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Abstract— Competitive resource allocation describes scenar-
ios where multiple agents compete by spending their limited
resources. For these settings, contest games offer a game-
theoretic framework to analyze how players can efficiently
invest their assets. Moreover, for this family of games, the
resulting behavior can be modified through external interac-
tions among the players. For instance, players could be able to
make coalitions that allow budgetary transfers among them,
trying to improve their outcomes. In this work, we study
budgetary transfers in contest games played over networks.
In particular, we aim to characterize the networks and players
that guarantee that a transfer is beneficial for all players in the
coalition. For this, we provide conditions for the existence of
beneficial transfers. In addition, we provide a construction that
guarantees that the benefit of making coalitions is independent
of the graph structure and the chosen player to make an
alliance.

Index Terms— Coalitions, contest games, networks, resource
allocation.

I. INTRODUCTION

Multi-agent resource allocation analysis aims to describe
how agents should expend their limited resources. The in-
herently competitive nature of these scenarios makes them
suitable to applications in security deployment along mul-
tiple infrastructures [1], [2], protection in cyber-physical
systems [3], multi-robot task allocation [4], among others.
Contest games present models where multiple players strate-
gically compete for a finite set of items by spending their
resources on them; as such, we will use contest games
as an appropriate game-theoretic framework for adversarial
resource allocation problems.

Contest games formulations include Colonel Blotto
games [5], [6] and models in advertising campaigns [7],
[8]. While both models present multi-item contests, the
main differences reside in the definition of the winning rule
for each item. In those settings, modeling interconnections
between players and the contested items is relevant to
characterize the resulting behavior in presence of exogenous
interactions. To represent those interactions, contest games
consider that items are enclosed in a network structure. For
instance, we can consider that the items represent physical
locations. Then, the network structure models the possible
paths between the contested items that the players desire to
preserve by investing resources. This setting is appropriate
for security games where the players want to secure paths
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between locations. For this model, equilibrium payoffs and
strategies have been analyzed for two-player General Lotto
Games, a variation of Colonel Blotto Games [9]. In addition,
it could be possible to consider multi-player contests games.
However, players may not compete for all the available items
nor value them equally. These scenarios can be modeled
through an undirected weighted graph where the edges
represent a bilateral conflict of two players for a particular
item. Existence and uniqueness of Nash equilibrium for this
model have been presented for a family of winning rules
similar to the Tullock contest success function [10].

To manipulate the resulting behavior in contest games,
strategic opportunities can be offered to the players such as
changes in the revealed information [11], [12], division of the
players’ assets [13] or alliances with budgetary transfers [14],
[15]. In these alliances, players are able to transfer a portion
of their assets to another player seeking to increase their
own payoffs. Intuitively, giving away resources to others
players can be considered a harmful decision. However, it has
been verified that it could potentially improve the players’
payoffs by making its enemies weaker. However, the effect
of such alliances has not been considered for contest games
on complex networks.

In this work, we analyze coalitions with budgetary trans-
fers for network contest games. In particular, we tackle the
questions: Under which network structures there exists a
beneficial coalition? and Which players are worth making
an alliance with? With this in mind, we list the main
contributions of this document as follows. First, we present
the model for budget-constrained network contest games.
Second, we provide an equivalent formulation using per unit
cost for the assets that allow us to define the equilibrium
strategies for all players. With them, we can recover the
equilibrium payoffs for the budget constrained formulation
and the equivalent budgets for the players. Then, we present
sufficient conditions to ensure the existence of a transfer that
benefits both players in the coalition. Moreover, we offer a
construction for any contest game that ensure the existence
of such transfer with any player that is not contesting the
same item. Therefore, the existence of beneficial coalitions
is independent of the network and the chosen player to make
the alliance. Finally, we use our results to build instances
where there exists a beneficial transfer for the player who
gives part of its budget.

The remainder of the paper is organized as follows. In
Section II we present the model for the budget-constrained
networked contest game. Section III presents the per unit cost
parametrization of the game and the resulting equilibrium

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 2220



behavior. In Section IV we present conditions to assert
the existence of a beneficial transfer independently of the
network structure of the game. Then, in Section V, we
show numerical simulations to verify existence of beneficial
transfers. The proofs of our results are provided in the
Appendix.

