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Abstract— Learning-based controllers have demonstrated su-
perior performance compared to classical controllers in various
tasks. However, providing safety guarantees is not trivial. Safety,
the satisfaction of state and input constraints, can be guaranteed
by augmenting the learned control policy with a safety filter.
Model predictive safety filters (MPSFs) are a common safety
filtering approach based on model predictive control (MPC).
MPSFs seek to guarantee safety while minimizing the difference
between the proposed and applied inputs in the immediate next
time step. This limited foresight can lead to jerky motions and
undesired oscillations close to constraint boundaries, known as
chattering. In this paper, we reduce chattering by considering
input corrections over a longer horizon. Under the assumption
of bounded model uncertainties, we prove recursive feasibility
using techniques from robust MPC. We verified the proposed
approach in both extensive simulation and quadrotor exper-
iments. In experiments with a Crazyflie 2.0 drone, we show
that, in addition to preserving the desired safety guarantees,
the proposed MPSF reduces chattering by more than a factor
of 4 compared to previous MPSF formulations.

I. INTRODUCTION

Robotic systems are increasingly deployed to perform
tasks in complex environments, including autonomous driv-
ing [1], aerial delivery [2], and surgery [3]. These tasks often
suffer from significant uncertainties in the system dynamics,
rendering classical controllers less effective [4]. Learning-
based controllers have demonstrated improved performance
on complex tasks [5]–[7]. However, reinforcement learning
controllers typically lack safety guarantees and rarely enforce
state constraints such as road lane boundaries for a self-
driving car [4]. This prevents reinforcement learning con-
trollers from being deployed on safety-critical systems de-
spite promising results and demonstrations. Combinations of
machine learning and model-based control (notably learning-
based MPC) have become popular methods of leveraging the
benefits of both approaches. However, these approaches do
not have the adaptability across diverse systems and tasks of
model-free reinforcement learning [4].

Safety filters allow arbitrary controllers to be imple-
mented with safety guarantees, including deep learning con-
trollers [4]. Model predictive safety filters (MPSFs) [8] are
a category of safety filters that leverage model predictive
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Fig. 1: Our proposed safety filter approach πSF for safely controlling the
system x′ = f(x, u), with the novel components highlighted in red. The
safety filter simulates an input trajectory for the next M time steps, using
the nominal system f̄ and the uncertified controller πuncert(x′). The input
trajectory ū0:M−1 along with the state x′ is passed to the safety filter πSF,
which outputs a safe control input ucert.

Fig. 2: Experimental results on a Crazyflie 2.0 drone illustrating the
chattering caused by the standard one-step MPSF versus the proposed multi-
step MPSF with a filtering horizon of M = 10. The proposed filter reduces
the peak-to-peak amplitude of chattering near the constraint boundary from
an average of 16.3 cm to 3.6 cm (78% reduction).

control (MPC) to predict whether uncertified (i.e., poten-
tially unsafe) inputs sent from the controller will violate
the constraints. In the case of a potential future constraint
violation, the MPSF determines the minimal deviation from
the uncertified input that results in constraint satisfaction (see
Fig. 1).

Despite strong theoretical guarantees inherited from the
underlying MPC [8], MPSFs may cause chattering and high-
magnitude corrections to the uncertified control inputs (see
Fig. 2). Chattering occurs when the controller directs the sys-
tem towards a constraint boundary and is repeatedly stopped
by the safety filter. This leads to an oscillatory behavior
between the controller and the safety filter [9]. Additionally,
due to the MPSF objective only looking ahead one time step,
the filter may allow a system to approach the boundary very
closely before using a high-magnitude correction to keep the
system inside the state constraints. Both of these behaviors
can cause the system to leave the operation regime as the
high-frequency input changes may not be accounted for in
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the system identification, increasing the model mismatch
between the actual system and the nominal model in the
MPSF [4], potentially leading to constraint violations.

Contributions: First, we propose generalizing the standard
MPSF objective function to reduce chattering and other po-
tentially unsafe corrective actions. Our approach inherits the
theoretical recursive feasibility guarantees of the underlying
MPC. Second, we propose metrics that reflect the magnitude
of corrections and chattering. Previously, chattering has only
been qualitatively described [8]–[10]. The efficacy of the
proposed MPSF is demonstrated in simulation using the
safe-control-gym [11] cartpole and quadrotor systems,
and on real-world Crazyflie 2.0 quadrotors (see Fig. 2). As
far as the authors know, this is only the second paper to
implement MPSFs on real robots, where [12] designed an
MPSF specific for miniature remote-controlled car racing.
Our code can be found at https://tinyurl.com/mpsf-code, and
a video of our experiment can be found at https://tinyurl.
com/mpsf-video.

