
A New Quasi-Finite-Rank Approximation of Compression Operators
with Application to the L1 Discretization for Sampled-Data Systems

Dohyeok Kwak, Jung Hoon Kim, and Tomomichi Hagiwara

Abstract— This paper develops a new L1 discretization pro-
cedure for sampled-data systems, in which the minimization of
the L∞-induced norm of sampled-data systems is concerned
with. This discretization is based on developing a new quasi-
finite-rank approximation (QFRA) of compression operators
occurring from the lifting-based approach to sampled-data
systems. More precisely, we develop a more sophisticated
method for the QFRA of compression operators by using the
idea of piecewise linear kernel approximation (PLKA) ap-
proach, rather than the conventional method based on the fast-
sample/fast-hold (FSFH) approach. The minimization problem
for the corresponding QFRA error is shown to be solved
through a linear programming (LP) problem. Furthermore,
the theoretical effectiveness for the QFRA is established by
deriving the associated convergence rate of 1/M , where M is the
corresponding approximation parameter. Finally, this QFRA
of compression operators leads to a new L1 discretization
procedure for sampled-data systems.

I. INTRODUCTION

By noting the fact that sampled-data systems take into ac-
count their inter-sample behavior, there have been a number
of studies on the disturbance rejection control for sampled-
data systems to deal with various types of practical problems.
Depending on the different types of control objectives and
the nature of disturbances, one could define various system
norms for sampled-data systems. For instance, the H∞ norm
has been considered in [1]–[6] to deal with the maximum
energy of the output for the worst disturbance with a unit
energy, while the H2 norm has been tackled in [5]–[10] to
take the effects of the impulse disturbances. The main idea
for solving the H∞ and H2 control problems of sampled-
data systems in [1]–[10] is to discretize the continuous-time
plants in an equivalent fashion without changing these norms.

With respect to dealing with some practical problems of
suppressing the maximum magnitude of a signal such as
the collision avoidance of robotic manipulators, on the other
hand, the L1 control problem of sampled-data systems has
been discussed in the literature. More precisely, this problem
aims at designing an optimal controller for minimizing the
L∞-induced norm of sampled-data systems, and this induced
norm corresponds to the peak value of the output for the
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worst disturbance with a unit magnitude. Because the L∞-
induced norm for a continuous-time single output system
coincides with the L1 norm of the impulse response, the
control problem of the L∞-induced norm has been called
the L1 control problem [11]–[15]. In contrast to the cases of
the H∞ and H2 control problems of sampled-data systems,
it is quite difficult to derive an equivalent discretization of
the continuous-time plants in the L1 control problem of
sampled-data systems. This is because the Banach space L∞
is taken as the underlying function space for the problem.
Hence, various approximate discretizations for the L1 control
problem of sampled-data systems have been discussed, and
they could be classified by the input approximation (IA; [16],
[17]) and the kernel approximation (KA; [18]) approaches.
In other words, these approaches lead to discretizing the
continuous-time plant by which the l∞-induced norm of
the resulting approximate discrete-time closed-loop system
is shown to converge to the L∞-induced norm of the original
sampled-data system as the corresponding discretization pa-
rameter L becomes larger. However, the arguments in [16]–
[18] might lead to some conservative results because the L1

discretization procedures could be interpreted as ignoring the
compression operator occurring from the operator-theoretic
representation of sampled-data systems [1], [3], [19] due to
its infinite-rank property.

To resolve the difficulties from the infinite-rank property
of the compression operator defined on L∞[0, h) with the
sampling period h, a method of quasi-finite-rank approx-
imation (QFRA) was developed in [20]. More precisely,
this method is based on the fast-sample/fast-hold (FSFH)
technique in [21], and the minimization problem of the
corresponding approximation error is formulated by a linear
programming (LP) problem. Even though the theoretical
effectiveness of the QFRA is validated by deriving the
associated convergence order of 1/M with the relevant
approximation parameter M , it was also observed from the
numerical study in [20] that a quite large value of M is
usually required for reducing the approximation error in a
desired level.