II. MODEL

A weighted undirected graph is defined as a tuple G =
(P, E) where P = {1, · · · , n} is the set of nodes and E ⊂
V × V is the edge set that describes the interaction between
nodes. In a networked contest game P represent the set of
players, each one with a budget of Bi > 0 resources to
spend. Similarly, each edge (i, j) ∈ E represents an item
contested by two different players with value vi,j = vj,i ≥ 0
associated to it. For every player, the set of available actions
is,

Ai :=

xi ∈ Rni

≥0 :
∑
j∈Ni

xi,j = Bi

 .

where Ni := {j : vi,j > 0} is the neighbors set of the
player i and ni = |Ni|. Thus, xi = (xi,1, · · · , xi,n) ∈ Ai

denotes a possible allocation of resources for player i among
all its contested items with the constraint that the total spent
resources does not exceed its budget Bi. For any strategy
profile x = (x1, · · · , xn) with xi ∈ Ai the player i’s payoff
is given by,

Ui(x) =
∑
j∈Ni

vi,jα (xi,j , xj,i) , (1)

where xi,j defines the resources spent by player i int the item
constested with player j and α (xi,j , xj,i) ∈ [0, 1] defines the
probability of player i to win the item (i, j). Therefore, the
utility in Equation (1) can be interpreted as the expected
value obtained along all contested items for player i given
all players’ efforts x. In this work, we focus on the Tullock
winning rule [7], [10], [16], described as,

α (xi,j , xj,i) =
xi,j

xi,j + xj,i
. (2)

To avoid an ill definition of the winning rule in Equa-
tion (2) we need to extend its definition using a tie-braking
rule such as α(0, 0) ∈ (0, 1). However, this extension does
not change the results presented in this paper.

For these games, we are interested in the emergent behav-
ior in competitive environments. In particular, we consider
strategies that are stable under other player’s decisions.
For this, we focus our analysis on the Nash equilibrium
strategies. Those are strategy profiles x∗ = (x∗

1, · · · , x∗
n)

such that,

Ui(x
∗
i , x

∗
−i) ≥ Ui(xi, x

∗
−i) ∀xi ∈ Ai and i ∈ P,

where x−i = (x1, · · · , xi−1, xi+1, · · · , xn). This means that
there is no incentive for any player to unilaterally deviate
from x∗. Note that the emerging behavior, characterized by
the equilibrium allocation x∗, depends on the parameters of

the contest game: the budgets of the players Bi for i ∈ P
and the values of the items vi,j for (i, j) ∈ E .

Given this dependence, the players may consider to make
coalitions to affect the resulting equilibrium strategies. In
particular, we define coalitions as budget transfers between
players. That is, for (a, b) ∈ P2 we can define a τ ∈ [0, Ba)
such that B̃a = Ba − τ and B̃b = Bb + τ . With the new set
of budgets B̃, a new equilibrium allocation x̃∗ will emerge,
affecting the obtained payoffs for all the players in the
network. We say that a transfer τ is mutually beneficial if the
new equilibrium payoff is better than the originally obtained
with budgets B for players a and b, i.e., Ua (x̃

∗) > Ua(x
∗)

and Ub (x̃
∗) > Ub(x

∗).

Intuitively, an increased budget should be beneficial to the
receiving player. However, it is not clear if the payoff of
the player who gives resources can increase. With this in
mind, let us present the following numerical example with a
mutually beneficial transfer.

