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Abstract— The infinite horizon setting is widely adopted for
problems of reinforcement learning (RL). These invariably
result in stationary policies that are optimal. In many situations,
finite horizon control problems are of interest and for such
problems, the optimal policies are time-varying in general.
Another setting that has become popular in recent times
is of Constrained Reinforcement Learning, where the agent
maximizes its rewards while it also aims to satisfy some given
constraint criteria. However, this setting has only been studied
in the context of infinite horizon MDPs where stationary policies
are optimal. We present an algorithm for constrained RL in
the Finite Horizon Setting where the horizon terminates after
a fixed (finite) time. We use function approximation in our
algorithm which is essential when the state and action spaces are
large or continuous and use the policy gradient method to find
the optimal policy. The optimal policy that we obtain depends
on the stage and so is non-stationary in general. To the best
of our knowledge, our paper presents the first policy gradient
algorithm for the finite horizon setting with constraints. We
show the convergence of our algorithm to a constrained optimal
policy. We also compare and analyze the performance of our
algorithm through experiments and show that our algorithm
performs better than some other well known algorithms.

I. INTRODUCTION

The Constrained Markov Decision Process (C-MDP) set-
ting has recently received significant attention in the rein-
forcement learning (RL) literature due to its natural applica-
tion in safe RL problems [1], [2]. A textbook treatment of
C-MDP can be found in [3]. In the C-MDP framework, in
addition to the long-term objective specified via single-stage
rewards (that are associated with state transitions), there are
also long-term constraint functions specified via additional
single-stage rewards or costs. The goal then is to find an
optimal policy that maximizes a long-term reward objective
while satisfying prescribed constraints. RL algorithms for
infinite horizon discounted C-MDP have been studied in [4].
For the long-run average cost C-MDP, [5] has developed
the first actor-critic RL algorithm in the full state setting.
RL Algorithms with function approximation have also been
developed for infinite horizon discounted cost C-MDP [6] as
well as the long-run average cost C-MDP [7].

In this paper, we present an RL algorithm for C-MDP in
the finite horizon setting. Finite Horizon problems [8], [9]
deal with situations where the agent needs to choose a finite
number of actions depending on the states of the environment
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in order to maximize the expected sum of single-stage and
the terminal reward. An optimal policy in this setting would
in general be non-stationary as the choice of an action at
an instant would depend not just on the state at that instant
but also on the number of actions remaining to be chosen
from then on so as to maximize a long-term objective. RL
techniques for Finite Horizon (regular) MDP in the full state
case have been discussed in [10]. They give two algorithms
for the tabular case: QH-Learning and RH-Learning, and
do a learning-rate analysis between them. Actor-critic type
algorithms for Finite-Horizon (regular) MDPs are discussed
in [11]. They give four algorithms for Finite Horizon, among
which three are for tabular setting, and one algorithm uses
function approximation. Their algorithms for tabular setting
are not scalable to large state spaces. The algorithm which
uses function approximation uses zeroth order gradient in-
stead of first order gradient, like us and also doesn’t consider
inequality constraints, which we do. Our RL algorithm is de-
vised for finite-horizon C-MDP, uses function approximation,
and involves actor-critic type updates. Temporal difference
learning algorithms for a finite horizon setting have also
recently been studied in [12]. They show convergence for
Q-Learning with Linear function-approximation and some
general function approximations for Finite Horizon. With
their motivation to make infinite horizon Q-Learning stable,
they do not consider time varying transition probability and
reward functions, which we do, which is a more complicated
setting.

We prove the convergence of our algorithm under standard
assumptions. Our convergence guarantees gives one the
power to mimic our algorithm and make algorithms using
neural networks for solving complex tasks. One such task
could be a portfolio management system [13], where a person
wants to invest in the stock market for a finite amount
of time. The person here needs to decide the ratio of the
money they will invest in different stocks. The stock values
naturally change with time, and the decisions made are time
critical in nature. We also show in this paper, empirical
results on a two-dimensional grid world problem using our
algorithms where we observe that our algorithms clearly
meet the constraint cost performance while giving a good
reward performance. The other algorithms in the literature
do not meet the constraint objective.