In connection with this, we aim at developing a new
QFRA method of compression operators, for which a re-
quired value of M to reduce the approximation error in a
certain level is smaller than that used for the QFRA in [20],
and providing a new framework for the L1 discretization
procedure for sampled-data systems by using the new QFRA
of compression operators. To do this, we first employ the idea
of the piecewise linear kernel approximation (PLKA) [22]
and introduce a new QFRA of compression operators on
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TABLE I: Table of Notations

Notations Definitions
N The set of positive integers
Rν The set of ν-dimensional real vectors
Kν The Banach space (L∞[0, h))ν

K′ν The Banach space (L∞[0, h′))ν

| · | The ∞-norm of a matrix of a vector

‖ · ‖
{

The L∞[0, h)-induced norm of an operator
The L∞[0, h′)-induced norm of an operator

‖ · ‖1

{
The L1[0, h)-induced norm of an operator
The L1[0, h′)-induced norm of an operator

X∗ Pre-dual space of the Banach space X
T∗ : Y∗ → X∗ Pre-adjoint of a linear operator T : X → Y

R(·) Range of the operator (·)

L∞[0, h). We next show that the problem of minimizing the
corresponding approximation error can be also converted to
an LP problem, similarly to the results in [20], in an asymp-
totically equivalent fashion. In other words, the theoretical
validity of the PLKA-based QFRA is established by deriving
the associated convergence rate of 1/M . We then introduce
a new L1 discretization procedure for sampled-data systems
by modifying the conventional discretization procedure [16],
[17] in terms of taking some advantages of the new PLKA-
based QFRA of compression operators. Finally, we validate
the theoretical effectiveness of this new L1 discretization by
deriving the corresponding convergence order of 1/L.

Note that the mathematical notations used in this paper
are given in Table I.

II. OPERATOR-THEORETIC REPRESENTATION OF
SAMPLED-DATA SYSTEMS VIA LIFTING

Consider the sampled-data system ΣSD depicted in Fig. 1,
where the continuous-time linear time-invariant (LTI) plant
P and the discrete-time LTI controller Ψ are interconnected
by the ideal sampler S and the zero-order hold H with the
sampling period h in a synchronous fashion. Assume that P
and Ψ are described by

P :


ẋ = Ax+B1w +B2u

z = C1x+D11w +D12u

y = C2x

(1)

Ψ :

{
ψk+1 = AΨψk +BΨyk

uk = CΨψk +DΨyk
(2)

where x(t) ∈ Rn, z(t) ∈ Rnz , y(t) ∈ Rny , w(t) ∈ Rnw ,
u(t) ∈ Rnu , ψ(t) ∈ Rnψ , yk = y(kh), and u(t) = uk
for kh ≤ t < (k + 1)h. With respect to dealing with the
linear periodically time-varying (LPTV) nature of ΣSD, it is
generally considered to take the lifting technique [1], [3],
[19], in which a given continuous-time signal f(·) ∈ Lν∞ is
viewed as its lifted form denoted by {f̂k}∞k=0 with f̂k(·) ∈
Kν , where

f̂k(θ) = f(kh+ θ) (0 ≤ θ < h) (3)

Fig. 1: Sampled-data system ΣSD.

Applying the lifting technique to w ∈ Lnw∞ and z ∈ Lnz∞
together with discretizing x by xk := x(kh) lead to the
lifted representation of P described by

P̂ :


xk+1 = Adxk + B1ŵk +B2duk

ẑk = C1xk + D11ŵk + D12uk

yk = C2dxk

(4)

with the matrices

Ad = eAh, B2d =

∫ h

0

eAθB2dθ, C2d = C2 (5)

and the operators

B1w =

∫ h

0

eA(h−θ)B1w(θ)dθ (6)

(C1x)(θ) = C1e
Aθx (7)

(D11w)(θ) =

∫ θ

0

C1e
A(θ−τ)B1w(τ)dτ +D11w(θ) (8)