Let us consider the 3-player contest game with
(B1, B2, B3) = (6, 6, 1), v1,2 = 2 and v2,3 = 10 as
shown in Figure 1a. With these values of B and v the
players can define their equilibrium strategy x∗ and receive
their corresponding payoff U1(x

∗) ≈ 1.7657 and U3(x
∗) ≈

1.6119. Now, consider the budget transfer τ = 1 from
player 1 to player 3, as in Figure 1b. As expected, player 3
significantly increases its equilibrium payoff since it double
its budget, obtaining a payoff U3(x

∗) ≈ 2.6263. More
importantly, the increased budget of player 3 alters others
players behavior. From this change, player 1 also receives
a higher payoff U1(x

∗) ≈ 1.8571. Therefore, there exists a
mutually beneficial transfer for the setting in Figure 1.
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U1(x
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∗) = 1.6119

x∗
2,1 = 0.7961 x∗
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U1(x
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x∗
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2,3 = 5.6152

(b)

Fig. 1. Numerical Example of Contest Game in a Network. (a) Without
transfer between players. (b) With a mutually beneficial transfer.

This presented example suggests there exists cases when
giving some assets to another player could potentially in-
crease the giving player’s payoff. Therefore, two players
can be motivated to form a coalition that allows them to
transfer resources between them. However, it is not known
if situations where beneficial transfers for both players will
ever present themselves. With this in mind, we devote the rest
of the paper to determine if there exists items valuations vi,j
and budgets Bi for a given networked contest game G such
that there is a mutually beneficial transfer between players
a and b.
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III. FROM BUDGET CONSTRAINED TO PER UNIT COST
CONTEST GAMES

In this section we aim to characterize the equilibrium
strategies of players in a networked contest game and their
respective payoffs. Let us start by analyzing the best response
for each player defined as,

BR (x−i) := argmax
xi∈Ai

Ui(xi, x−i).

The equality constraint included in Ai could be removed
through the use of a Lagrange multiplier λi as follows,

BR (x−i) = argmax
xi∈Ai

Ui(xi, x−i),

= argmax
xi∈R

ni
≥0

Ui(xi, x−i)− λi

∑
j∈Ni

xi,j + λiBi,

= argmax
xi∈R

ni
≥0

Ui(xi, x−i)− λi

∑
j∈Ni

xi,j .

Therefore, we can reformulate the networked contest game
in a setting where the players, instead of having a limited
budget Bi, have an unlimited budget but they are charged
λi > 0 per unit of resources spent. With this in mind, let us
define the alternative payoffs,

Ûi(xi, x−i) = Ui(xi, x−i)− λi

∑
j∈Ni

xi,j . (3)

where λi is the cost of allocating resources for player i.
We called the formulation with the payoffs in Equation (3)
the per unit cost parametrization of the networked contest
game. While both formulations have the same best response,
for the per unit cost parameterization we can find the Nash
equilibrium, the equilibrium payoff and the equivalent budget
for each player.

Lemma 1 For the per unit cost contest game with costs λi

and payoffs defined as in Equation (3) the Nash equilibrium
is described by the allocations,

x∗
i,j = vi,j

λj

(λi + λj)
2 .

Moreover, the equilibrium payoffs for the equivalent budget
constrained contest game are,

U∗
i := Ui(x

∗) =
∑
j∈Ni

vi,j
λj

λi + λj
, (4)

with equivalent budgets,

Bi =
∑
j∈Ni

vi,j
λj

(λi + λj)
2 . (5)

Lemma 1 presents two important results: we obtain an
entire characterization of the Nash equilibrium for per unit
cost contest games and we find an equation that find budgets
using per unit costs. Now, in order to establish equivalence
between the two games we need to ensure that we can find
the costs λi from the budgets Bi.

Remark 1 The mapping B : Rn
>0 → Rn

>0 defined by
Equation (5) is locally invertible everywhere in its domain.

With Remark 1 we proved equivalence between budget
constrained contest games and per unit cost contest games.
While the budgetary transfers are defined in the budget
constraint model, without losing generality, we will analyze
those budgetary transfers using the per unit cost parameter-
ization.

IV. EXISTENCE OF POSITIVE TRANSFER IN NETWORKED
CONTEST GAMES

In this section, we analyze how budgetary transfers τ
between two players in networked contest games could
potentially be beneficial for the players involved. Moreover,
we can ensure that the existence of a beneficial transfer is
independent of the conflict network G = (V, E) that support
the contest game. This means that there exist strategic
opportunities to increase the payoff for a particular player
through coalitions with players that are beyond its local
network. With that in mind, let us present our main result as
follows,

Theorem 1 For any networked contest game supported in a
connected graph G = (P, E) and any pair of players (a, b) ∈
P2 such that (a, b) /∈ E there exist valuations vi,j for (i, j) ∈
E and per unit costs λi for i ∈ P such that transferring
resources from player a to player b is beneficial to player a.

