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Abstract— As cyber-physical systems form the core of many
critical infrastructures, ensuring their safety is essential. The
sensor measurements of networked cyber-physical systems can
potentially be compromised, resulting in the misbehavior of
the overall system. Indeed there have been a number of such
attacks. Dynamic Watermarking is a proactive method whose
goal is to detect such cyber attacks. It superimposes a small
secret stochastic excitation onto signals in the system, such
as control inputs of actuators or sensor measurements. Based
on an examination of the signals purportedly returned, for
example, by the sensors, it determines if the measurements have
been tampered with. Previous theory for detection guarantees
provided by Dynamic Watermarking has been restricted to
linear stochastic systems.

This paper examines the Dynamic Watermarking method
for nonlinear stochastic systems. We show that Dynamic Wa-
termarking for detecting attacks can be extended to certain
systems in backstepping form. We present the analytical proofs,
as well as simulation results.

I. INTRODUCTION

Cyber-Physical Systems (CPS) integrate sensing, compu-
tation, control, and networking with physical components.
They have become an essential part of critical infrastructures
such as transportation, energy, and industrial control systems.
However, being networked, the systems are susceptible to
cyber attacks on network nodes or links. Sensors in par-
ticular are vulnerable nodes in the system. Both sensor
measurements and information flows from the sensors can
be compromised, leading to malfunctioning of the system.
There are several kinds of attacks, such as false data injection
[1], replay attack [2], etc. Examples can be found in [3]–
[5]. Being at the core of critical infrastructures also means
that any malfunction of the CPS can result in great damage.
Therefore, the safety of CPS becomes crucial.

The watermarking method [6]–[8] is one of the methods
used for cyber security of CPS. It is a method that injects a
private signal into the system. In this work, the private signal
is superimposed onto a nominal control input. The private
signal is typically a random process whose statistics can be
disclosed to others, but whose waveform is kept secret. If
the system is not under attack, the private signal should
appear in the returned sensor measurement, appropriately
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transformed according to the system’s parameters. Dynamic
Watermarking [8] should thereby be able to detect attacks.
However, the mathematical proofs have been restricted to
linear stochastic systems.

Nonlinear stochastic systems can be linearized if they
operate around a fixed setpoint. In that case, the Dynamic
Watermarking method for linear stochastic systems may be
sufficient. However, if the system has a time-varying setpoint,
or it has a large excursion, then it is necessary to design
a Dynamic Watermarking method specifically for nonlinear
stochastic systems.

This paper addresses the challenge of detecting cyber
attacks in nonlinear stochastic control systems. We de-
scribe the watermarking method for discrete-time stochastic
systems in backstepping form. We prove that it can be
used to detect any nonzero power distortions of sensor
measurements. We also present simulation results on false
data injection attacks and replay attacks.

II. RELATED WORK

Aside from the watermarking method, other methods have
been proposed to detect cyber attacks on cyber-physical
systems. In [9], a study of delay insertion attacks on the
feedback path has been conducted. A method using recursive
prediction error has been proposed to detect such attacks.
Additionally, in [10], a reachable set-based detection method
targeting false data injection attacks has been proposed. A
more comprehensive survey of the literature is provided in
[11].

Regarding the watermarking method, various aspects need
additional consideration. For example, since the watermark-
ing method injects a private signal into the system, the
magnitude of the signal can impact both normal system
behavior and attack detection performance. If the signal
size is significant, it may cause significant fluctuations in
output measurements, thereby affecting system performance.
Conversely, if the signal is too small, it may not be detectable
in the output measurement, or there could be a large detection
delay. In [12], a method is proposed to minimize the impact
of the watermark on the system while maximizing attack
detection performance.

In [13], Dynamic Watermarking has been applied to a par-
ticular nonlinear system - a ”bicycle model” for vehicles. The
authors demonstrate that as long as the variance of the noise
and watermark remains bounded, dynamic watermarking is
effective. In [14], a Dynamic Watermarking method that can
be used for linear time-varying systems is proposed.
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The majority of the works mentioned above focus on linear
systems. Applying these methods to nonlinear systems with
time-varying setpoints is challenging. This work studies a
general method that can be applied to nonlinear stochastic
systems.