(D12uk)(θ) =

∫ θ

0

C1e
A(θ−τ)B2dτuk +D12uk (9)

Here, it should be remarked that D11 is called the com-
pression operator associated with the sampled-data system
ΣSD, and it has an infinite-rank while the others are finite-
rank operators. This infinite-rank property often makes it
difficult to tackle the problems of performance analysis
and controller synthesis with respect to ΣSD in an efficient
fashion. In connection with this, the following section is
devoted to providing a new method of quasi-finite-rank
approximation (QFRA) for D11 on L∞[0, h), by which some
difficulties in the L1 controller synthesis for ΣSD could be
alleviated.

III. QUASI-FINITE-RANK APPROXIMATION OF
COMPRESSION OPERATORS ON L∞[0, h)

This section develops a new method of QFRA for D11

on its underlying function space L∞[0, h) tailored to the
context of the L1 controller synthesis for ΣSD. More pre-
cisely, we employ the idea of the piecewise linear kernel
approximation (PLKA) [22] for more improved accuracy in
terms of the associated QFRA, compared to the conventional
method in [20] based on the fast-sample/fast-hold (FSFH)
approximation [21].

A. PLKA-based QFRA of compression opeartors

By noting the fact that the matrix D11 is an infinite-rank
operator when it is viewed as a multiplication operator, we
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first decompose D11 as D11 = D110 +D11, where

(D110w)(θ) =

∫ θ

0

C1e
A(θ−τ)B1w(τ)dτ (10)

Then, the QFRA of D11 is to approximate D110 by

C1XB1 (11)

with an adequate matrix X , and thus D11 is approximated
ultimately by

C1XB1 +D11 (12)

Note that C1XB1 is a finite-rank operator while D11 is an
infinite-rank operator.

We next consider a method for determining a suitable X
with respect to the L1 controller synthesis problem of ΣSD.
Because the controller synthesis problem is formulated by
taking L∞[0, h) as the underlying function space relevant
to P̂ , the matrix-valued parameter X could be taken for
minimizing the L∞[0, h)-induced norm of EX defined as

EX := D11 − (C1XB1 +D11) = D110 −C1XB1 (13)

However, it is quite difficult to find an optimal X for
minimizing ‖EX‖ rigorously since EX is defined on the
Banach space L∞[0, h) as discussed in [20]. Hence, we
develop a new framework for the QFRA of D11 in an
approximate fashion by using the idea of PLKA [22].

As a preliminary step to employ the above ideas, we
first introduce the fast-lifted representation of EX . With the
corresponding parameter M ∈ N and h′ := h/M , fast-lifting
of a signal f̂ ∈ Kν leads to f̌ := [(f̂ (1))T · · · (f̂ (M))T ]T

where

f̂ (i)(θ′) = f̂((i− 1)h′ + θ′) (0 ≤ θ′ < h′) (14)

and it is denoted by f̌ = LM f̂ . Then, the fast-lifted
representation of EX (denoted by EMX ) is described by

EMX := LMEXL−1M = LM (D110 −C1XB1)L−1M

= C′1(∆M0 − C ′dMXB′dM )B′1 + D′110 (15)

where the operators C′1, B′1, and D′110 are defined equiva-
lently as C1, B1, and D110 by replacing h with h′, and the
matrices are given by

B′dM :=
[
(A′d)

M−1 · · · I
]
, C ′dM :=

 I
...

(A′d)
M−1



∆M0 :=


0 0 · · · 0

I
. . . . . .

...
...

. . . . . . 0
(A′d)

M−2 · · · I 0

 (16)

with A′d := eAh
′
. Defining ∆MX := ∆M0 − C ′dMXB′dM

further admits the representation

EMX = C′1∆MXB′1 + D′110 (17)

and we are in a position to replace the operators C′1 and B′1
with more tractable ones used for computing the L∞-induced
norm of LTI systems as in [22].