II. RELATED WORK

As learning-based controllers have grown in popularity,
leveraging their strengths while also guaranteeing constraint
satisfaction has become increasingly important. Many ap-
proaches for incorporating safety into model-free learning
controllers serve to encourage safe behavior, reducing the
probability of constraint violations. However, they do not
provide hard guarantees on constraint satisfaction and are
not generalizable to all learning controllers [4], [13].

Safety filters are necessary to guarantee the safety of an
arbitrary controller. This is done by computing the minimal
deviation from the latest uncertified control input that results
in constraint satisfaction.

Control barrier functions (CBFs) are frequently used in
safety filtering frameworks [4]. The CBFs define safe sets as
their super-level set [14] and solve an optimization problem
for each proposed control input to certify whether it is
safe, and modify it otherwise. CBFs are usually defined
for continuous-time systems [4], which poses challenges
when running discrete-time controllers. Finding CBFs can
be difficult and requires a model of the system dynamics or
offline data; analytical solutions can typically only be found
for special cases [14]. However, various methods for learning
the CBF condition have recently been proposed [15]–[17].
Another approach to certification using a safe set determines
the set using Hamilton-Jacobi reachability analysis [18] and
switches between the original controller and a safe controller
to keep the system inside the safe set [10]. The CBF- and
reachability-based safety filters compute safe inputs quickly
and have strong theoretical guarantees, but determining an
appropriate safe set is challenging, and accounting for con-
straints that change during operation is typically computa-
tionally infeasible [4].

Model predictive safety filters (MPSFs) determine certified
control inputs using model predictive control [8]. At each
iteration, the MPSF receives a potentially unsafe input and
determines the state of the system after this input is applied

using a model of the system dynamics. Then, from that future
state, the MPSF uses the nominal model of the system to
generate a trajectory to a safe terminal set in a number of
steps up to the horizon of the MPC. This trajectory must be
safe despite uncertainties, which is guaranteed using a known
bound on the mismatch between the true system dynamics
and the nominal model. If there is no feasible trajectory that
will take the system from this future state to the terminal set,
it will modify the original input so that this is possible.

MPSFs reduce offline computation and complex analyt-
ical work necessary for determining a safe set in favor of
increased online computation [8]. Since MPSFs are based
on well-established MPC frameworks, existing optimization
techniques allow MPSFs to be executed in real-time [19],
[20]. This makes them more suitable for complex systems in
high dimensions, for which determining safety for all initial
conditions is computationally infeasible, but for which safety
can be guaranteed for a specific initial condition.

MPSFs, as well as other safety filters such as CBFs and
reachability-based filters, can cause chattering [8], [9]. This
has only been partially addressed for MPSFs by penalizing
the rate of change of the inputs [12], a common MPC ap-
proach for achieving smooth state and input trajectories [21].
However, this approach does not directly penalize corrections
but reduces the rate of change of the inputs over the entire
trajectory, even during safe actions, and thus is not generally
suitable. Reducing chattering is the main goal of this paper.

III. PROBLEM FORMULATION

We consider a discrete, time-invariant system

xk+1 = f(xk,uk), (1)

where xk ∈ Rn is the state at time step k, uk ∈ Rm is the
input, and f describes the dynamic behavior. The system is
subject to known state and input constraints, x ∈ Xc and
u ∈ Uc, where Xc ⊂ Rn is closed and Uc ⊂ Rm is compact.

We assume that we only have access to a nominal model
f̄ and uncertainty set W such that

xk+1 = f̄(xk,uk) + w(xk,uk) , (2)

where w(x,u) ∈ W ⊂ Rn ,∀x ∈ Xc ,∀u ∈ Uc, and W is
compact.

A control policy πuncert(xk), which may not enforce con-
straints, is used to achieve a task (e.g., trajectory tracking). A
safety filter, which has access to the nominal model f̄, takes
in the input uuncert,k = πuncert(xk) as well as the current state
of the system xk, and uses the nominal system to determine
if the proposed input is safe (i.e., satisfies state and input
constraints, and will not lead to a constraint violation in the
future). If it is not safe, it will find a safe input ucert,k that
minimally modifies the uncertified input. This certified input
is the input applied to the system, uk = ucert,k.