Our contributions:

1) We present and analyze both theoretically and experi-
mentally the first policy gradient reinforcement learn-
ing algorithm with function approximation for Finite
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Horizon Constrained Markov Decision Processes.
2) This setting differs significantly from infinite horizon

problems since in the latter stationary policies are op-
timal unlike the finite horizon setting where invariably
non-stationary policies are optimal. This is because
knowledge of the time remaining for termination of
the horizon often has a profound bearing on action
selection in the finite horizon case.

3) We prove that our proposed algorithm converges al-
most surely to a constrained optimum over a tuple of
parameters, one corresponding to each instant in the
horizon.

4) We show a comparison of the empirical performance
of our algorithm in relation to well known algorithms
in the literature originally designed for infinite horizon
problems.

5) Our key observation here is that our algorithm gives a
good reward performance while strictly meeting the
constraint criterion at every time instant unlike the
other algorithms that do meet the constraint criterion
and are therefore unsuitable for Constrained Finite
Horizon problems.

II. THE FRAMEWORK AND PROBLEM FORMULATION

By a Markov Decision Process (MDP), we mean a stochas-
tic process {Xh} taking values in a set (called the state space)
S, and governed by a control sequence {Zh} taking values in
a set A (called the action space), that satisfies the following
controlled Markov property: P (Xh+1 = s′|Xm, Zm,m ≤
h) = ph(Xh, Zh, s

′) a.s. Also, associated with any state
transition is a single-stage reward. We assume here that S and
A are finite sets. Actions are chosen by the decision maker
at instants h = 0, 1, . . . ,H−1, and the process terminates at
instant H , where H is a given positive integer. For simplicity,
we consider all actions in A to be feasible in every state in
S. A non-stationary randomized policy (NRP) is a set of
H distributions defined by π := {µ0, µ1, ..., µH−1}, where
µh(s, ·) is a distribution over A, s ∈ S, h = 0, 1, . . . ,H − 1.
Here, the action Zh ∼ µh(Xh, ·),∀h. It is easy to see under
a NRP, {Xh} is a non-homogeneous Markov chain.

Let rh(s, a, s′) (resp. g(1)h (s, a, s′), . . . , g
(M)
h (s, a, s′)) be

the single-stage reward (resp. the set of single-stage costs)
at instant h = 0, 1, . . . ,H − 1 when the state is s ∈ S,
the action chosen is a ∈ A and the next state is s′ ∈ S.
Let rH(s) (resp. g(1)H (s), . . . , g

(M)
H (s)) likewise denote the

terminal reward (resp. set of terminal costs) at instant H
when the terminal state is s ∈ S. Our aim is to find a NRP
π∗ that maximizes the following over all NRP π:

J(π) = E

[
r
(k)
H (XH) +

H−1∑
h=0

r
(k)
h (Xh, Zh, Xh+1)

]
, (1)

subject to the constraints

S(k)(π) = E
[
g
(k)
H (XH) +

H−1∑
h=0

g
(k)
h (Xh, Zh, Xh+1)

]
≤ α(k),

(2)

k = 1, . . . ,M . Here α(1), . . . , α(M) are certain prescribed
threshold values. We assume there exists at least one NRP
π for which all the inequality constraints in (2) are satisfied.
Let λ = (λ(1), . . . , λ(M))T denote the vector of Lagrange
multipliers λ(1), . . . , λ(M) ∈ R+∪{0} and let L(π, λ) denote
the Lagrangian:

L(π, λ) = J(π) +

M∑
k=1

λ(k)(S(k)(π)− α(k))

= E

[
cλH(XH) +

H−1∑
h=0

cλh(Xh, Zh, Xh+1)

]
,

(3)

where cλH(s) := rH(s) +
∑M

k=1 λ
(k)(g

(k)
H (s) − α(k)) and

cλh(s, a, s
′) := rh(s, a, s

′) +
∑M

k=1 λ
(k)g

(k)
h (s, a, s′) respec-

tively. Let V π,λ
h (s) be the value function at instant h =

0, 1, . . . ,H − 1 for the relaxed MDP problem.

V π,λ
h (s) = E

[
cλH(XH) +

H−1∑
t=h

cλt (Xt, Zt, Xt+1)

|Xh = s
] (4)

and similarly,

V π,λ
H (s) = cλH(s). (5)

Note that the foregoing can be written in terms of the
Q-value function as

V π,λ
h (s) =

∑
a∈A

µh(s, a)Q
π,λ
h (s, a) (6)

where,

Qπ,λ
h (s, a) =

∑
s′∈S

ph(s, a, s
′)
[
cλh(s, a, s

′) + V π,λ
h+1(s

′)
]
.

