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Abstract— Compared to safe obstacle avoidance in the posi-
tion space, ensuring the safety of the attitude system in today’s
aerial vehicle operations is more challenging due to the non-
Euclidean nature of the attitude space and the underactuated
nature of the system. To address this issue, we first propose the
geometric exponential barrier condition (GEBC) to produce
barrier certificates on the manifold, by which attitude safety
requirements can be encoded globally into the verification
problems of attitude control systems. Then, we use exponen-
tial coordinates to characterize GEBCs, which makes them
describable in terms of quantifier-free real arithmetic logic (QF-
NRA) and efficiently solvable by current satisfiability modulo
theories (SMT) solvers. A performance criterion is further
discussed where we propose an effective algorithm to construct
safe operational regions with different controllers, which can
help with nominal controller selection and tuning. Finally, we
demonstrate our approach in a quadrotor system and analyze
the safe performance of two PD controllers on the proposed
safe operation criterion.

I. INTRODUCTION

Safety is a critical problem in today’s aerial vehicle (AV)
systems. An efficient tool to integrate safety requirements
into system constraints is barrier function (BF) [1], which
guarantees safety by proving its forward invariance of a given
safe set. BF has been successfully extended to the control
literature, leading to the development of control barrier
function (CBF) theory [2]. Although many innovative works
have been conducted in AV’s CBF-based safe controller
design [3], [4], we have observed that most of these works
construct their barrier functions in the position space. They
typically treat the AV rigid body as a mass point and
introduce scenario-related CBFs based on its position and
velocity states. Control signals are then computed by solving
online quadratic program (CBF-QP) problems, thus avoiding
collisions with obstacles or other AVs.

On the other hand, it is important to note that attitude
safety problems also exist in AV systems. For instance,

This work was supported in part by the National Natural Science Foun-
dation of China under Grant 62273305, in part by the Zhejiang Provincial
Natural Science Foundation under Grant LZ22F030010, in part by the
Young Elite Scientist Sponsorship Program by cast of China Association
for Science and Technology under Grant YESS20210158 and in part by
the State Key Laboratory of Industrial Control Technology under Grant
ICT2023A03.

Chencheng Xu is with the College of Information Science and Electronic
Engineering, Zhejiang University, Hangzhou 310027, China. Chengcheng
Zhao and Jiming Chen are with the State Key Laboratory of In-
dustrial Control Technology, Zhejiang University, Hangzhou, 310027,
China. Zhiguo Shi is with the Key Laboratory of Collaborative Sens-
ing and Autonomous Unmanned Systems of Zhejiang Province and In-
terdisciplinary Motion Dynamics Emulation Platform, Zhejiang Univer-
sity, Hangzhou 310027, China. Emails: {xucc, chengchengzhao,
cjm, shizg}@zju.edu.cn

the angle of attack constraint is a critical factor that pre-
vents loss-of-control (LOC) by guaranteeing the amount of
lift generated by AVs. Additionally, attitude requirements
such as line-of-sight constraints [5] and keep-out cones [6]
are essential for AV’s active vision and effective wireless
communication. Directly adapting CBF-based methods from
position space to attitude space can be challenging since
attitude space is non-Euclidean and is expressed by the
rotation matrix group SO(3). Although linearization methods
can be used to locally describe attitude dynamics, and formal
guarantees can then be formulated using Euclidean CBFs [7],
it is more practical to construct CBFs in a geometric and
global way. In [8], safety constraints on SO(3) are discussed
and a group of Gaussian CBFs is proposed to encode safe
regions in attitude space. By solving QP problems with
Gaussian CBF constraints, safe-enforced moment signals are
generated to control the attitude system of a quadrotor.