The goal of this paper is to address chattering, an un-
desirable behavior caused by safety filters [8], [9], seen in
Fig. 2. We observe chattering when the input to the system
oscillates between the original, unmodified input (because
it is safe) and a corrected, certified input provided by the
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safety filter (because the original input is unsafe). Consider
a controller approaching a constraint boundary certified by
a safety filter. Suppose the uncertified controller is going
to violate the constraints. In that case, the safety filter will
intervene, providing a safe input that may move the system
in a direction opposite to the controller’s intention. The
controller may then reapproach the boundary in the next time
steps, causing the safety filter to once again correct the input.

This oscillation deteriorates the performance and, due to
the rapid input changes near the boundary, can lead to a con-
straint violation. This is because the safety guarantees of the
safety filter depend on assumptions on the nominal model of
the system and on the model error bounds, which may not be
accurate for high-frequency input changes that have not been
accounted for during system identification [4]. Additionally,
safety filters may provide high-magnitude corrections, which
can also lead to the deterioration of performance and safety.

IV. BACKGROUND

Although MPSFs can be applied to any underlying MPC
framework, including output feedback MPC [22], we will
use robust MPC with state feedback as the backbone of this
paper. Robust MPC is a standard method of guaranteeing
safety under uncertainty.

Definition 1 (Robust pos. control inv. (RPCI) set [21]):
A set P ⊆ Xc is robust positively control invariant for
the system in (2) with a controller π : Rn → Rm subject
to state constraints Xc, input constraints Uc, and bounded
uncertainty set W, if the initial system state x0 ∈ P implies
xk+1 = f̄(xk, π(xk)) + wk ∈ P, ∀wk ∈ W, ∀k ≥ 0.

Consider a robust tube-based MPC [23], [24] performing
a task on the system f. Let us denote the set of possible
states of the system given the known uncertainty set at time
step k as Xk, and the evolution of the system as Xk+1 ⊇
Φ(Xk,uk,W) = {̄f(x,uk) + w ∈ Rn | ∀ x ∈ Xk,w ∈ W}.

Assumption 1: There exists a terminal set Xterm ⊂ Xc
and a terminal controller πterm : Rn → Rm such that the
following properties hold for all x ∈ Xterm:

Φ(Xterm, πterm(x)),W) ⊆ Xterm

πterm(x) ∈ Uc .

Thus, Xterm is an RCPI set under the terminal controller πterm.
Generally, MPC solves an optimization problem at each

time step for an optimal input sequence over the next H time
steps, where H ∈ N is the horizon. At each time step k, MPC
only applies the first input from the resulting optimal input
sequence. The optimization problem for a general robust,
tube-based MPC can be stated as follows:

min
u0|k,...,uH−1|k

H−1∑
j=0

ℓ(Xj|k,uj|k) + ℓterm(XH|k) (3a)

s.t. xk ∈ X0|k (3b)
Xi+1|k ⊇ Φ(Xi|k,ui|k,W) (3c)
Xi|k ⊆ Xc , ∀ i = 0, ...,H − 1 (3d)
ui|k ∈ Uc (3e)
XH|k ⊂ Xterm, (3f)

where ℓ(·) and ℓterm(·) are the stage and terminal cost
functions, respectively, Xi|k is the set of possible states at
the (k+ i)-th time step computed at time step k, and ui|k is
the input at the (k+ i)-th time step computed at time step k.

MPSFs certify a proposed input uuncert,k by replacing the
MPC objective function (3a) with

JMPSF,1(xk) = ∥πuncert(xk)− u0|k∥2R, (4)

where R ∈ Rm×m is a positive semi-definite cost matrix
to weigh different input components. This objective function
minimizes the difference between the next safe input u0|k and
the incoming uncertified input uuncert,k. Therefore, the MPSF
is a one-step input reference tracking MPC that tracks the
input reference provided by an uncertified controller. Note
that the MPSF inherits the recursive feasibility guarantees
from the underlying MPC formulation with no additional
assumptions required.

We will denote this standard MPSF objective function
as the ‘one-step’ objective function, as it minimizes the
difference between the certified and uncertified inputs only
for the upcoming time step. The remainder of the paper
will deal with augmenting this objective function to improve
performance and safety.