III. DYNAMIC WATERMARKING

In this section, a mathematical proof of how Dynamic
Watermarking can be applied to two important classes of
nonlinear stochastic dynamical systems is presented. Con-
sider a multiple-input–multiple-output (MIMO) nonlinear
system with additive Gaussian noise, described by

x[t+ 1] = f(x[t]) +Bu[t] + w[t+ 1], (1)

where x ∈ Rn, u ∈ Rm, B ∈ Rn×mand {w} is i.i.d.
Gaussian distributed random vector ∼ N(0, σ2

wI). The case
where f(x[t]) is a linear function has been covered in [8].
Let the history dependent control policy intending to be
applied on the ith input be gi = (gi1, g

i
2, ..., g

i
t, ...), with the

input at time ui[t] = git(xt) where xt := (x[0], x[1], ..., x[t]).
However, the actuator does not have access to xt; it only
has access to the reported output measurements, denoted
as zt. If x[t] ≡ z[t], i.e., x[t] = z[t] for all t, the reported
output measurements are honest, but we interested in the
case where zt ̸≡ xt, i.e., a malicious agent is reporting false
measurements.

To implement Dynamic Watermarking, a random signal
ei[t] called ”watermark” is superimposed onto the ith input
git(z

t) of the actuator. The watermark is a white Gaussian
sequence with variance σ2

e , i.e., i.i.d. ∼ N(0, σ2
e). Also ei[t]

is independent of ej [k] for (i, t) ̸= (j, k), x[m], z[m] for
m ≤ t, and for all w. The values of ei[t] are only known to
the actuator. By adding ei[t], the input of the system becomes

ui[t] = git(z
t) + ei[t]. (2)

So the non-linear system with watermark injected is

x[t+ 1] = f(x[t]) +Bgt(zt) +Be[t] + w[t+ 1]. (3)

The actuator does not directly measure the state x[t].
Rather it receives a measurement z[t] purported to be that
of the state. Using (3) as a touchstone, the honest actuator
subjects the reported measurements z[t] to the following two
tests:

Test 1: Is

lim
T→∞

1

T

T−1∑
k=0

(z[k + 1]− f(z[k])−Bgk(zk))

(z[k + 1]− f(z[k])−Bgk(zk))T
?
= σ2

eBBT + σ2
wI.

(4)

Test 2: Is

lim
T→∞

1

T

T−1∑
k=0

ei[k](z[k + 1]− f(z[k])−Bgk(zk))

?
= B.,iσ

2
e .

(5)

The above asymptotic tests can be converted in standard
ways to finite-time statistical χ2-tests.

Define

v[t+ 1] := z[t+ 1]− f(z[t])−Bgt(zt)−Be[t]− w[t+ 1].

If the reported measurements are honest, which means
z[t] ≡ x[t], then v[t] ≡ 0. The following proof of Theorem
1 is a straight forward extension of the proof in [8] which
replaces Az[t] with f(z[t]).

Theorem 1: If {z[t]} passes tests (4) and (5), then

lim
T→∞

1

T

T∑
k=1

||v[k]||2 = 0. (6)

Proof: Since {z[t]} satisfies (5). ∀i ∈ {1, 2, ...,m}, it
can be written as

lim
T→∞

1

T

T−1∑
k=0

ei[k](v[k + 1] +Be[k] + w[k + 1])

= B.,iσ
2
e .

It follows that for all i ∈ {1, 2, ...,m}

lim
T→∞

1

T

T−1∑
k=0

ei[k]v[k + 1] = 0.

Therefore,

lim
T→∞

1

T

T−1∑
k=0

e[k]vT [k + 1] = 0. (7)

Since {z[t]} also satisfies (4), it can be written as

lim
T→∞

1

T

T−1∑
k=0

(v[k + 1] +Be[k] + w[k + 1])

(v[k + 1] +Be[k] + w[k + 1])T = σ2
eBBT + σ2

wIn.

(8)

Using (7), and the fact that w[k + 1] is independent of e[k],
the above can be written as

lim
T→∞

1

T

T−1∑
k=0

(v[k + 1]w[k + 1]) + (v[k + 1]w[k + 1])T

+ (v[k + 1]vT [k + 1]) = 0.

(9)

Let Sk+1 be the σ−algebra generated by
(xk+1, zk+1, ek−1). Since

Be[k] + w[k + 1] = x[k + 1]− f(x[k])−Bgk(zk)), (10)

it is Sk+1 measurable. Therefore, ŵ[k + 1] := E[w[k +
1]|Sk+1] = E[w[k + 1]|Be[k] + w[k + 1]].