Similarly we can define value function for the constraints.
The value function of the kth constraint, k = 1, . . . ,M, is
defined as:

W
π,(k)
h (s, a) =

∑
a∈A

µh(s, a)
∑
s′∈S

ph(s, a, s
′)

×
[
gh(s, a, s

′) +W
π,(k)
h+1 (s′)

] (7)

and,

W
π,(k)
H (s) = g

(k)
H (s)− α(k). (8)

Let β(s0), s0 ∈ S be the initial state distribution. For an NRP
π, let Pr(s0 → s, h, π) be the probability of transitioning
from initial state s0 to state s in h steps under policy π.
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Also, under π, let dπh(s) be the probability of reaching state
s in h steps, h = 0, 1, . . . ,H .

dπh(s) :=
∑
s0∈S

β(s0)Pr(s0 → s, h, π)

=
∑
s0∈S

β(s0)
∑
a0∈A

µ0(s0, a0)
∑
s1∈S

p0(s0, a0, s1)∑
a1∈A

µ1(s1, a1)
∑
s2∈S

p1(s1, a1, s2) . . .∑
ah−1∈A

µh−1(sh−1, ah−1)ph−1(sh−1, ah−1, s).

(9)

We consider here a parameterized class of NRP π where µh

depends on parameter θh ∈ Ryh , h = 0, 1, . . . ,H − 1. Let
θ

△
= (θ0, θ1, . . . , θH−1)

T . Let πθ = {µθh(s, a), s ∈ S, a ∈
A, θh ∈ Ryh , h = 0, . . . ,H − 1} denote the parameterized
class of NRP. Our goal then is to find an optimal θ∗ that
maximizes (1) while satisfying the constraints (2). We will
use π and θ interchangeably henceforth.

Assumption 1: The policies πθ = {µθh , h = 0, 1, . . . ,H−
1} are twice continuously differentiable functions of θ =
(θ0, θ1, . . . , θH−1)

T . Moreover, µθh(s, a) > 0, ∀h =
0, 1, . . . ,H − 1, s ∈ S, a ∈ A.

Remark 1: Assumption 1 is seen to be satisfied for ex-
ample by the Gibbs distribution, see Proposition 11 of [14].
From the expression of dπh(s) in (9), under the setting of
parameterized policies, it is easy to see under Assumption
1 that dθh(s) is continuously differentiable, ∀h = 0, 1, . . . ,H .

We have the following preliminary result along the lines
of the policy gradient theorem for infinite horizon problems
(cf. Chapter 13 of [15]).

Theorem 1: (The Policy Gradient Theorem for Finite
Horizon Constrained MDPs). Under Assumption 1, for any
baseline function b : S → R, we have

∇θL(π, λ) =(
∑
s∈S

dπh(s)
∑
a∈A

∇θhµh(s, a)(Q
π,λ
h (s, a)− b(s)),

h = 0, 1, . . . ,H − 1)T .
Proof: Notice first that ∇θL(π, λ) = (∇θhL(π, λ), h =

0, 1, . . . ,H − 1)T . Now observe that

∇θhV
π,λ
0 (s0) = ∇θh

(∑
a0∈A

µ0(s0, a0)Q
π,λ
0 (s0, a0)

)

=
∑
a0∈A

[
∇θhµ0(s0, a0)Q

π,λ
0 (s0, a0) + µ0(s0, a0)∇θh

×Qπ,λ
0 (s0, a0)

]
=
∑
a0∈A

[
∇θhµ0(s0, a0)Q

π,λ
0 (s0, a0) + µ0(s0, a0)

×∇θh

∑
s1∈S

p0(s0, a0, s1)
(
cλ0 (s0, a0, s1) + V π,λ

1 (s1)
)]

=
∑
a0∈A

[
∇θhµ0(s0, a0)Q

π,λ
0 (s0, a0) + µ0(s0, a0)

×
∑
s1∈S

p0(s0, a0, s1)∇θhV
π,λ
1 (s1)

]
.

Unrolling the above expression repeatedly we get:

∇θhV
π,λ
0 (s0) =

∑
s∈S

Pr(s0 → s, h, π)

×
∑
a∈A

∇θhµh(s, a)Q
π,λ
h (s, a).