In order to verify Theorem 1 we will characterize con-
ditions to ensure that the equilibrium payoff for a player i
strictly increases for a given transfer τ . Then, for a given
graph, we build an instance of a networked contest game
such that a transfer is beneficial to the giving player.

Without losing generality, let us assume that the budget
transfer happens from player 1 to player n and (1, n) /∈ E .
Then, for any transfer τ , we can ensure that the new budgets
B̃ are infinitesimally changing according to the vector,

∂B̃

∂τ
= (−1, 0, · · · , 0, 1) , (6)

at τ = 0. Using this, we can state conditions on the
valuations and per unit cost that guarantee the existence of
a positive transfer as follows,

Lemma 2 For any player i ∈ P , there exists a budget
transfer τ > 0, with vector ∂B̃

∂τ as in Equation (6), that is
beneficial to player i if,

∂U∗
i

∂τ
= ∇⊤

λU
∗
i J−1

B/λ(λ)
∂B̃

∂τ
> 0 (7)

where ∇λU
∗
i is the gradient of U∗

i , as in Equation (4), with
respect to λ and JB/λ(λ) is the Jacobian matrix of the map
B : Rn

>0 → Rn
>0 defined in Equation (5).

Remark 2 Since we are fixing the vector ∂B̃
∂τ as in Equa-

tion (6) then, condition in Equation (7) can be written as
qn > q1 where qk is the kth entry of the vector that solves
the equation J⊤B/λ(λ)q = ∇λU

∗
i .

Using the condition presented in Lemma 2 we can build
an instance where a beneficial transfer exists for an arbitrary
connected graph. Note that for any connected graph there
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exists a path between player 1 and player n. Therefore, it is
sufficient to guarantee existence of a beneficial transfer form
player 1 to player n for the line subgraph that connects them.
For line graphs, condition in Lemma 2 can be simplified as
follows,

Lemma 3 For a n-line graph with n > 2, a transfer from
player 1 to player n is beneficial to player 1 if,

− (λ1 + λ2)

n−1∏
i=2

(λi − λi+1) >

2λn−1

n−1∏
i=2

2

[
λi−1 +

vi,i+1

vi−1,i

(λi−1 + λi)
3

(λi + λi+1)
3 λi+1

]
,

(8)

with 3λ1 ≥ λ2 ≥ λ1.

Even if the condition for the existence of a positive transfer
is simplified in Lemma 3, it is not clear if there exist a
mutually beneficial transfer exist for any graph structure.
However, we can ensure the existence of an instance for
any line subgraph.

Remark 3 For any n-line graph with n > 2, there is at
least one instance that achieve conditions stated in Lemma 3.

Hence, using results in Lemma 3 and Remark 3, we can
assert result in Theorem 1. This means that coalitions, in
terms of budgetary transfers, represent an strategic opportu-
nity for every player to improve their payoff. Moreover, the
existence of such mutually beneficial transfer is independent
of the graph G and the chosen player to make the coalition.

V. SIMULATIONS

In this section, we present numerical simulations to high-
light the behavior presented in Section IV. First, let us revisit
the scenario presented in Figure 1a. For this set of parameter
we already show a value of τ > 0 that increases player’s 1
payoff in Figure 1b. Now, we are going to use result in
Lemma 2 to verify the existence of such beneficial transfer.
In Figure 2 we show how the player’s 1 equilibrium payoff
U1(x

∗) evolves with respect to τ .

Fig. 2. Equilibrium payoff for Player 1 as a function of the budgetary
transfer τ for a 3-line graph. The dashed line represent the equilibrium
payoff with τ = 0. The region where a transfer is beneficial for Player 1 is
highlighted in green, while the red region highlights the values of τ where
is not beneficial.