The conditional mean estimate given the Gaussian distri-
butions of w and e is

ŵ[k + 1] = σ2
w(σ

2
eBBT + σ2

wI)
−1(Be[k] + w[k + 1])

= Kw(Be[k] + w[k + 1]).
(11)

Since e[k] is Sk+2 measurable, it follows that w[k + 1] and
v[k+1] are also Sk+2 measurable. Let w̃[k] := w[k]− ŵ[k].
Then (w̃[k + 1], Sk+2) is a Martingale difference sequence.
From the Martingale Stability Theorem [15], we have
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T−1∑
k=0

w̃[k + 1]vT [k + 1] =

o(
∑T−1

k=0 v21 [k + 1]) . . . o(
∑T−1

k=0 v2p[k + 1])

o(
∑T−1

k=0 v21 [k + 1]) . . . o(
∑T−1

k=0 v2p[k + 1])

... . . .
...

o(
∑T−1

k=0 v21 [k + 1]) . . . o(
∑T−1

k=0 v2p[k + 1])


+O(1)

(12)

where vi[k + 1] denotes the ith element of v[k + 1], and o
and O denote little-o and big O order notation, respectively.
Using the above, we have

w[k + 1] = ŵ[k + 1] + w̃[k + 1]

= Kw(Be[k] + w[k + 1]) + w̃[k + 1].
(13)

Based on the assumption that the rank of B holds, it
follows that Kw has all eigenvalues strictly less than unity.
Therefore, we have:

w[k + 1] = (I −Kw)
−1KwBe[k + 1] + (I −Kw)

−1w̃[k + 1].
(14)

Substituting this into (9), the first two terms can be
simplified using (7) and (12), and the third term can be
expanded as

T−1∑
k=0

v[k + 1]vT [k + 1] =



∑T−1
k=0 v21 [k + 1] . . .

∑T−1
k=0 v1[k + 1]vn[k + 1]∑T−1

k=0 v2[k + 1]v1[k + 1] . . .
∑T−1

k=0 v2[k + 1]vn[k + 1]

... . . .
...∑T−1

k=0 vn[k + 1]v1[k + 1] . . .
∑T−1

k=0 v2n[k + 1]

 .

(15)

From the Cauchy-Schwarz inequality,(
T−1∑
k=0

v1[k + 1]v2[k + 1]

)2

≤ (

T−1∑
k=0

v21 [k+1])(

T−1∑
k=0

v22 [k+1]).

(16)
Therefore, all the non-diagonal terms can be ignored.

Equating the qth entry along the diagonal, we have

T−1∑
k=0

v2q [k + 1] + o(

T−1∑
k=0

(v2q [k + 1]) = o(T ). (17)

Since this is true for all q ∈ {1, 2, ..., n}, dividing the
above by T , and limiting T → ∞ completes the proof.

Noting that z[t+1] = f(z[t]) +B(gt(zt) + e[t]) + (w[t+
1]+]v[t + 1]), the implication is that the adversary can at
best additively corrupt the ambient noise {w[t]} by a signal
{v[t]} of zero power if it is to stay undetected.

IV. NONLINEAR STOCHASTIC SYSTEMS

In the previous section, it was proved that Dynamic
Watermarking can detect any attacks for which {v[t]} is of
non-zero power provided the nonlinear stochastic system is
representable in the form depicted in (1). In this section,
we show that there are two kinds of systems, discrete-time
versions of backstepping type, that can be so represented.

A. Backstepping

Motivated by the strict-feedback form for backstepping
[16], [17], we consider the Euler version of such a system
with step size h. We also allow for each state to have a white
measurement noise wi, a Gaussian distributed random vector
∼ N(0, σ2

w). First we examine the case below where each
gi is a constant:

xi[t+ 1] = xi[t] + h(fi(x1[t], ..., xi[t]) + gixi+1[t])

+ wi[t+ 1],
(18)

for 1 ≤ i ≤ n− 1, and

xn[t+ 1] = xn[t] + h(fn(x1[t], ..., xn[t]) + gnu[t])

+ wn[t+ 1].
(19)

By rearranging the (18,19) it can be written in the follow-
ing form, which is of the same form of (1).


x1[t+ 1]
x2[t+ 1]

...
xn−1[t+ 1]
xn[t+ 1]

 =


0
0
...
0

hgnu[t]

+


w1[t+ 1]
w2[t+ 1]

...
wn−1[t+ 1]
wn[t+ 1]



+


x1[t] + h(f1(x1[t]) + g1x2[t])

x2[t] + h(f2(x1[t], x2[t]) + g2x3[t])
...

xn−1[t] + h(fn−1(x1[t], ..., xn−1[t]) + gn−1xn[t])
xn[t] + hfn(x1[t], ..., xn[t])

 .

(20)

This system in ”strict-feedback” form can be stabilized
by applying the discrete version of backstepping recur-
sively. Therefore, for those discrete-time systems that can
be stabilized by backstepping and have constant coefficients
g1, g2, ..., gn, Dynamic Watermarking can be applied to de-
tect attacks.

V. SIMULATION RESULTS

In this section, we consider a specific example of a
nonlinear stochastic system on which we evaluate Dynamic
Watermarking. The Tunnel-Diode Circuit depicted in Figure
(1) is a system that consists of a resistor, an inductor, a
capacitor, and a diode. It is a system with two outputs, vc
and iL, and one input, E. The goal of the system’s controller
is to regulate the voltage of the capacitor, vc, to the desired
setpoint.