(10)

Now the gradient of the Lagrangian L(π, λ) w.r.t θh can be
seen to be

∇θhL(π, λ) =
∑
s∈S

β(s)∇θhV
π,λ
0 (s)

=
∑
s∈S

dπh(s)
∑
a∈A

∇θhµh(s, a)Q
π,λ
h (s, a).

(11)

For any baseline b(s), s ∈ S, it follows that:∑
s∈S

dπh(s)
∑
a∈A

∇θhµh(s, a)
(
Qπ,λ

h (s, a)− b(s)
)

= ∇θhL(π, λ).

We approximate all the value functions for the Lagrangian
for h = 0, 1, . . . ,H as V π,λ

h (s) ≈ vπ,λh

T
ϕh(s) and all

the value functions for the constraint costs W
π,(k)
h (s) ≈

W
π,(k)
h

T
ϕh(s) where vπ,λh := (vπ,λh (l), l = 1, ..., xh)

T

and w
π,(k)
h := (w

π,(k)
h (l), l = 1, ..., xh)

T are the weight
vectors and ϕh(s) ∈ Rxh is the feature vector ϕh(s) :=
(ϕh(s)(1), . . . , ϕh(s)(xh))

T associated with state s and time
instant h. Note that in a given time instant h, it is not possible
to reach every state in S. Hence we define the subset

Sπ
h = {s ∈ S|dπh(s) > 0},

in other words Sπ
h is the set of states that can be visited

at time instant h under policy π. Since from Assumption 1,
µh(s, a) > 0,∀(s, a), Sπ

h will be the same under any policy
π. Hence we will refer to it as Sh. Let Φh ∈ R|Sh|×xh

denote the feature matrix with kth column being ϕh(k) =
(ϕh(s)(k), s ∈ Sh)

T , h = 0, 1, . . . ,H .
Assumption 2: The basis functions {ϕh(k), k = 1, ..., xh}

are linearly independent for h = 0, . . . ,H . Further xh ≤
|Sh|, and Φh has full rank.

Remark 2: It appears desirable to have a higher dimension
size for the feature matrix. However, one must be careful
about Assumption 2, as it is crucial for the stability of the
critic recursion (see Section IV). Note that Assumption 2
can be satisfied by slowly increasing the dimension size of
both the weight vector and the features as more states are
visited over episodes for a time instant h instead of having
a large dimension right from the beginning. This is unlike
the setting of infinite horizon problems, where the dimension
size remains a constant (see [16]).

Note that in infinite horizon problems, under an ergodic
policy, the Markov chain settles into a stationary distribution.
This is however not the case with finite horizon problems
where, in general, only a certain subset of the states will
ever be visited depending on the starting state because of the
finite nature of the horizon length and the Markov chain does
not enter into a stationary distribution. Hence, the probability
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Algorithm 1 Constraint Estimation using critic
Input: step-sizes

1: for each episode n ≥ 0 do
2: Collect the states, actions and rewards from the

episode.
3: for h = 0, 1, . . . ,H − 1 do
4: Perform main critic update (12)
5: Perform main actor update (14)
6: end for
7: Perform main critic update (13)
8: for k = 1, . . . ,M do
9: for h = 0, 1, . . . ,H − 1 do

10: Perform constraint critic update (15)
11: end for
12: Perform constraint critic update (16)
13: Perform Lagrange multiplier update (17)
14: end for
15: end for

of visit to many of the states starting from a given state is
actually zero in the finite horizon setting.

III. ACTOR-CRITIC ALGORITHM FOR FINITE HORIZON
CONSTRAINED MDPS

We present an algorithm based on multi-timescale
stochastic approximation (MTSA) for our problem. Let
a(n), b(n), c(n), n ≥ 0, be three positive step-size schedules
that satisfy the following assumption:

Assumption 3: The step-size sequences
{a(n)}, {b(n)}, {c(n)} satisfy the following properties:∑

n

a(n) =
∑
n

b(n) =
∑
n

c(n) = ∞,

∑
n

(a(n)2 + b(n)2 + c(n)2) <∞,

lim
n→∞

b(n)

a(n)
= lim

n→∞

c(n)

b(n)
= 0.