It is worth noting that to address all the safety concerns
discussed above, both Euclidean position constraints and
non-Euclidean attitude constraints must be incorporated into
the CBF-QP controllers of the attitude system, as most AVs
are underactuated. For instance, in the widely used cascaded
control framework for quadrotors [3], [9], the attitude control
system serves as a subsystem or a low-level control system,
and the attitude control signals are used for achieving precise
translational motion. Thus, safety requirements for transla-
tional distance need to be enforced as additional constraints
in the orientation domain. This results in the emergence of
multi-domain CBF conditions in attitude, which not only
increases the complexity of the CBF-QP problems but also
necessitates the guarantee of feasible solutions. One effective
way to improve the existence and performance of multi-
constraint feasible solutions is to increase the feasible so-
lution regions under each constraint. Due to the complex
variability of position safety constraints in various scenarios,
the feasible solution regions under attitude conditions are
more suitable for analysis and applicable to be enlarged.

To solve the above issue, we first propose a formal verifica-
tion framework to construct operational regions for nominal
controllers under attitude CBF conditions. To further explore
how the selection of nominal attitude controllers affects the
region of feasible solutions, a safe-operation envelope is
designed to compare the performance of different controllers.
The proposed method effectively deals with the feasibility
issue in a verification way and also provides a new baseline
for tuning and evaluating nominal controllers in CBF-QP. To
the best of our knowledge, this is the first work that discusses
the Multi-domain CBF conditions in attitude.
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The main contributions are listed as follows.
• Geometric exponential barrier condition (GEBC) is pro-

posed to produce barrier certificates on the manifold,
by which attitude safety requirements can be encoded
globally into the verification problems of attitude con-
trol systems.

• We propose an innovative and practical verification
framework for attitude controllers. A class of geometric
barrier functions is introduced and formally transformed
based on matrix exponential coordinates. The resultant
verification problems are then presented in Quantifier
Free Real Arithmetic Logic, which could be handled
by current SMT solvers.

• A performance criterion is designed based on the safe
operational regions generated by the verification pro-
cess. This performance criterion is graphically rep-
resented as a safe flight envelope (SFE), which can
help with the selection and fine-tuning of nominal
controllers.

The remainder of this paper is organized as follows.
Section II introduces some basic concepts of safe control,
formal verification, and attitude control systems. Section III
presents the methods we adopt to formally verify and gen-
erate feasible regions for attitude controllers under attitude
constraints. Section IV presents an example case where we
compare the performance of two PD controllers based on the
generated safe flight envelope.

II. PRELIMINARIES AND PROBLEM
FORMULATION

A. Safety and Control Barrier Functions

Consider a control affine dynamic system

ẋ = f(x) + g(x)u, (1)

where system state x = x(t) ∈ X ⊂ Rn and control signal
u = u(t) ∈ U ⊂ Rm are denoted with respect to time
t ≥ 0. The functions f : Rn → Rn and g : Rn → Rn×m are
assumed to be Lipschitz continuous.

A safe set in state space B could be encoded as the zero
super-level set of a smooth function B : X ⊂ Rn → R:

B = {x ∈ X | B(x) ≥ 0} ,
∂B = {x ∈ X | B(x) = 0} .

If the safe set is forward invariant, i.e., for any x(0) ∈ B,
x(t) ∈ B holds for all t ≥ 0, then the system is guaranteed
to be safe with respect to B. The smooth function B is called
barrier function.

Definition 1. (Exponential Control Barrier Function [10])
Given a control affine system (1) with a safe set B =
{x ∈ X | B(x) ≥ 0}, which is the super-level set of a
smooth function B : X → R with relative degree r, B is an
exponential control barrier function if there exists λ ∈ Rr

such that for all x ∈ X ,

sup
u∈U

(Lr
fB(x) + LgL

r−1
f B(x)u+ λ⊤ηB) ≥ 0, (2)

where ηB = [B(x), LfB(x), . . . , Lr−1
f B(x)]⊤ is a vector

of Lie derivatives and the vector λ = [λ1, λ2, . . . , λr]
⊤

contains the coefficients selected to guarantee forward in-
variance of ECBF.

Then, we can define a control set that ensures safety with
respect to a given state x:

Us(x) =
{
u ∈ U | Lr

fB + LgL
r−1
f Bu+ λ⊤ηB ≥ 0

}
.

(3)

Remark 1. The safe control set Us here is exactly the
feasible solution region of control systems with a single CBF
condition. It is evident that as the size of this set increases,
there are more available choices for feasible control signals
with safe guarantees.