Let x1 = vc, x2 = iL, and u = E. The current ic is
given by C dx1

dt , the voltage vL by Ldx2

dt , and the current iR
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Fig. 1: Tunnel-Diode Circuit

by f1(x1), where f1(x1) is a nonlinear function represented
as (17.76x1− 103.79x2

1+229.62x3
1− 226.31x4

1+83.72x5
1).

According to Kirchhoff’s law, the system dynamics can be
presented in strict-feedback form as

ẋ1 =
−1

C
f1(x1) +

1

C
x2,

ẋ2 =
1

L
[−x1 −Rx2] +

1

L
u.

(21)

Therefore, the Tunnel-Circuit is suitable for Dynamic
Watermarking.

The above motivates the discrete-time analog:[
x1[t+ 1]

x2[t+ 1]

]
=

[
x1[t]− h

C f1(x1[t]) +
h
Cx2[t]

−h
L x1[t] + (1− hR

L )x2[t]

]

+

[
0

h
Lu[t]

]
+

[
w1[t+ 1]

w2[t+ 1]

]
.

(22)

In the simulation experiment, two types of attacks have
been tested: false data injection attacks and replay attacks.
For false data injection attacks, both bias injection and
noise injection attacks have been studied. The setpoint of
vc changes periodically, as shown in Figure 2. All attacks
begin at the 8 second mark. For the tests in (4) and (5),
instead of taking T → ∞, the sliding window method
was used to calculate the values. This results in a 2 × 2
matrix for Test 1 and a 2 × 1 matrix for Test 2. Let
z[k + 1]− f(z[k])− Bgk(zk) := [r1, r2]

T , where r1 and r2
denote the watermark and the noise in vc and iL, respectively.
The tests reduce to calculating the variance of the following
matrices.

[
r1r1 r1r2
r2r1 r2r2

]
,

[
er1
er2

]
. (23)

Since, the measurement of vc is under attack, one can
expect that the test values that are related to vc should change
after the attack. The attack also affects the iL; however,
in this specific example, the changes are too small to be
noticeable. From (23), except for the r2r2 in Test 1 and er2
in Test 2, the rest should respond to the attack.

Fig. 2: vc measurement during nominal operation.

A. Bias Injection Attack

In the bias injection attack, a constant is added to the
output measurement. This alteration does not render the
system unstable, but it does shift the steady state of the
system, potentially impacting its overall performance. Figure
3 provides an example illustrating how a bias injection attack
alters the system’s steady state. Dynamic watermarking Test
1 and Test 2 are shown in Figure 4 and Figure 5, respectively.
The tests detect the attacks within 0.1 seconds.

Fig. 3: vc measurement under bias injection attack.

Fig. 4: Dynamic Watermarking Test 1 for vc under bias
injection attack.

B. Noise Injection Attack

In a noise injection attack, the malicious agent generates
a random value at every time step and adds it to the output
measurement. Typically, this attack does not cause instability
in the system. It may be difficult to discern whether the
system is under attack simply by observing the output value.
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Fig. 5: Dynamic Watermarking Test 2 for vc under bias
injection attack.

An example of a noise injection attack is illustrated in Figure
6. However, the additional noise introduced can degrade
the performance of the system. Dynamic watermarking Test
1 and Test 2 are shown in the Figure 7 and Figure 8,
respectively. The tests detect such attacks within 0.3 seconds.

Fig. 6: vc measurement under noise injection attack.

Fig. 7: Dynamic Watermarking Test 1 for vc under noise
injection attack.

C. Replay Attack

In a replay attack, a series of output measurements under
nominal operation is recorded. When the attack begins,
the prerecorded data is used to replace the real output
measurement and is sent to the feedback loop. Figure 9
illustrates a replay attack on the vc measurement. Dynamic
watermarking Test 1 and Test 2 are shown in Figure 10 and
Figure 11, respectively. The tests detect such attacks within
0.2 seconds.

Fig. 8: Dynamic Watermarking Test 2 for vc under noise
injection attack.

Fig. 9: vc measurement under replay attack.

Fig. 10: Dynamic Watermarking Test 1 for vc under replay
attack.

Fig. 11: Dynamic Watermarking Test 2 for vc under replay
attack.

VI. CONCLUSION

In this paper, the applicability of Dynamic Watermarking
for attack detection in certain nonlinear stochastic cyber-
physical systems is addressed. It has been shown how certain
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backstepping type systems are suitable for Dynamic Water-
marking. Thus Dynamic Watermarking can be potentially
applied to a wider range of systems beyond linear systems.
The simulation results show how Dynamic Watermarking
detects both false data injection attacks and replay attacks
in such nonlinear stochastic systems.
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