Our algorithm performs updates once after each episode of
length H . Note that in our setting, H is finite and determin-
istic. For each episode n ≥ 0, let θh(n), h = 0, . . . ,H − 1
denote the running updates of the policy parameter θh and let
λ(k)(n), k = 1, ...,M denote the running updates of the La-
grange multiplier λ(k). Let θ(n)

△
= (θ0(n), . . . , θH−1(n))

T

and λ(n) = (λ(1)(n), . . . , λ(M)(n))T . At every instant h =
0, 1, . . . ,H−1, action ah(n) is sampled from the distribution
µθh(n)(sh(n), ·) when the state is sh(n). The episode ends
in state sH(n).

We define temporal difference error δh(n), h = 0, . . . ,H−
1 using the Lagrangian as the single-stage reward. The
value function weights vπ,λh estimated using vh(n), h =
0, 1, . . . ,H are updated as in (12)-(13) while the policy
parameter is updated according to (14).

δh(n) =c
λ(n)
h (sh(n), ah(n), sh+1(n))

+ vh+1(n)
Tϕh+1(sh+1(n))− vh(n)

Tϕh(sh(n)),

vh(n+ 1) = vh(n) + a(n)δh(n)ϕh(sh(n)), (12)

vH(n+ 1) =vH(n) + a(n)
[
c
λ(n)
H (sH(n))

− vH(n)TϕH(sH(n))
]
ϕH(sH(n)).

(13)

In most settings involving parameterized policies, the
parameter naturally takes values in a prescribed compact set.
Hence, we define a projection operator Γ, which projects
the iterates to a given compact set. The projection has the
additional advantage that it ensures stability of the policy
iterates. Let ψθh(s, a) := ∇θh logµθh(s, a), s ∈ S, a ∈ A
denote the compatible features (cf. [17]). The actor update
for h = 0, 1, . . . ,H − 1 is then given by

θh(n+ 1) = Γ
[
θh(n) + b(n)ψθh(n)(sh(n), ah(n))

×δh(n)
]
.

(14)

The updates are justified by the approximate policy gradi-
ent equation (22) and the statements that follow. We define
the temporal difference error ξ(k)h (n), h = 0, . . . ,H − 1
using single stage constraint cost for the kth constraint
k = 1, . . . ,M . The value function weights wπ,(k)

h estimated
using w(k)

h (n), h = 0, 1, . . . ,H are updated as in (15)-(16).

ξ
(k)
h (n) =g

(k)
h (sh(n), ah(n), sh+1(n))

+ w
(k)
h+1(n)

Tϕh+1(sh+1(n))

− w
(k)
h (n)Tϕh(sh(n)),

w
(k)
h (n+ 1) = w

(k)
h (n) + a(n)ξ

(k)
h (n)ϕh(sh(n)), (15)

w
(k)
H (n+ 1) =w

(k)
H (n) + a(n)

[
g
(k)
H (sH(n))

− w
(k)
H (n)TϕH(sH(n))

]
ϕH(sH(n)).

(16)

We define a projection operator (·)− : R → [P, 0] as
(x)− = min(0,max(x, P )), where x ∈ R and −∞ < P is a
large negative constant. We provide the Lagrange parameter
update below.

λ(k)(n+ 1) =
(
λ(k)(n)− c(n)w

(k)
0 (n)Tϕ0(s0(n))

)−
.
(17)

IV. CONVERGENCE ANALYSIS

Both recursions (14) and (17) clearly satisfy the stability
requirement, i.e., supn ∥θh(n)∥ <∞, h = 0, . . . ,H − 1 and
supn ∥λ(k)(n)∥ <∞, k = 1, . . . ,M almost surely, since the
projection operators Γ(·) and (·)− force the iterates to evolve
within a compact set. Further, using arguments as in Chapter
6 of [18], one may let λ(n) ≡ λ when analyzing the actor
update (14) and θ(n) ≡ θ when analyzing the critic update
(12)-(13) and (15)-(16) since c(n) = o(a(n)) and moreover
b(n) = o(a(n)) from Assumption 3.

Let P θ
h be the probability transition matrix for

h = 0, 1, . . . ,H − 1 with elements P θ
h (s, s

′) =∑
a∈A µθh(s, a)ph(s, a, s

′), s ∈ Sh, s
′ ∈ Sh+1. Let Dθ

h

denote a diagonal matrix for h = 0, 1, . . . ,H with elements
dθh(s), s ∈ Sh along the diagonal. This is unlike the infinite
horizon case, where the stationary distribution of all the
states in S are taken (see [16]). Let us define the vectors

3356



Cθ,λ
H , Cθ,λ

h , Gθ,(k)
H and G

θ,(k)
h , h = 0, . . . ,H − 1, k =

1, . . . ,M , as

Cθ,λ
H =

(
cλH(s), s ∈ S

)T
,

Cθ,λ
h =

(∑
a∈A

µθh(s, a)
∑
s′∈S

ph(s, a, s
′)cλh(s, a, s

′), s ∈ S

)T

.