Notice that the value of U1(x
∗) increases for small values

of τ . This is equivalent to ensure that the rate of change
of U1(x

∗) is strictly positive with respect to τ when τ
is close enough to 0. Therefore, the condition presented
in Equation (7) is a sufficient condition to guarantee the
existence of beneficial budgetary transfer.

Now, we use the result presented in Lemma 3 and Re-
mark 3 to build an instance of a networked contest game
supported in a 4-line graph where a beneficial transfer exist.
With this in mind, we fix different parameters such that
conditions are satisfied. Using the procedure described in
the proof of Remark 3 we obtain the values in Table I.

TABLE I
PARAMETERS FOR A 4-LINE GRAPH.

Agent i βi λi Ki vi,i+1

1 - λ0 - v0
2 3.9 3λ0 0.09 0.09v0
3 2.5 11λ0 0.12 0.0108v0
4 0.9 λ0 - -

Note that in Table I the values for the per unit cost and
the valuations are parameterized by λ0 and v0 respectively.
Therefore, values in Table I offer a family of instances
where the existence of a beneficial transfer is guaranteed.
Similar to previous numerical example, we plot the player’s
1 equilibrium payoff U1(x

∗) for different values of τ . For
λ0 = 0.005 and v0 = 50 we observe the expected increase
for the giving player payoff as shown in Figure 3.

Fig. 3. Equilibrium payoff for Player 1 as a function of the budgetary
transfer τ for a 4-line graph. The dashed line represent the equilibrium
payoff with τ = 0. The region where a transfer is beneficial for Player 1 is
highlighted in green, while the red region highlights the values of τ where
is not beneficial.

VI. CONCLUSIONS

In this work we study the effect of coalitions, in terms
of budgetary transfers, for networked contest games. Using
an equivalent game formulation, we provide sufficient con-
ditions to check if a potential transfer is beneficial for both
players involved in the coalition. With these conditions, we
were able to provide a game construction were a beneficial
transfer exists for any two players who are not direct ene-
mies. With it, we were able to assert that the existence of
beneficial transfers is independent to the network where the
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game is played but the budgets of the players and the value
of the items they are fighting for. This means that, for every
player in a networked contest game, there are potentially
strategic opportunities to create alliances with players that
are significantly beyond its local network.

While we have characterized the existence of beneficial
transfer for networked contest games, there still are a broad
range of questions to address in this area. For instance, algo-
rithms to design budgetary transfers that guarantees the best
performance in equilibrium conditions can be considered. In
addition, more altruistic alliance models can be considered
for future analysis.
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APPENDIX

A. Proof of Lemma 1

For any (i, j) ∈ E note that the optimality conditions
∂Ûi

∂xi,j
= 0 and ∂Ûj

∂xj,i
= 0 imply that,

vi,j
λi

x∗
j,i =

(
x∗
i,j + x∗

j,i

)2
=

vi,j
λj

x∗
i,j .

Therefore, solving for x∗
i,j we obtain,

x∗
i,j = vi,j

λj

(λi + λj)
2 ,

for any (i, j) ∈ E . Replacing the definition of x∗
i,j in

Equation (1) and the budget constraint we obtain,

Ui(x
∗) =

∑
j∈Ni

vi,j
x∗
i,j

x∗
i,j + x∗

ji

=
∑
j∈Ni

vi,j
λj

λi + λj
.

Bi =
∑
j∈Ni

x∗
i,j =

∑
j∈Ni

vi,j
λj

(λi + λj)
2 ,

which matches the expressions in Lemma 1.

B. Proof of Remark 1

In order to verify that the map described in Equation (5) is
locally invertible in its domain we build its Jacobian matrix
JB/λ(λ) as,[

JB/λ(λ)
]
i,i

=
∂Bi

∂λi
= −2

∑
j∈Ni

vi,j
λj

(λi + λj)
3 ,

and,[
JB/λ(λ)

]
i,j

=
∂Bi

∂λj
= vi,j

(λi − λj)

(λi + λj)
3 = −

[
JB/λ(λ)

]
ji
.