More precisely, we first introduce the approximation op-
erators B′k1 and C′a1 defined respectively as

B′k1w :=

∫ h′

0

eAh
′
(I −Aθ′)B1w(θ′)dθ′ (18)

(C′a1x)(θ′) := C1(I +Aθ′)x (0 ≤ θ′ < h′) (19)

With these operators, we take replacing B′1 and C′1 with B′k1
and C′a1, respectively, and ignoring D′110 in EMX (given
by (17)), i.e., introducing

EMXa := C′a1∆MXB′k1 (20)

To put it another way, we aim at obtaining X minimizing
‖EMXa‖ instead of minimizing ‖EMX‖ because the former
is relatively simpler than the latter, and such an optimal
X with respect to minimizing ‖EMXa‖ can be derived
by solving a linear programming (LP) problem. For this
purpose, we see from (18) that B′k1 admits the representation

B′k1w = B′khφ (21)

where

B′kh :=
[
h′A′dB1 − (h′)2

2 A′dAB1

]
(22)

φ :=
[
φT0 φT1

]T
(23)

φ0 :=
1

h′

∫ h′

0

w(τ ′)dτ ′, φ1 :=
2

(h′)2

∫ h′

0

τ ′w(τ ′)dτ ′ (24)

Here, the set of all φ with respect to w in the unit ball on K′nw
is denoted by ΦM . Because it is quite difficult to describe
the area of ΦM by a finite-dimensional matrix in the L∞
sense, its outer-approximation Φ

[N ]
M with the corresponding

approximation parameter N ∈ N was developed in [23]. The
area relevant to Φ

[N ]
M converges to that relevant to ΦM as N

becomes larger, with an arbitrary degree of accuracy, and we
can obtain a matrix Ω [N ] ∈ R2nw×Nnw defined as

ΦM ⊂ Φ
[N ]
M := {Ω [N ]wd | |wd| ≤ 1} (25)

where Ω [N ] is exactly the same as that introduced in [23].
Then, the operator B′k1 can be replaced by the matrix B[N ]′

1d

defined as

B
[N ]′

1d := B′khΩ
[N ] ∈ Rn×Nnw (26)

with (approximately) holding the range of B′k1 for the inputs
in the unit ball relevant to K′nw . On the other hand, if we
note that the output of C′a1 has its maximum value on θ′ = 0
or θ′ = h′, the operator C′a1 can be replaced by

C ′1d :=

[
C1

C1(I +Ah′)

]
∈ R2nz×n (27)

without changing ‖EMXa‖. To summarize, the problem of
obtaining an optimal X for minimizing the L∞[0, h)-induced
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norm of EMXa is replaced by that for minimizing the matrix
∞-norm of E[N ]

MXa defined as

E
[N ]
MXa := C ′1d∆MXB

[N ]′

1d

= C ′1d(∆M0 − C ′dMXB′dM )B
[N ]′

1d (28)

The problem to find the optimal X for minimizing the matrix
∞-norm |E[N ]

MXa| can be easily converted to an LP problem
by following the essentially equivalent procedure in [20].
Detailed procedure for such conversion is omitted because it
is quite technical.

B. Error analysis for PLKA-based QFRA

This subsection aims at establishing a theoretical validity
for taking an optimal X that minimizes ‖EMXa‖ by deriving
the convergence rate corresponding to the gap between EMX

and EMXa. To do this, we first introduce the following
lemmas.

Lemma 1 ( [24]): There exists a constant KD such that

‖D′110‖ ≤
KD

M
(29)

Lemma 2 ( [23], [25]): Suppose that (A,B1) is control-
lable and (C1, A) is observable, and define the operators
J′k1 : K′nw → K

′
nw and H′a1 : K′nz → K

′
nz respectively as

B′k1 =: B′1J
′
k1 and C′a1 =: H′a1C

′
1, i.e.,

(J′k1w)(θ′) = BT1 e
AT (h′−θ′)W−1h′

∫ h′

0

A′d(I−Aτ ′)B1w(τ ′)dτ ′

(H′a1x)(θ′) = z(0) + θ′
dz(τ ′)

dτ ′
|τ ′=0

with the controllability Grammian defined as

Wh′ :=

∫ h′

0

eA(h′−θ′)B1B
T
1 e

AT (h′−θ′)dθ′ (30)