G
θ,(k)
H =

(
g
(k)
H (s), s ∈ S

)T
,

G
θ,(k)
h =

(∑
a∈A

µθh(s, a)
∑
s′∈S

ph(s, a, s
′)g

(k)
h (s, a, s′), s ∈ S

)T

.

Let us define the following points, which is used in Theo-
rem 2:

ΛH = (ΦT
HD

θ
HΦ)−1ΦT

HD
θ
HC

θ,λ
H ,

Λh = (ΦT
hD

θ
hΦh)

−1(ΦT
hD

θ
hP

θ
hΦh+1Λh+1 +ΦT

hD
θ
hC

θ,λ
h ),

Ξ
(k)
H = (ΦT

HD
θ
HΦH)−1ΦT

HD
θ
HG

θ,(k)
H ,

Ξ
(k)
h = (ΦT

hD
θ
hΦh)

−1(ΦT
hD

θ
hP

θ
hΦh+1Ξ

(k)
h+1+ΦT

hD
θ
hG

θ,(k)
h ).

Theorem 2: For λ(n) ≡ λ and θ(n) ≡ θ, vh(n), h =
0, . . . ,H − 1 and vH(n) converge to points Λh, h =

0, . . . ,H − 1 and ΛH respectively. Similarly w
(k)
h (n), h =

0, . . . ,H − 1 and w
(k)
H (n) converge to points Ξ

(k)
h , h =

0, . . . ,H − 1 and Ξ
(k)
H , respectively, for k = 1, . . . ,M

almost surely. Also the points Λh, h = 0, . . . ,H − 1, ΛH ,
Ξ
(k)
h , h = 0, . . . ,H − 1 and Ξ

(k)
H for k = 1, . . . ,M are

Lipschitz continuous in θ and λ.
Proof: We prove the convergence of vh(n), h =

0, . . . ,H − 1 and vH(n). The convergence of w(k)
h (n), h =

0, . . . ,H−1 and w(k)
H (n) for k = 1, . . . ,M follows similarly.

The recursions (12)-(13) can be written as,

vh(n+ 1) = vh(n) + a(n)
[
fh(vh(n), vh+1(n))

+N1
h(n+ 1)

]
,

(18)

vH(n+ 1) = vH(n) + a(n)
[
fH(vH(n))

+N1
H(n+ 1)

] (19)

h = 0, 1, . . . ,H − 1. In the above,

fh(vh, vh+1) =
∑
s∈S

dθh(s)
∑
a∈A

µθh(s, a)
∑
s′∈S

ph(s, a, s
′)

×
[
cλh(s, a, s

′) + vTh+1ϕh(s
′)− vTh ϕh(s)

]
ϕh(s),

fH(vH , θ) =
∑
s∈S

dθH(s)
[
cλH(s)− vTHϕH(s)

]
ϕH(s),

The noise terms can be derived from above. fh is linear in vh
and vh+1 and fH is linear in vH , therefore they are Lipschitz
continuous. Let F(n), n ≥ 0 be the increasing sequence of
sigma fields

F(n) = σ(vh(m), vH(m), N1
h(m), N1

H(m),m ≤ n,

h = 0, 1, . . . ,H − 1).

For some 0 < C <∞, it is easy to see from Assumption 2,

E
[
||N1

h(n+ 1)||2|F(n)
]
≤C(1 + ||vh(n)||2 + ||vh+1(n)||2),
h = 0, 1, . . . ,H − 1,

E
[
||N1

H(n+ 1)||2|F(n)
]
≤ C(1 + ||vH(n)||2).