In [12] a term is added to the objective in (4) to directly
penalize changes in the input. This is a common MPC ap-
proach for achieving smooth state and input trajectories [21].
The additional penalization term is defined as follows:

Jreg,Mr =

Mr−1∑
j=0

wr(j)∥∆uj|k∥2Rr
, (5)

where wr(·) : N0 → R+ calculates the weight associated
with the j-th input rate, Mr is the regularization horizon,
∆uj|k = uj|k − uj−1|k, ∆u0|k = u0|k − u0|k−1, and Rr ∈
Rm×m is a cost matrix for the input rates.

This approach directly penalizes the rate of change of the
inputs, and thus it will correct the controller even when the
uncertified inputs are safe, which is not the purpose of safety
filters. It was used only in [12], which defines an MPSF
specifically for controlling a remote-controlled miniature car
for racing through a fixed-width track. This additional term
was used due to the necessity of smooth trajectories in that
specific experiment, but the term is not generally applicable.
If the controller was executing high-frequency commands
without violating constraints, a standard safety filter (includ-
ing our proposed approach) would not interfere while the
regularized approach would unnecessarily modify the control
inputs to reduce the rate of change of the inputs. As the
controller should not be interrupted when the constraints are
inactive, such as to leverage the performance and flexibility
of learning-based controllers, this regularization approach is
unsuitable for most safety filtering tasks. See Figure 8 for
an illustration of this undesired behavior.

Another approach would be to constrain on how much the
input can change, which may reflect fundamental limitations
of the system or simply be used to reduce the maximum input
change. However, this maximum input change would have to
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be carefully tuned, and would potentially limit the flexibility
of the system, and the constraint would not affect the system
if the input changes are smaller than this maximum value.

V. MULTI-STEP MODEL PREDICTIVE SAFETY FILTERS

In this section, we propose our novel objective function
that leverages the nominal system dynamics and predictions
of the behavior of the controller.

A. Filtering Objectives with Increased Horizon Lengths

The standard one-step MPSF objective function (4) min-
imizes the difference between the current uncertified input
and the immediate certified input. However, it does not
reduce future corrections and thus allows chattering and jerky
corrections. To reduce this, we propose additionally includ-
ing upcoming corrections in the MPSF objective function:

JMPSF,M (xk) =

M−1∑
j=0

w(j)∥πuncert(xj|k)− uj|k∥2R, (6)

where w(·) : N0 → R+ calculates the weights associated
with the j-th correction and M is the filtering horizon.

In practice, the weight w(·) and the filtering horizon M are
tuning parameters. The weight w(·) controls the impact of
future proposed inputs. A constant w(·) may be used when all
future proposed control inputs are equally important, while
a decreasing w(·) may be applied when future corrections
should have less impact as j increases. The filtering horizon
M determines how many time steps into the future the safety
filter considers when minimizing the corrections. Intuitively,
larger M values cause the safety filter to intervene early and
proactively. Note that our proposed formulation generalizes
the one-step MPSF, which is recovered by setting M = 1.

The multi-step MPSF optimization problem is then

min
u0|k,...,uH−1|k

M−1∑
j=0

w(j)∥πuncert(xj|k)− uj|k∥2R (7a)

s.t. constraints (3b) − (3f). (7b)

The following theorem summarizes the proposed MPSF’s
recursive feasibility guarantees inherited from the underlying
MPC formulation.

Theorem 1: Consider the system to be controlled as in (1)
and let (2) be satisfied with a nominal model f̄ and a compact
uncertainty set W. Furthermore, there exist a terminal con-
straint set Xterm and an associated terminal controller πterm
according to Assumption 1. Let the optimization in (7) be
feasible at time step k = 0. Then the optimization in (7) is
feasible for all k ∈ N.

Proof: The optimal input trajectory at time step k = 0,
{u∗

0|0,u∗
1|0, ...,u∗

H−1|0}, is feasible by assumption. Then, the
system will be within the terminal set by time step H ,
since the feasibility of the terminal constraint yields XH|0 ⊂
Xterm. After applying u0|0, the system evolves to X1 ⊇
Φ(X0,u0|0,W). Then initializing (7) at k = 1 with X1, we
know that the input sequence {u1|0, ...,uH−1|0, πterm(xH|0)}
is feasible for all xH|0 ∈ XH|0 ⊂ Xterm. This yields
XH|1 ⊂ Xterm by Assumption 1. This can be repeated for

all time steps k ∈ N and ensures there exists a feasible input
trajectory that keeps the system within Xterm at time step
k +H , and thus within the constraints Xc.