Then, the following assertions hold in terms of the pre-
adjoints J′k1∗ and B′1∗ (of J′k1 and B′1, respectively) and
the operators H′a1 and C′1.

a) There exists a constant KB such that

‖(I − J′k1∗)|R(B′1∗)
‖1 ≤

KB

M2
(31)

b) There exists a constant KC such that

‖(I −H′a1)|R(C′1)
‖ ≤ KC

M2
(32)

Remark 1: The controllability and observability assump-
tions in Lemma 2 on the pairs (A,B1) and (C1, A), respec-
tively, are just for the ease of the proof of this lemma. They
can be actually removed because those pairs can always be
replaced with some controllable and observable ones without
changing the ranges R(B1∗) and R(C′1).

From Lemma 2, we can derive the following proposition.
Proposition 1: There exists a constant KCB independent

of X such that

‖C′1∆MXB′1 −C′a1∆MXB′k1‖ ≤
KCB

M2
‖C′a1∆MXB′k1‖

(33)

From Lemma 1 and Proposition 1, we have the following
theorem relevant to the convergence rate between EMX and
EMXa.

Theorem 1: The following inequality holds.(
1− KCB

M2

)
‖EMXa‖ −

KD

M
≤ ‖EMX‖

≤
(

1 +
KCB

M2

)
‖EMXa‖+

KD

M
(34)

If we note that ‖EX‖ = ‖EMX‖, Theorem 1 clearly
implies that an optimal X minimizing ‖EMXa‖ leads to
(approximately) minimizing also ‖EX‖ with the convergence
order of 1/M .

IV. L1 DISCRETIZATION PROCEDURE FOR ΣSD WITH
PLKA-BASED QFRA OF COMPRESSION OPERATORS

This section provides an L1 discretization procedure for
the sampled-data system ΣSD with taking the PLKA-based
QFRA developed in this paper, and discuss its comparison
to the existing L1 discretization procedure in [16], [17].

Let us first introduce the existing L1 discretization proce-
dure [16], [17], in which both the input w and the output
z in P are approximated by piecewise constant signals. If
we denote the corresponding discretization parameter by
L and redefine h′ := h/L, then this piecewise constant
approximation can be interpreted as discretizing the operators
B1, C1, and D12 by the matrices B1dL ∈ Rn×Lnw , C1dL ∈
RLnz×n, and D12dL ∈ RLnz×nu defined respectively as

B1dL := B′dLB
′
0d, [C1dL D12dL] := [C1 D12]A′2dL (35)

where

A′2dL :=

 I
...

(A′2d)
L−1

, B′dL :=
[
(A′d)

L−1 · · · I
]
,

B′0d :=

∫ h′

0

eA(h′−τ ′)B1dτ
′, A2 :=

[
A B2

0 0

]
(36)

with redefining A′d := eAh
′
(= eAh/L) and A′2d := eA2h

′
(=

eA2h/L). On the other hand, with respect to the treatment
of D11 in [16], [17], if we note its fast-lifted representation
given by

LLD11L
−1
L = C′1∆L0B′1 + D′11 (37)

where ∆L0 is defined equivalently as ∆M0 in (16) with
redefining A′d and M by the above fashion, then the dis-
cretization of D11 in that study corresponds to ignoring the
operator D′110 and replacing the operators C′1, B′1 with C1

and B′0d, respectively, i.e., the matrix D11dL defined as

D11dL = C1∆L0B′0d +D11 (38)

To summarize, the L1 discretization in [16], [17] is to
derive the discrete-time plant PdL described by

PdL :


xk+1 = Adxk +B1dLwk +B2duk

zk = C1dLxk +D11dLwk +D12dLuk

yk = C2dxk

(39)
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We denote the discrete-time closed-loop system consisting
of the discretized plant PdL and the controller Ψ by ΣdL.
Then, we have the following lemma relevant with the L1

performance deterioration arising from the L1 discretization
procedure in [16], [17].

