (9) with σ2

v = 0.1: (a) true and predicted signal with
KalT-ESN, (b) true and predicted signal with least square training
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Fig. 5: Error profile of Rössler time-series prediction: NRMSE with
different measurement noise covariance σ2

v

detailed error profile for measurement noise covariance σ2
v .

The normalized root mean square error (NRMSE) between
the true sequence {x(tk) : i = 1, . . . , l} and the predicted
sequence {x̂(tk) : i = 1, . . . , l} is given by

NRMSE(x, x̂) =

√√√√√√√√
l∑

k=1

∥x(tk)− x̂(tk)∥2

l∑
k=1

∥x(tk)∥2
, (8)

where l is the prediction length. The prediction NRMSEs for
different measurement noise covariances over 30 independent
Monte-Carlo trials are plotted in Fig. 3. The performance
of KalT-ESN algorithm remains consistent with different σv
while the performance of the least square training degrades
heavily with higher noise covariance.

B. Rössler System

Next, KalT-ESN is utilized to predict the noisy state
measurement generated by the Rössler system described in
[20]:

ẋ = −y − x (9)
ẏ = x+ ay

ż = b+ z(x− c),
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TABLE I: ESN hyperparameters

Hyperparameter Value
Lorenz system (7) Rössler system (9) Traffic Volume

Time step ∆t 0.02s 0.1s 1h
Reservoir size n 500 500 4000
Reservoir connection probability p 0.01 0.01 0.01
Training length N 6000 1000 500
Activation ψ(·) tanh(·) tanh(·) tanh(·)
Leaking rate α 0.3 0.3 0.7
Regularization β 10−6 10−6 10−6

Ensemble size M 300 300 300
Initial state covariance Σx = σ2

xI σ2
x = 0.2 σ2

x = 0.2 σ2
x = 10

Initial weight covariance Σw = σ2
wI σ2

w = 0.2 σ2
w = 0.2 σ2

w = 1

(a)
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Fig. 6: Schematic diagram of traffic data: (a) University of Maryland
road network with Numina sensors, (b) Traffic congestion pattern
of an intersection over a single week, each revolution denotes a day
of the week with times marked as angles; the number of vehicles
is denoted by the colormap. The daily pattern of peak congestion
between mornings and afternoons is evident.

Fig. 7: m-dimensional delay-embedding of the scalar partial obser-
vation for KalT-ESN

with a = 0.5, b = 2, and c = 4 to produce chaotic behavior.
Similar to the Lorenz system example, the training data is
corrupted by a measurement noise v(tk) ∼ N (0, σ2

vI3×3).
Table I lists the hyperparameters used to train the ESN.
The prediction via KalT-ESN and least square training is
depicted in Fig. 4. Fig. 5(b) plots the detailed error profile for
measurement noise covariance σ2

v . The results are generated
by 30 independent Monte-Carlo trials for training and testing
the ESNs.

20 40 60
0

200

400

600

800

1000

(a)

20 40 60
0

200

400

600

800

1000

(b)

Fig. 8: prediction of the noisy time-series of traffic volume recorded
in Numina sensor 1 with σ2

v = 500: (a) true and predicted traffic
volume with KalT-ESN, (b) true and predicted traffic volume with
least square training
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Fig. 9: Error and correlation profile of traffic volume prediction:
(a) NRMSE and (b) Pearson correlation with different measurement
noise covariance σ2

v . The delay embedding dimension is m = 10.

C. Prediction of Traffic Volume on an Intersection of a Road
Network

KalT-ESN is now applied to a dataset of traffic volumes
obtained from Numina [19] sensors at five different inter-
sections on the University of Maryland campus. Fig. 6(a)
represents the road network marked with sensor locations.
Each sensor counts the number of pedestrians, bicycles, and
vehicles at the respective intersections and store them in a
server. The time series data of hourly vehicle traffic volume
for two months is used. Fig. 6(b) represents the hourly
vehicle traffic volume over a week with a clear daily pattern.
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The traffic dynamics is an infinite-dimensional spatio-
temporal dynamical system evolving over a road network,
and hence, the traffic volumes recorded from each sensor
provides a partial measurement. An ESN usually requires
full state measurements in the training phase [11], [5]. To
mitigate this problem, a delay-embedding in the input layer
[18] is used for training. The delay-embedding for KalT-
ESN is demonstrated in Fig. 7. Both least square training
and KalT-ESN is applied on this delay-embedded time series.
Only a noisy scalar measurement from sensor 1 is used in
this paper with embedding dimension m = 10.

The ESN is trained on 500 hours of traffic volume data
and tested for 70 hours, i.e., approximately three days. The
training hyperparameters are listed in Table I. Fig. 8 shows
the traffic volume prediction by KalT-ESN and least square
training. Fig. 9 shows the NRMSE and Pearson correlation
coefficient between predicted and true traffic volumes with
sensor data from intersection 1 corrupted with noise. The
results are similar for the other four intersections and not
included here. The Pearson correlation coefficient between
true and predicted sequences ({x(i) : i = 1, . . . , l} and
{x̂(i) : i = 1, . . . , l} respectively) measures their normalized
linear correlation. It is given by

r(x, x̂) =

∑
k

(x(tk)− x̄)
T (
x̂(tk)− ¯̂x

)
√∑

i

∥x(tk)− x̄∥2
√∑

k

∥∥x̂(tk)− ¯̂x
∥∥2 , (10)

where x̄ and ¯̂x denotes the time-average values of x(tk)
and x̂(tk). KalT-ESN yields improved NRMSE and higher
Pearson correlation coefficient with an embedding dimension
of m = 10 only.

Remark 5. The delay embedded KalT-ESN provides a
practical way to train an ESN from both noisy and partial
state measurement, and hence, presents a natural continuation
of the delay-embedded ESN presented in [18].

V. CONCLUSION

This paper proposes a sequential training algorithm for
an echo-state network (ESN) that combines the power of
universal prediction by an ESN with data-assimilation by en-
semble Kalman filter (EnKF). The algorithm, called Kalman
training of the echo-state network (KalT-ESN), recursively
updates the output weights of an ESN using an EnKF from
the noisy training data. The proposed training algorithm
demonstrates improved performance in presence of additive
noise in the training dataset. It is extended for partial
noisy measurements in the training phase using a time-delay
embedding at the input layer. The method is then applied
to a real data set of traffic patterns on the road network of
the University of Maryland, College Park campus to predict
the traffic volume at various intersections. For ongoing and
future work, inference of unobserved states via time-delay
embedded ESN with surrogate spatial interpolation model
will be investigated.
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