B. Formal Verification using Barrier Certificates

The basic idea of safe verification is to verify that all
possible states that a given system can reach starting from
an initial set never enter the unsafe region. Although various
excellent methods and tools have been developed recently to
solve the reachability problem in Euclidean space fast and
effectively [11], [12], it remains challenging to conduct non-
Euclidean reachability analysis. On the other hand, formal
verification methods based on barrier certificates avoid ex-
plicit computation of the exact or substantially approximate
reachable set [13]. Therefore, we use barrier certificates to
verify safety properties in the attitude space.

Lemma 1. (Barrier Condition) Given a system (1) with the
state space set X , an initial set Ξ, and an unsafe set Xunsafe,
if a smooth barrier function B : X → R satisfies:

B(x) < 0, ∀x ∈ Xunsafe (4)
B(x) ≥ 0, ∀x ∈ Ξ (5)
Ḃ(x) ≥ 0, ∀x ∈ ∂B (6)

then the safety of the system (1) is guaranteed.

The original barrier conditions give the basic condition
that a barrier function should satisfy to render safety. How-
ever, condition (6) is non-convex, meaning the problem can-
not be solved using convex optimization [14]. Exponential
barrier conditions [15] are then proposed where condition (6)
is replaced by

Ḃ(x) + λB(x) ≥ 0, ∀x ∈ X , (7)

so that barrier functions can be searched by sum-of-squares
(SOS) programming.

C. Attitude Control Systems on SO(3)

Since the attitude space is non-Euclidean, it’s better to
handle attitude systems in a geometric way [16], [17]. We
begin with some basic ideas on Riemannian geometry. Given
a smooth manifold Q, the Riemannian metric is an inner
product ∥·, ·∥p : TpQ × TpQ → R on the tangent space
TpQ of any point p ∈ Q. It can also be expressed as
a symmetric positive linear operator Jp: TpQ → T ∗

pQ,
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satisfying ∥X,X∥p = ∥Xp, Xp∥p = ⟨JpXp, Xp⟩, where
Xp ∈ TpQ and JpXp ∈ T ∗

pQ : TpQ → R. JpXp is a
one form in the cotangent space. If f : Q → R is a smooth
function, its Lie derivative with respect to the vector field X
is defined as LXf(p) = ⟨df,Xp⟩, where df is the gradient of
f . The tangent bundle TQ = {(p,Xp) | p ∈ Q,Xp ∈ TpQ}.

The attitude control system can be considered as a geo-
metric mechanical system (SO(3), J, τ ) with the following
concepts:

• The rotation group SO(3) is the configuration manifold.
• J is a Riemannian metric on SO(3), which represents

the inertia of this system and describes kinetic energy.
• τ = [τ1, τ2, τ3]

⊤ is a collection of one form that
describes torque.

We then specify such a system by introducing an AV rigid
body and ignoring its position state. The inertial reference
frame Fo ≜

{
O, Eo = [e⃗o1, e⃗o2, e⃗o3]

⊤
}

is defined with
three right-handed orthonormal basis vectors such that any
vector in space can be represented as v⃗ = v⊤

o Eo = E⊤
o vo,

where vo ≜ [vo1, vo2, vo3]
⊤ is a column matrix of the

coordinates. Similarly, we have body-fixed coordinate frame
Fb ≜

{
O, Eb = [e⃗b1, e⃗b2, e⃗b3]

⊤
}

and desired coordinate

frame Fd ≜
{
O, Ed = [e⃗d1, e⃗d2, e⃗d3]

⊤
}

. Note that these
three frames share the same origin. Now the coordinate
transformation between two frames Fo and Fb can be
expressed as vb = R⊤vo, where R is rotation matrix of
the rigid body on configuration manifold SO(3). Meanwhile,
we have Rd as the desired body attitude.

The attitude dynamics is formulated on the configuration
manifold SO(3) and its Lie algebra so(3):

Ṙ = RΩ̂, (8)
JΩ̇ = JΩ× Ω+ τ +△R, (9)

where Ṙ ∈ TRSO(3) is the tangent vector at R, and Ω =
[ω1, ω2, ω3]

⊤ ∈ R3 denotes the body angular velocity. We
have Ω̂ ∈ so(3) satisfies Ω̂x = Ω × x for all x ∈ R3,
inducing a isomorphism ·̂ : R3 → so(3). In this paper, we
assume that the model uncertainty is bounded by △R.