B. Approximate Black Box Control Policies

The controller πuncert(xk) may be a black box or a non-
linear controller such as a reinforcement learning control
policy represented by a deep neural network. Thus, the
closed-loop behavior of the controller and safety filter must
be approximated in (6). Although many approximations
are possible, we found that simulating the behavior of the
uncertified controller using the nominal model was the most
effective approach and requires no additional learning or
tuning beyond M and w(·).

We approximate the closed-loop behavior of the uncer-
tified controller by simulating the effect of the uncertified
controller on the nominal model (see Fig. 1). At each time
step k, the simulated trajectory is calculated for the next M
steps as follows:

ūuncert,j|k = πuncert(x̄j|k)
x̄j+1|k = f̄(x̄j|k, ūuncert,j|k) ,∀ j = 0, ...,M − 1,

where x̄j|k represents the j-th state of the simulated state tra-
jectory calculated at time step k and, analogously, ūuncert,j|k
is the simulated input trajectory. We set x̄0|k = xk. Thus, the
controller is approximated as πuncert(xk+j) ≈ ūuncert,j|k. The
weight function w(j) can be chosen to reflect the accuracy
of this approximation.

This approach requires no tuning but does necessitate
access to the controller for the simulation. Thus, this ap-
proach is not suitable for human teleoperation, since the
controller cannot be queried, but is appropriate for black box
controllers or reinforcement learning controllers, which are
difficult to approximate but can be simulated. If the controller
is inaccessible, other approximations of the controller can
be used. Various other approaches, such as approximating
the controller as a linear quadratic regulator (LQR) or using
linear regression to learn a local approximation of the control
policy, were tested by the authors of this paper and found
to have comparable results to the proposed approximation.
However, we restrict the presentation to the simulated input
trajectory due to its simplicity, lack of additional tuning
parameters, and overall efficacy.

VI. SAFETY FILTER PERFORMANCE METRICS

Previous safety filter research has focused on eliminating
constraint violations of the uncertified controller. In addition,
this paper focuses on minimizing the undesirable effects of
safety filters such as unnecessary corrections, jerkiness, and
chattering. We propose several new metrics to measure the
interventions of the safety filter and the chattering.

We consider a matrix of corrections, C ∈ RK×m, where K
is the total number of time steps in the experiment. Each row
of C, ck = R1/2(uuncert,k − ucert,k) ∈ Rm, is the correction
at time step k = 0, ...,K − 1, and R1/2 is the positive semi-
definite square-root matrix of R. Thus, the safety filter at time
step k minimizes the norm of the correction ∥ck∥22. The cost
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matrix R in (4) and (6) weighs the different components of
the input. For example, it can be chosen as the identity if the
inputs are normalized and of the same size. However, if R is
not identity, we account for it in the corrections by weighing
them using its square-root matrix.

A. Measuring Interventions

A safety filter should minimize how significantly and how
often it must intervene. We propose to measure this in two
ways: the magnitude of the corrections and the number of
corrections.

The magnitude of corrections is calculated as the norm of
the matrix of corrections, ∥C∥F, where ∥·∥F is the Frobenius
norm. This measures how much the safety filter modified the
proposed inputs in an experiment. The Frobenius norm is
used as it weighs all elements of a matrix equally, extending
the Euclidean norm to matrices.

The number of corrections indicates the number of time
steps at which the proposed input was modified above
a certain percentage tolerance ϵ. This is calculated as∑K−1

k=0 1
(

∥ck∥2

∥ucert,k∥R
≥ ϵ

)
, where 1(·) is the indicator function.

This equation simply counts the times when the magnitude
of the correction divided by the magnitude of the certified
input is above the tolerance ϵ. The tolerance will depend on
how sensitive the system is to variations in the input.

B. Measuring Chattering

Safety filters usually increase the rate of change of the
inputs through chattering and high-magnitude corrections. To
measure a safety filter’s impact, we propose two metrics: the
maximum correction and the norm of the rate of change of
the inputs.

The maximum correction is maxk∈{0,...,K−1} ∥ck∥2.
Higher maximum corrections typically correspond to jerky
movement. Ideally, we wish to maintain safety with small-
magnitude corrections.

The rate of change of the inputs measures how much
the input varied during an experiment, and is significantly
increased by chattering and jerky inputs. Consider the applied
inputs uk for k = 0, ...,K − 1. First, we take the numerical
derivative δuk = R1/2(uk − uk−1)/δt for k = 1, ...,K − 1
(where δt is the length of a time step) and stack them into
a matrix ∆u = [δu1, ..., δuK−1]. Then the norm of the rate
of change of the inputs is ∥∆u∥F. This metric can also be
applied to an uncertified trajectory, enabling comparisons
between uncertified and filtered controllers.