Let us define:

f∞h (vh, vh+1) = lim
c→∞

fh(cvh, cvh+1)

c
= ΦT

hD
θ
hP

θ
hΦh+1vh+1 − ΦT

hD
θ
hΦhvh,

(20)

f∞H (vH) = lim
c→∞

fH(cvH)

c
= −ΦT

HD
θ
HΦHvH . (21)

Clearly Dθ
h is positive definite. Since from Assumption 2,

Φh has full rank then −ΦT
hD

∞
h Φh is negative definite for

h = 0, . . . ,H . Hence the ODE v̇H(t) = f∞H (vH(t)) has the
origin in RxH as its unique asymptotically stable equilibrium.
Now plugging vh+1(t) = 0, one can see going backwards
h = H − 1, . . . , 0, each ODE v̇h(t) = f∞h (vh(t), vh+1(t))
has the origin in Rxh as its unique asymptotically stable
equilibrium. Hence (A1) and (A2) of [19] are satisfied and
the first claim follows from Theorem 2.2 of [19]. The iterates
vh(n) converges where the approximate TD error fh is 0, for
h = 0, . . . ,H .

From Assumption 1, Dθ
h and Cθ,λ

h are continuously dif-
ferentiable in θ and Cθ,λ

h is linear in λ for h = 0, . . . ,H .
Since θ and λ lie in a compact space, dθh(s) ≥ B1, B1 > 0,
therefore ∇θ(Φ

T
hD

θ
hΦh)

−1, ∇θD
θ
h and ∇θC

θ,λ
h are bounded.

Therefore, ∇θΛh is bounded. Similarly one can show ∇θΞh

is bounded for h = 0, . . . ,H . The second claim follows.
Let the approximate policy gradient be defined as,

gh(θ) =
∑
s∈S

dθh(s)
∑
a∈A

µθh(s, a)∇θh logµθh(s, a)

×
∑
s′∈S

ph(s, a, s
′)
(
cλh(s, a, s

′) + ΛT
h+1ϕs′ − ΛT

hϕs
)
,

(22)

This is the gradient given in (11), with baseline b(s) :=
V π,λ
h (s), s ∈ S, baring that approximate value functions
V π,λ
h (s) ≈ Λh

Tϕh(s) are used here. The directional deriva-
tive of Γ(·) at point x, along the vector y is defined as,

Γ(x, y)′ = lim
η↓0

Γ(x+ ηy)− x

η
(23)

Let us define the set: κh = {θ ∈ Ryh |Γ(θ, gh(θ))′ = 0}
for h = 0, . . . ,H − 1. This is the set of θ such that the
approximate policy gradient is 0, which means θ is at local
optimum.

Theorem 3: For λ(n) ≡ λ, θh(n), h = 0, . . . ,H − 1
converges to a set κh almost surely.

Proof: The recursion (14) can be written as,

θh(n+ 1) = Γ
(
θh(n) + b(n)

(
gh(θ(n))

+N2
h(n+ 1) + eθ(n)

))
,

(24)

where,

N2
h(n+ 1) = ∇θh logµθh(s, a)

(
cλh(s, a, s

′) + ΛT
h+1ϕs′

−ΛT
hϕs

)
− gh(θ(n)).
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Fig. 1. Comparison of rewards and constraint costs achieved by different algorithms.

The error eθ(n) can be derived from above and eθ(n) → 0
as n → 0 (from Theorem 2). It is easy to see N2

h(n +
1) is uniformly bounded, since Λh and Λh+1 is uni-
formly bounded from Theorem 2. Therefore the martingale
M1(n) =

∑n−1
r=0 b(r)N

2
h(r + 1) converges almost surely

(see Appendix C of [18]). Therefore the tail sum M ′
1 =∑∞

r=n b(r)N
2
h(r+1) → 0 as n→ ∞. Now from Theorem 2,

Λh and Λh+1 are both Lipshitz continuous in θ. Since θ
lies in a compact space, from Assumption 1, ∇2

θµθh(s, a)
is bounded. Therefore from Theorem 5.3.1 of [20], θh
converges to the set κh.
Let (·)−′

be the directional derivative of (·)−
defined as (23). Let us define the set: F = {λ ∈
RM |

(
λ,
∑

s0∈S β(s0)Ξ
(k)
0

T
ϕ0(s0)

)−′

= 0,∀k =
1, . . . ,M}. This set contains all the lagrange parameter λ
for which the approximate constraint violation is 0. Note
that the point Ξ(k)

0 implicitly depends on λ.
Theorem 4: As n → ∞, λ(n) =

(λ(1)(n), . . . , λ(M)(n))T obtained from (17) converges
to a set F almost surely.