To measure the difference between Rd and R, a configu-
ration error function Φ : SO(3) → R is introduced with right
attitude error Re = R⊤

d R:

Φ(R) =
1

2
tr [Kp(I3 −Re)] . (10)

Its first and second-order time derivatives are formulated as

Φ̇ =
1

2
(Ω−Re

⊤Ωd)
⊤
[
KpRe − (KpRe)

⊤
]∨

, (11)

Φ̈ =
1

2
tr(KpRe)Ωe

⊤Ωe −
1

2
Ωe

⊤KpReΩe

+
1

2
(Ω̇ + Ω̂Re

⊤Ωd −Re
⊤Ω̇d)

⊤
[
KpRe − (KpRe)

⊤
]∨

,

(12)

where ·∨ is the inverse map of ·̂ and angular velocity error is
defined as Ωe = Ω−Re

⊤Ωd. Kp is a symmetric and positive
constant matrix.

D. Problem of Interests

Now we can discuss the feasibility problem in CBF-QP
attitude controllers. Suppose we have a nominal controller
unom(x), a multi-domain CBF-QP problem in the attitude
system can be formulated as:

Multi-domain CBF-QP:

u(x) = argmin
u∈U

1

2
∥u− unom(x)∥2 ,

s.t. Lra
f Ba + LgL

ra−1
f Bau+ λa

⊤ηBa
≥ 0

L
rp
f Bp + LgL

rp−1
f Bpu+ λp

⊤ηBp
≥ 0

where Ba and Bp are the control barrier functions defined
in attitude space and position space with relative degree ra
and rb respectively. x is defined to include both attitude and
position states. It is possible that these two CBF constraints
conflict with each other, which raises the question of whether
feasible solutions exist in the whole state space.

We refer to the feasible solution region that satisfies an in-
dividual CBF condition as the operational region associated
with that safe specification. The QP formulation shows that
the operational region for attitude safety, before being mod-
ified by QP, pre-defines a viable region for position safety.
This operational region indicates the allowable degree of
aggression in position space. Generally, a larger operational
region for attitude safety enables a larger feasible region for
QP and thereby indicates more aggressive flight in position
space. In this paper, we aim to improve the feasibility from
the aspect of analyzing and enlarging operational regions
with attitude safety, and address the following problems:

• How to analyze and visualize the operational regions in
the attitude space?

• How to implement these non-Euclidean attitude ver-
ification problems based on state-of-the-art numerical
solvers?

• How to construct an effective and practical criterion
where we can compare the safe performance between
controllers?

III. MAIN RESULTS

A. Geometric Barrier Certificates

To formally analyze the safe property of attitude control
systems, we first give the following theorem as barrier-
certified conditions on manifolds that incorporate control
signals and candidate regions.

Theorem 1. (Geometric Exponential Barrier Condition)
Given a geometric mechanical system (Q, J,F) with a
candidate state set Xc ⊂ TQ and an unsafe set Xunsafe, if a
smooth barrier function B on manifold with relative degree
r satisfies:

B(q, q̇) < 0, ∀(q, q̇) ∈ Xunsafe (13)
B(q, q̇) ≥ 0, ∀(q, q̇) ∈ Xc (14)
Lr
fB + LgL

r−1
f Bu+ λ⊤ηB ≥ 0, ∀(q, q̇) ∈ Xc (15)
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where u = u(q, q̇) is the control input, then the safety of the
controlled system (1) is guaranteed.