VII. EXPERIMENTAL RESULTS

To determine the efficacy of the proposed multi-step
MPSF, we ran experiments in the safe learning-based control
simulation environment safe-control-gym [11] and on
a real quadrotor, the Crazyflie 2.0 (see Fig. 2 and Fig. 9). The
underlying MPC is a robust nonlinear MPC formulation [24],
which assumes time-invariant system dynamics. Addition-
ally, it assumes that the system is incrementally stabilizable
and the model mismatch between the nominal system and
the real system is bounded by a known bound. The upper

bound on the model mismatch was found experimentally
by comparing the true states and the states predicted by
the nominal model while executing trajectories for system
identification, wmax = maxk∈{0,...,K−1} ∥xk+1 − x̄1|k∥2, and
thus we define W = {w ∈ Rn | ∥w∥2 ≤ wmax}.

The experiments test the performance of the standard one-
step MPSF compared to our proposed multi-step MPSF with
M = 2, 5, 10. Additionally, we consider the one-step MPSF
with regularization (5) (with Mr = 10) to demonstrate our
approach is effective even compared to an approach that
directly penalizes the rate of change of the inputs along
the entire trajectory, which leads to over-correcting that is
unsuitable for most safety filtering tasks. For all experiments,
the weight functions w(j) and wr(j) were chosen to be
w(j) = wr(j) = 0.85j and the input channel cost matrices
R, and Rr were chosen to be the identity matrix.

A. Simulation

The MPSFs were evaluated in simulation using the
safe-control-gym [11]. The experiments were done on
three different systems and two different tasks: a cartpole, a
two-dimensional quadrotor, and a three-dimensional quadro-
tor, on both stabilization and trajectory tracking tasks with
box constraints on the state and input. Because of space
constraints, only the results of the cartpole trajectory tracking
experiments are presented here. However, the experiments on
the other systems and tasks led to similar conclusions. The
remaining results can be found as part of our code release,
see https://tinyurl.com/mpsf-results.

The cartpole system is a cart on a track with a pole hinged
to the top of the cart. The state is x = [x, ẋ, θ, θ̇]⊺, where x
is the horizontal position of the cart, ẋ is the velocity of the
cart, θ is the angle of the pole with respect to the vertical
axis, and θ̇ is the angular velocity of the pole. The input
u ∈ R is the force applied to the center of mass of the
cart. There is no friction. The nominal equations of motion
are [11]:

ẍ =
u+mpl(θ̇

2 sin θ − θ̈ cos θ)

mc +mp

θ̈ =
g sin θ + cos θ

(
−u−mplθ̇

2 sin θ
mc+mp

)
l
(

4
3 − mp cos2 θ

mc+mp

) ,

where g is the gravitational acceleration, mc and mp are
the masses of the cart and the pole, respectively, and l is
half the length of the pole. The true behavior of the cartpole
in the simulation is determined not by these equations but
by the PyBullet [25] physics engine, which these equations
seek to represent. These equations were discretized using a
sampling time of δt = 1

15 s to get the nominal discrete-time
model of the cartpole, which was found to be very accurate,
with wmax = 0.0014. An accurate nominal model was chosen
to demonstrate that MPSFs with M = 1 still cause chattering
even when the model is accurately known. When the model
is less accurately known chattering will still occur but the
safety filter will be more conservative.
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Fig. 3: Recorded trajectories of a cartpole trajectory tracking example when
approaching a state constraint (in black) with the uncertified trajectory in
purple (dashed), the one-step MPSF in blue (left), and the proposed MPSF
with M = 2 in green (right). States at which the input was modified are
indicated by a red dot. The standard one-step approach causes significant
chattering, while the proposed approach greatly reduces the amplitude of
the chattering.

The trajectory tracking task consists of tracking a sinu-
soidal reference in the x-direction with an amplitude of
1m and a period of 5 s while constraining the angle of the
pole to be within [−9.2°, 9.2°] and the applied force to be
within [−10N, 10N]. The chosen controllers are a linear-
quadratic regulator (LQR), a proximal policy optimization
(PPO) [26] reinforcement learning controller, and a soft
actor-critic (SAC) [27] reinforcement learning controller.
Each MPSF was tested with an MPC constraint horizon
of H = 20 and a controller frequency of 15Hz. To find
suitable and interesting starting points, random states from
the constrained state space were sampled. If a starting state
caused at least five constraint violations when the controllers
were uncertified, but could achieve constraint satisfaction in
closed-loop with the one-step MPSF, then that starting point
was selected. Ten of these starting points were generated
for each uncertified controller. Each MPSF was tested using
these ten starting states. The starting states are the source of
randomness in the results.