Proof: The Lagrange parameter update (17) can be
rewritten as,

λ(k)(n+ 1) =
(
λ(k)(n)− c(n)

(
Ξ
(k)
0

T
ϕ0(s0(n))

+γ(k)(n)
))− (25)

where γ(k)(n) can be derived from above and γ(k)(n) → 0
as n → ∞ (from Theorem 2). Thus (25) is an Euler
discretization with (non-uniform) step-sizes c(n) of the ODE,

λ̇(k)(t) =
( ∑
s0∈S

β(s0)Ξ
(k)
0

T
ϕ0(s0)

)−′

.

Now from an application of Theorem 2, Chapter 2 of [18]
(see the third extension described on pp. 17, Chapter 2, of
[18]), λ(n) converges to F .
Hence by Theorem 2-4, the algorithm converges asymptoti-
cally.

V. EXPERIMENTS

Now that we have proved the convergence of our algo-
rithm, we study the empirical performance of our algorithm
on a randomly generated 2-dimensional Grid World Problem.
We also introduce a deep learning version of our algorithm,
where the value and policy function are parameterized using
a neural network architecture. Along each dimension, at any
instant, the agent can go one step forward or one step back,
or else stay in the same place. So for a 2-dimensional grid,
there are available 3× 3 = 9 actions in each state. As far as
state transitions are concerned, there is a 90% chance that
the agent will go one step in the direction suggested by the
action and a 10% chance that it will randomly move one step
in any of the other directions. The agent collects a reward
if it goes to a particular state. We have a single constraint.
There are bad states, which the agent must avoid and there is
a constraint cost associated with those states. The position of
the rewards and constraints change with time, so the agent
needs to make decisions at each time instant accordingly.
This kind of setup can be applied in applications such as
taxi services, where a driver needs to maximize his/her fare
in a day comprising of say 10 hours and the grid is of the
city in which he/she is driving. The rewards would then
correspond to the fares and the constraints could be on the
level of traffic congestion encountered on the different routes.
The congestion levels are clearly dynamic in nature as they
would naturally change with time.

We let a horizon length of H = 100 for our experiments.
Because of our constrained setup, our objective is to maxi-
mize the rewards while satisfying the inequality constraint.
We name our finite horizon constrained algorithms as FH-
Constrained. We also name our corresponding deep learning
algorithms as NN-Constrained. We compare our algorithm
with Constrained Policy Optimization (CPO) [1] and PPO-
Lagrangian [21], which are the best known algorithms for
Constrained RL. Each comparison is done on two envi-
ronments, one with 2-dimensional state space as input and
another with 3-dimensional input (two dimensions for the
state variable and one dimension for the time instant). The
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first plot in Fig.1 is for the aggregate reward while the second
is for the constraint cost. We take the total reward/constraint
cost of each episode and average the same over the last
10,000 episodes. Each setting is run 5 times with independent
seeds. The red dotted line in the second plot denotes the
constraint threshold of α = 25.

We can see that our algorithm performs better than both
CPO and PPO-Lagrangian as it nearly satisfies the constraint
every time while others do not. Also note that CPO (Env
2) gets more rewards than our algorithms but that comes
at a cost of it violating the constraints by a wide margin.
It is clear from the experiments that constrained algorithms
for infinite horizon problems are not appropriate for finite
horizon settings. Also feeding the time instant with state as
input does not help in these algorithms. In fact, they perform
poorly when the reward and the constraint cost change with
time, unlike our algorithm that easily adapts to such changes.

VI. CONCLUSIONS

We presented the first policy gradient reinforcement learn-
ing algorithm for Finite Horizon Constrained MDPs. One
must adhere to our algorithm when the agent needs to take
time critical decisions, which is evident from our empirical
comparisons with other well known algorithms. Our algo-
rithm involves three timescale schedules and is of the actor-
critic type. We provided the full asymptotic convergence
analysis for our algorithm. The power of our algorithm
comes from using separate parametric functions for each
time instant, and our convergence analysis shows that they
can successfully interact with each other to learn a time
critical task. It will be of interest to analyze the sample
complexity of our constrained three-timescale finite horizon
MDP algorithm. Further, it will be interesting to perform
a finite sample analysis of Actor critic algorithms for Finite
Horzion CMDPs as future work. One may also come up with
sophisticated policy optimization methods such as CPO [1],
for finite horizon MDPs.
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