Proof. Following [10], we define a family of functions on
tangent bundle yi : TQ → R, for i = 1, . . . , r, satisfying

yi(q, q̇) = ẏi−1(q, q̇) + µiyi−1(q, q̇),

where µi ≥ max(− ẏi−1(q,q̇)
yi−1(q,q̇)

, δ) and δ > 0 for all states in
the state space. The super-level set of yi is defined as Xi =
{(q, q̇) | yi(q, q̇) ≥ 0}. We obtain ẏi−1 + µiyi−1 ≥ 0 holds
for all states in {Xc ∩ Xi}. Consider the worst case when
system state (q(Tw), q̇(Tw)) ∈ {Xc ∩ Xi ∩ Xi−1} reaches
the boundary of Xi−1 at Tw, i.e, when yi−1(q, q̇)|t=Tw

= 0,
it holds that dy

dt |t=Tw
≥ 0, which ensures any system trajec-

tory stay in the region {Xc ∩ Xi ∩ Xi−1}. In other words,
yi−1(q, q̇) ≥ 0 satisfies for any states in {Xc ∩ Xi ∩ Xi−1}.
Usually we suppose that Xc ⊂ Xi holds at every i. The
forward invariance of Xc can then be derived if we prove
yr(q, q̇) ≥ 0 in this region.

By setting y0(q, q̇) = B(q, q̇), we have the equation
yi(q, q̇) =

(
d
dt + µ1

)
◦ · · · ◦

(
d
dt + µi

)
◦ B(q, q̇). Condition

(15) implies the condition of yr(q, q̇) ≥ 0 and the forward
invariant condition of Xc. Thus, we have completed the
proof.

Remark 2. Condition (15) is more focused on the candidate
region that we aim to verify than the total state space in
condition (7). This helps us to reduce the scale and com-
plexity of verification problems. When constructing these
conditions, the entries of λ, which can also be formulated
by {µi}, need to be chosen carefully so that all the system
states rendering safe in the original X0 will not be excluded
during the process of condition recursion strengthening. In
other words, X0 ⊂ Xr need to hold in the state space.

B. Verification Framework for Attitude Controllers

In the attitude space, we present a class of geometric
barrier functions based on configuration error functions:

B(R,Ω) = D − Φ(R), (16)

where D is a constant bound and the relative degree of B
is 2. The safe set is defined as a region where attitude is
close to the desired state Rd. Then, condition (15) can be
formulated using (10)-(12):

B̈(R,Ω) + λ2Ḃ(R,Ω) + λ1B(R,Ω)

=−Φ̈(R,Ω)− λ2Φ̇(R,Ω) + λ1 [D − Φ(R)] ≥ 0. (17)

Satisfiability modulo theories (SMT) solvers are powerful
engines that handle these safety verification problems. How-
ever, current SMT solvers do not support the theory of arrays
with nonlinear constraints like (17). To address this issue, we
transform such conditions into supported forms, which are
given below.

• Encode (17) into an Euclidean-space equation. We
adopt the results from matrix exponential map [16].

The matrix exponential map is a diffeomorphism be-
tween Uso(3) =

{
ω̂ ∈ so(3) | ω ∈ R3, ∥ω∥R3 < π

}
and

USO(3) = {R ∈ SO(3) | tr(R) ̸= −1}. Then, we
can define a map θ(R) : USO(3) → [0, π) and a map
ξ̂(R) : USO(3) → Uso(3) formulated as:

θ(R) = arccos

(
tr(R)− 1

2

)
∈ [0, π) ,

ξ̂(R) =

{
03×3, R = I3

1
2 sin(ϕ(R))

(
R−RT

)
. R ̸= I3

By setting Kp = I3×3, (10)-(12) are rewritten as:

Φ = 1− cθ, (18)
Φ̇ = sθξ

⊤(Ω− Ωd), (19)

Φ̈ =
cθ + 1

2
(Ω⊤Ω+ Ω⊤

d Ωd) + (c2θ − cθ)Ω
⊤
d ξΩ

⊤ξ

+
cθ − 1

2

[
(Ω⊤ξ)2 + (Ω⊤

d ξ)
2
]
− (cθ + c2θ)Ω

⊤
d Ω

+sθΩ
⊤ξ̂Ωd + sθξ

⊤(Ω̇− Ω̇d)− s2θξ
⊤Ω̂ξ̂Ωd,

(20)

where θ = θ(Re) and ξ = ξ(Re). cθ and sθ are
abbreviations of cos θ and sin θ. Then condition (17) is
transformed into a constraint in terms of a real variable
θ and a column vector ξ = [ξ1, ξ2, ξ3]

⊤ with 3 real
variables.