Note that for any q ∈ Rn,

q⊤JB/λ(λ)q =
1

2
q⊤
(
JB/λ(λ) + J⊤B/λ(λ)

)
q

= q⊤ diag
([
JB/λ(λ)

]
ii

)
q < 0,

for any λ ∈ Rn
>0. Therefore, the Jacobian matrix is negative

definite and non-singular for any λ ∈ Rn
>0. By the inverse

function theorem, we can ensure that B : Rn
>0 → Rn

>0 as
defined by Equation (5) is locally invertible everywhere in
its domain.

C. Proof of Lemma 2

Note that if ∂U∗
i

∂τ > 0 at τ = 0 then there exists a τ > 0
that increases the value of U∗

i . Using the chain rule,

∂U∗
i

∂τ

∣∣∣∣
τ=0

=
∑
k

∂U∗
i

∂B̃k

∣∣∣∣∣
B̃k=Bk

∂B̃k

∂τ

∣∣∣∣∣
τ=0

= ∇⊤
BU

∗
i

∂B̃

∂τ

(9)
with ∇BU

∗
i is the gradient of U∗

i with respect to B. Using
the definition of the Jacobian matrix we have,

∇λU
∗
i = J⊤B/λ(λ)∇BU

∗
i

⇐⇒ ∇BU
∗
i =

[
J⊤B/λ(λ)

]−1

∇λU
∗
i .

(10)

Therefore, using Equations (9) and (10) we obtain,

∂U∗
i

∂τ
> 0 ⇐⇒ ∇⊤

λU
∗
i J−1

B/λ(λ)
∂B̃

∂τ
> 0.
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D. Proof of Lemma 3

From Remark 2 we know that a transfer is beneficial to
player 1 if qn > q1 with,

J⊤B/λ(λ)q = ∇λU
∗
1 ⇐⇒ −J⊤B/λ(λ)q = −∇λU

∗
1 .

Let us define A := −J⊤B/λ(λ) and b := −∇λU
∗
1 .. Then, q

is the solution of the linear system Aq = b. Using Cramer’s
rule and noticing that A ≻ 0 we obtain,

qn > q1 ⇐⇒ det(An)

det(A)
>

det(A1)

det(A)

⇐⇒ 2

(λ1 + λ2)
det(An) >

2

(λ1 + λ2)
det(A1)

⇐⇒ det(Ân) > det(Â1)

where Ai is obtained by replacing the ith column of matrix A
with vector b and Âi is obtained by replacing the ith column
of matrix A with vector 2

(λ1+λ2)
b. The value of det(Ân) can

be obtained using the Laplace expansion,

det(Ân) = (−1)n+1

[
−2

(λ1 + λ2)

∂U∗
1

∂λ1

](
−∂B1

∂λ2

) n−1∏
i=2

(
− ∂Bi

∂λi+1

)

+ (−1)n+2

[
−2

(λ1 + λ2)

∂U∗
1

∂λ2

](
−∂B1

∂λ1

) n−1∏
i=2

(
− ∂Bi

∂λi+1

)

=

[
2(−1)n

(λ1 + λ2)

n−1∏
i=2

(
− ∂Bi

∂λi+1

)][
∂U∗

1

∂λ2

∂B1

∂λ1
− ∂U∗

1

∂λ1

∂B1

∂λ2

]

=
2

(λ1 + λ2)

[
n−1∏
i=2

(
∂Bi

∂λi+1

)][
∂U∗

1

∂λ2

∂B1

∂λ1
− ∂U∗

1

∂λ1

∂B1

∂λ2

]
.

Note that,

∂U∗
1

∂λ2

∂B1

∂λ1
− ∂U∗

1

∂λ1

∂B1

∂λ2

=

[
v1,2λ1

(λ1 + λ2)
2

][
−2v1,2λ2

(λ1 + λ2)
3

]
−

[
−v1,2λ2

(λ1 + λ2)
2

][
v1,2 (λ1 − λ2)

(λ1 + λ2)
3

]

=
v21,2λ2

(λ1 + λ2)
5 [−2λ1 + (λ1 − λ2)] = −

v21,2λ2

(λ1 + λ2)
4 .