In the experiments, chattering is significantly reduced by
our proposed multi-step MPSF. In Fig. 3 we see an example
of chattering when certified by a one-step MPSF versus when
using the proposed MPSF. In cartpole trajectory tracking,
the norm of the rate of change of the inputs compared to
the one-step MPSF is reduced by up to 73% (see Fig. 4),
the magnitude of corrections are reduced by up to 25% (see
Fig. 5), and the maximum correction is reduced by up to
52% (see Fig. 6). This demonstrates that the proposed filter
effectively reduces chattering, achieving a similar norm of
the rate of change of the inputs compared to the uncertified
control inputs (those, however, cause constraint violations),
and generally decreases the overall correction effort as well.

The proposed filter has a comparable norm of the rate of
change of inputs to the one-step MPSF with the additional
regularization term but has up to a 22% lower magnitude
of corrections and 29% lower maximum correction. Addi-
tionally, our approach does not correct the system when the
constraints are inactive, reducing the number of corrections
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Fig. 4: The norm of the rate of change of the inputs (see Section VI-B) for
the simulated cartpole trajectory tracking experiments for the uncertified
controller, the multi-step MPSFs with varying M (denoted JMPSF,M ), and
a one-step MPSF with regularization (denoted +Jreg,10). The proposed
approach significantly decreases the norm of the rate of change of the inputs,
up to a 73% decrease compared to the one-step approach (in blue), without
violating the constraints.
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Fig. 5: The magnitude of corrections (see Section VI-A) for the simulated
cartpole trajectory tracking experiments for the multi-step MPSFs with
varying M (denoted JMPSF,M ), and a one-step MPSF with regularization
(denoted +Jreg,10). The proposed approach decreases the median magnitude
of corrections by up to 25% compared to the one-step approach, demon-
strating it has an overall lower correction effort.

compared to the regularized approach by up to 66% (see
Fig. 7). Higher M values do increase the number of correc-
tions as the filter is intervening more proactively and early
by considering corrections further in the future. However,
the MPSF with M = 10 still has fewer interventions than
the regularized approach. When tracking a safe but high-
frequency trajectory (see Fig. 8), the one-step and multi-step
MPSFs do not correct the controller as safety is not violated.
However, the regularized MPSF significantly corrects the
controller, unnecessarily deviating from the desired safe
trajectory. This highlights that the additional regularization
term is effective close to the safety boundary reducing
chattering and high-magnitude corrections; however, it limits
performance away from the safety boundary.

To address the computational aspects of our proposed
approach, we observe an increase in the time required to
solve the multi-step MPSF problem compared to the one-
step MPSF. The time required to solve the MPSF at one
time instance increased by approximately 7%, 22%, and
60% when M = 2, 5, 10, respectively. Adding regularization
increased the execution time by 45%.
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Fig. 6: The maximum correction (see Section VI-B) for the simulated
cartpole trajectory tracking experiments for the multi-step MPSFs with
varying M (denoted JMPSF,M ), and a one-step MPSF with regularization
(denoted +Jreg,10). The proposed approach decreases the median maximum
correction by up to 52% compared to the one-step approach, demonstrating
it causes less jerky corrections.
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Fig. 7: The number of corrections (see Section VI-A) for the simulated
cartpole trajectory tracking experiments, using a tolerance of ϵ = 0.1, for
the multi-step MPSFs with varying M (denoted JMPSF,M ), and a one-step
MPSF with regularization (denoted +Jreg,10). Both the proposed approach
and regularization increase the number of corrections compared to the one-
step MPSF (in blue), but the proposed approach decreases the median
number of corrections by up to 66% compared to the one-step MPSF with
regularization.
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Fig. 8: Position trajectories of a simulated cartpole with a safe yet high-
frequency sinusoidal reference trajectory when uncertified and when certi-
fied by the one-step (JMPSF,1), one-step with regularization (+Jreg,10), and
multi-step MPSFs (JMPSF,M ). Time steps where the safety filter executed
a correction (with a tolerance ϵ = 0.1) are highlighted. Note that the one-
step MPSF and the proposed MPSF do not correct the LQR controller as
the trajectory is safe; however, the regularized approach does, causing a
significant deviation from the desired trajectory.