Lemma 3 ( [17]): There exist constants T0 and T1 inde-
pendent of the controller Ψ such that the following ineqaulity
holds:

‖ΣdL‖ ≤ ‖ΣSD‖ ≤
(

1 +
T0
L

)
‖ΣdL‖+

T1
L

(40)

Lemma 3 implies that ‖ΣdL‖ converges to ‖ΣSD‖ with the
convergence order of 1/L. We would like to note that the
lower bound readily follows by the fact that taking piecewise
constant approximations for the input and output signals as in
[16], [17] is norm-contractive. For the upper bound in (40),
more importantly, T0 is independent of the approximation
of D11 while T1 depends on the approximation. Hence, the
L∞[0, h′)-induced norm of D′110 is directly reflected to the
value of T1 since PdL is obtained without considering the
effects of D′110. Thus, if we do not ignore D′110 and treat it in
a more sophisticated fashion by which the corresponding gap
between D′110 and its new treatment is smaller than ‖D′110‖,
we can lead to a smaller value of T1.

With this in mind, we are in a position to treat D′110 in (37)
more rigorously tailored to the context of the L1 synthesis
problem. More precisely, we first approximate D′110 by
C′1XB′1 through the arguments in the preceding section, and
it is also discretized by the matrix C1XB

′
0d, while the other

discretization procedures for the operators B1,C1 and D12

are the same as those in [16], [17]. In other words, this is
equivalent to replacing the matrix D11dL in (39) with

D
[X]
11dL = C1(∆L0 +X)B′0d +D11 (41)

and we obtain ultimately the discretized plant P [X]
dL given by

P
[X]
dL :


xk+1 = Adxk +B1dLwk +B2duk

zk = C1dLxk +D
[X]
11dLwk +D12dLuk

yk = C2dxk

(42)

The discrete-time closed-loop system obtained by connecting
P

[X]
dL and Ψ is denoted by Σ

[X]
dL .

Next, if we note the fact that X is obtained through the
optimization problem of minimizing ‖D′110 − C′1XB′1‖, it
immediately leads to

‖D′11 − (C′1XB′1 +D11)‖ = ‖D′110 −C′1XB′1‖ ≤ ‖D′110‖
(43)

This together with the arguments after Lemma 3 and the
essentially equivalent arguments for deriving Lemmas 1 and
2 lead to the following theorem relevant to the convergence
order of the developed L1 discretization.

Theorem 2: The inequality

‖Σ [X]
dL ‖ −

T̃1
L
≤ ‖ΣSD‖ ≤

(
1 +

T0
L

)
‖Σ [X]

dL ‖+
T

[X]
1

L
(44)

holds, where T0, T̃1 are independent of X and the controller
Ψ , and T [X]

1 is not larger than T1 given in (40).
Theorem 2 clearly shows that the L1 discretization de-

veloped in this paper has the convergence rate of 1/L with
respect to the L1 optimal controller synthesis for sampled-
data systems.

V. CONCLUSION

This paper introduced a new framework for the L1 dis-
cretization of sampled-data systems by using approximated
treatment of compression operators on the Banach space
L∞[0, h). To this end, we first developed a new quasi-
finite-rank approximation (QFRA) of compression opera-
tors by employing the piecewise linear kernel approxima-
tion (PLKA) [22]. The problem for minimizing the rele-
vant approximation error was also shown to be reduced to
(approximately) a linear programming (LP) problem. The
theoretical effectiveness of taking such an LP problem was
validated by deriving the corresponding convergence rate of
1/M , where M is the associated approximation parameter.
Based on this new QFRA, we obtained a new approximate
L1 discretization procedure for sampled-data systems, which
has the convergence order of 1/L in the sense of minimizing
the L∞-induced norm of sampled-data systems, where L is
the discretization parameter.
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