Then,

det(Ân) = −
2v21,2λ2

(λ1 + λ2)
5

n−1∏
i=2

vi,i+1
(λi − λi+1)

(λi + λi+1)
3

On the other hand, note that if 3λ1 ≥ λ2 ≥ λ1 then Â1

is diagonally dominant with positive diagonal entries. Thus,
we can upper bound det(Â1) using Hadamard’s inequality,

det(Â1) ≤
n∏

i=1

[
Â1

]
i,i

=

[
2v1,2λ2

(λ1 + λ2)
3

]
n∏

i=2

(
−∂Bi

∂λi

)

=

[
2v1,2λ2

(λ1 + λ2)
3

][
2vn−1,nλn−1

(λn−1 + λn)
3

]
n−1∏
i=2

2

(
vi−1,iλi−1

(λi−1 + λi)
3 +

vi,i+1λi+1

(λi + λi+1)
3

)

Therefore, we can guarantee det(Ân) > det(Â1) if,

−v1,2

(λ1 + λ2)
2

n−1∏
i=2

vi,i+1
(λi − λi+1)

(λi + λi+1)
3 >

2vn−1,nλn−1

(λn−1 + λn)
3

n−1∏
i=2

2

(
vi−1,iλi−1

(λi−1 + λi)
3 +

vi,i+1λi+1

(λi + λi+1)
3

)

⇐⇒ −v1,2

(λ1 + λ2)
2

n−1∏
i=2

(λi − λi+1) >

2λn−1

[
v1,2

(λ1 + λ2)
3

]
n−1∏
i=2

2

[
λi−1 +

vi,i+1

vi−1,i

(λi−1 + λi)
3

(λi + λi+1)
3 λi+1

]

⇐⇒ − (λ1 + λ2)
n−1∏
i=2

(λi − λi+1) >

2λn−1

n−1∏
i=2

2

[
λi−1 +

vi,i+1

vi−1,i

(λi−1 + λi)
3

(λi + λi+1)
3 λi+1

]
which matches the expression in Equation (8).

E. Proof of Remark 3

Note that we can decompose the inequality in Equation (8)
as follows,

λ1 + λ2 > β2

[
λ1 +K2

(λ1 + λ2)
3

(λ2 + λ3)3
λ3

]
, (11)

λ3 − λ2 > β3

[
λ2 +K3

(λ2 + λ3)
3

(λ3 + λ4)3
λ4

]
, (12)

λi−1 − λi > βi

[
λi−1 +Ki

(λi−1 + λi)
3

(λi + λi+1)3
λi+1

]
, (13)

∀i ∈ {4, · · · , n− 1} ,
λn−1 − λn > βnλn−1. (14)

where Ki =
vi,i+1

vi−1,i
and

∏n
i=2 βi > 2n−1. For Equations (11),

(12) and (13) we can obtain conditions on Ki as follows,

K2 <
1

β2λ3

(λ2 + λ3)
3

(λ1 + λ2)3
[(1− β2)λ1 + λ2] ,

K3 <
1

β3λ4

(λ3 + λ4)
3

(λ2 + λ3)3
[λ3 − (1 + β3)λ2] ,

Ki <
1

βiλi+1

(λi + λi+1)
3

(λi−1 + λi)3
[(1− βi)λi−1 − λi] ,

∀i ∈ {4, · · · , n− 1} .

Thus, we can build the values vi,j using the βi, λi and
the conditions on Ki. Positivity of Ki and assumptions in
Lemma 3 give us the following conditions for the βi,

λ2 > (β2 − 1)λ1,

3λ1 ≥ λ2 ≥ λ1,

λ3 > (1 + β3)λ2,

(1− βi)λi−1 > λi, ∀i ∈ {4, · · · , n} ,
n∏

i=2

βi > 2n−1.

Therefore, we can pick a sequence of βi and then define
the per unit costs λi from it. For instance, the sequence β2 =
2, β3 > 22n−5 and βi =

1
2 for i ∈ {4, · · · , n} satisfies the

conditions above.
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