B. Robot Experiments

The MPSFs were tested on a horizontal trajectory tracking
task using a Crazyflie 2.0 quadrotor. The desired trajectory
is a sinusoid in x with an amplitude of 1.5m and a period
of 10 s. The x position of the drone is constrained to be
within [−0.75m, 0.75m] and the velocity of the drone is
constrained to be within [−0.5m s−1, 0.5m s−1] (see Fig. 9).
The input u ∈ R is a position setpoint the quadrotor tracks
using an internal cascaded nonlinear controller [28]. This
commanded position setpoint is constrained to be within
0.25m of the current position to ensure smooth behavior
from the internal position controller. The closed-loop dynam-
ics in the x-direction can be approximated as a linear system.
The linear system is identified by applying a sinusoidal
reference trajectory with varying frequencies and amplitudes.
We consider the state x = [x1, x2]

⊺ ∈ R2, where x1 is
the quadrotor’s position and x2 is its velocity in the x-
direction. Using MATLAB’s System Identification Toolbox,
we identified the system at 25 Hz, as

xk+1 =

[
0.9756 0.0287
−0.2793 0.8535

]
xk +

[
0.0231
0.2854

]
uk + wk,

which we use as the nominal model in the MPSF. The model
mismatch was found to be significantly higher than for the
simulation experiments, with wmax = 0.0449. The chosen
controller is an LQR that causes violations in the position
and velocity constraints. A motion capture system provides
the quadrotor position.

The one-step, one-step with regularization (with Mr = 10),
and our proposed multi-step (with M = 2, 5, 10) MPSFs are
tested five times each with an MPC horizon of H = 10.
Every test starts at the same initial position, the origin
(and a static height of 1m). As seen in Table I, in the
experiments, our proposed approach significantly reduces the
norm of the rate of change of the inputs, reducing it by
80% compared to the one-step approach when M = 10.
The maximum correction and magnitude of corrections are
either maintained or decreased, and both are decreased by
over 30% compared to the one-step approach when M = 10.
We see that the one-step with regularization is outperformed
in every metric by the proposed approach with M = 5
and M = 10, including the norm of the rate of change of
the inputs. This demonstrates that our proposed approach
is more effective at decreasing chattering. This is achieved
by considering (or predicting) chattering in the future as
opposed to directly penalizing the rate of change of the
inputs, while still decreasing the maximum correction and
the magnitude of corrections.

VIII. CONCLUSION

This paper proposes a modified objective function for
model predictive safety filters (MPSFs) that reduces chat-
tering while not affecting performance when away from the
safety boundaries. The paper also introduces several metrics
to measure the performance of safety filters. The proposed
approach minimizes the input corrections of the safety filter
over a multi-step horizon rather than a single time step. The
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TABLE I: Experimental results summary for 5 trials certifying an LQR controller flying a Crazyflie 2.0 on a sinusoidal path. The number of corrections
uses a tolerance of ϵ = 0.1 and is out of a total of 497 time steps.

Metric Uncertified JMPSF,1 +Jreg,10 JMPSF,2 JMPSF,5 JMPSF,10

Mean norm of the rate of change of the inputs [ms−1] 2.59 30.26 15.86 23.21 13.69 6.18
Mean magnitude of corrections [m] - 2.96 2.67 2.89 2.51 2.03
Mean maximum correction [m] - 0.46 0.44 0.45 0.42 0.30
Mean Number of Corrections - 76.00 299.40 81.00 175.40 194.20
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Fig. 9: Position trajectories of the real Crazyflie 2.0 experiment when
uncertified, certified by the one-step MPSF (JMPSF,1), and certified by
the proposed multi-step MPSF with M = 10 (JMPSF,10). The proposed
filter reduces the peak-to-peak amplitude of chattering near the constraint
boundaries (thick black lines), reducing it from an average of 16.3 cm to
3.6 cm. The certified controllers do not approach the constraint boundaries
closely due to the large model uncertainty and strict velocity constraints.

future behavior of the controller is approximated by simulat-
ing its input trajectory leveraging a known nominal dynamics
model. The presented approach requires little tuning and
no additional assumptions compared to previous MPSFs. In
simulation and real experiments, we found that the proposed
multi-step MPSF greatly reduces chattering compared to the
standard MPSF formulation, expanding the applicability of
MPSFs to real-world systems.
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