• Describe sets in state space X using real variables θc
and Vc. The candidate region is defined as follows:

Xc(θc, Vc) (21)
= UR(θc)× UΩ(Vc)

= {(R,Ω) | R ∈ UR(θc),Ω ∈ UΩ(Vc)} , (22)

where UR(θc) = {R | θ(R) ≤ θc} is the attitude region
described by θc and UΩ(Vc) = {Ω | ∥Ω∥R3 ≤ Vc} is the
angular velocity region described by Vc.

With equations (19)-(22), the verification problem of
GEBCs is translated into multiple conditions with real vari-
ables. This kind of problem is termed a Quantifier Free Real
Arithmetic Logic (QF-NRA) problem and can be solved by
current SMT solvers, for example, dReal [18].

Due to the involvement of trigonometric functions, the
verification problem in attitude space is quite complicated
and takes far too much time. To accelerate the verification
process, grid-based partitioning methods are adopted so
that the candidate state region is decomposed into smaller
regions. The verification problem is the intersection of the
corresponding subproblems.

Proposition 2. (State Region Decomposition) Given a list
of grid points {(θj , Vj)}, j ∈ {1, · · · , Ng}. We get θNg

=
θc, and VNg

= Vc. Then the candidate region can be
decomposed as

Xc(θc, Vc) =
∑

Xc([θa−1, θa] , [Vb−1, Vb]), (23)

where a, b ∈ {1, · · · , Ng}, θ0 = 0 and V0 = 0.
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C. A Performance Criterion: Safe Flight Envelope

Here, we introduce a performance criterion which is
called safe flight envelope. We analyze the performance of
nominal attitude controllers by giving a standard verification
problem. Specifically, we measure the operational region that
a nominal controller can reach before being modified by
the geometric CBF-QP. In other words, the safety property
of controllers with predefined GCBFs is investigated by
maximizing the parametric candidate region in (21) under
a specific safe scenario.

To begin with, we specify a special requirement where
the desired attitude is an identity matrix Rd ≡ I3×3 and
Ωd ≡ 03×1. Suppose the unsafe region is Xunsafe =
{(R,Ω) | B(R,Ω) < 0}. Then the verification problem is
defined as

Problem 1. Given an attitude control system (SO(3), J, τ )
with a nominal controller τ (R,Ω), a parametric state set
Xc(θc, Vc) and a geometric CBF designed for attitude safety,
if the following conditions are satisfied:

B = D − (1− cθ) ≥ 0, ∀(R,Ω) ∈ Xc (24)
B̈ + λ2Ḃ + λ1B ≥ 0, ∀(R,Ω) ∈ Xc (25)
Ḃ = −sθξ

⊤Ω,

B̈ = −cθ + 1

2
Ω⊤Ω− cθ − 1

2
(Ω⊤ξ)2,

−sθξ
⊤J−1(JΩ× Ω+ τ +△R)

then the safety of the controlled system (1) is guaranteed in
the candidate region Xc(θc, Vc).

Note that if we aim to maximize the region Xc, there exists
a trade-off between parameters θc and Vc. Therefore, we can
generate a curve by maximum Vc with respect to θc. The
algorithm is illustrated in Algorithm 1. We call the curve of
the relationship between θc and Vc as safe flight envelope.
The output list of {(θn, Vn)} indicates the boundary of the
largest GCBF-certified operational region with δ.

IV. NUMERICAL EXAMPLES

In this section, we provide a numerical example that
compares the safe-related properties of two different nominal
controllers using a safe flight envelope. A quadrotor attitude
dynamics are considered according to [19][20]:

Jxx = 0.000906kg ·m2, Jyy = 0.001242kg ·m2,

Jzz = 0.002054kg ·m2, J = diag(Jxx, Jyy, Jzz).

We set the modeled uncertainty term △R = (0.3rad · s−2)J .
The GEBC problem in this case can be determined by the
parameters: λ1 = 20, λ2 = 12, D = 0.234. We use two
different PD controllers, which are designed based on the
Euler angle representation of attitudes, i.e., {α, β, γ}. The
structure of controllers τ = [τ1, τ2, τ3]

⊤ is defined by

τ1 = kd1(kp1(αd − α)− ω1),

τ2 = kd2(kp2(βd − β)− ω2),

τ3 = kd3(kp3(γd − γ)− ω3),

Algorithm 1: Safe Flight Envelope Generation
Input: System Model (J,△R), Nominal controller

u(R,Ω), Physical constraints (θmax, Vmax),
Pre-defined parameters (λ1, λ2, D), Sample
number N and Precision constant δ

Output: Safe Flight Envolpe
{(θn, Vn)} , n ∈ {1, · · · , N}

1 Initialize θmin = 0, Vlast = Vmax;
2 for n = 1;n ≤ N ;n++ do
3 θmax = (n/N) ∗ θmax;
4 V

′

max = (D − (1− cθmax
))/sθmax

, V
′

last = 0;

5 Vmin = 0, Vmax = min
{
Vlast, V

′

max

}
;

6 d = Vmax − Vmin;
7 θ̃ = [θmin, θmax], Ṽ = [Vmin, Vmax];
8 result = CheckSat(θ̃, Ṽ , J, · · · ) ;
9 if result then

10 (θn, Vn) = (θmax, Vmax), d = 0;
11 else
12 V

′

last = Vmax,;
13 Vmin = Vmin, Vmax = Vmax − d/2;
14 d = Vmax − Vmin;

15 while delta > δ do
16 result = CheckSat(θ̃, Ṽ , J, · · · );
17 if result then
18 Vmin = Vmax, Vmax = (V

′

last + Vmax)/2;
19 d = Vmax − Vmin;
20 else
21 V

′

last = Vmax,;
22 Vmin = Vmin, Vmax = Vmax − d/2;
23 d = Vmax − Vmin;

24 (θn, Vn) = (θmax, Vmin);
25 θmin = θmax, Vlast = Vmin

26 return {(θn, Vn)};

and its parameter set K = {kd1, kd2, kd3, kp1, kp2, kp3} with
respect to two example controllers are given as

K1 = {2.0, 2.0, 1.5, 0.025, 0.025, 0.028} ,
K2 = {2.5, 2.5, 2.5, 0.016, 0.016, 0.028} .

We use dReal [18] as the SMT solver to solve this safety
verification problem. dReal is an automated reasoning tool
that deals with nonlinear formulas such as polynomials and
trigonometric functions over the reals. Since SMT problems
are undecidable when the sine function is involved, every
satisfiable result in dReal incorporates a numerical relaxation
by a small precision constant δ. With a δ-complete decision
framework, it returns either unsatisfied or δ-satisfied input
statements with certificates of correctness.

The generated safe flight envelope is shown as Fig 1.
Controllers with K2 (green line) have a larger safe op-
erational region under small attitude errors, which allows
more aggressive actions than that with K1 (blue line) in
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the attitude CBF-QP control framework. Also, it is observed
that when the attitude error becomes larger, the forward in-
variant constraint takes effect during operation. The forward
invariant constraint in this figure is derived from Theorem
1, where the predefined λ1 and λ2 (or µ1, µ2) also brings a
constraint for this safe operational region. This phenomenon
indicates that the design of barrier functions also affects the
operational region of nominal attitude controllers, especially
when system states are closed to the safe boundary, exerting
a strong limit to the controller operations.

Fig. 1. Safe flight envelopes with respect to two different nominal attitude
PD controllers. The blue region is the safe flight envelope of the PD
controller with K1 and the green region represents the one with K2. The
red dotted line refers to the theoretical constraint derived from the forward
invariant requirements in Theorem 1.

V. CONCLUSIONS

In this paper, we focuse on the safety problem of attitude
controllers. To analyze the safety performance of nominal
controllers in general attitude CBF-QP, we introduce geo-
metric barrier certificates and a practical formal verification
framework, based on which useful safe performance criteria
can be utilized for analysis. By a numerical example, two PD
controllers are formally analyzed and compared. For future
work, it is worth considering more types of geometric barrier
functions to introduce diversity in constructing safe or unsafe
attitude regions.
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