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Abstract— We present a multi-agent decision-making frame-
work for the emergent coordination of autonomous agents
whose intents are initially undecided. Dynamic non-cooperative
games have been used to encode multi-agent interaction, but
ambiguity arising from factors such as goal preference or
the presence of multiple equilibria may lead to coordination
issues, ranging from the “freezing robot” problem to un-
safe behavior in safety-critical events. The recently developed
nonlinear opinion dynamics (NOD) [1] provide guarantees
for breaking deadlocks. However, choosing the appropriate
model parameters automatically in general multi-agent settings
remains a challenge. In this paper, we first propose a novel and
principled procedure for synthesizing NOD based on the value
functions of dynamic games conditioned on agents’ intents.
In particular, we provide for the two-player two-option case
precise stability conditions for equilibria of the game-induced
NOD based on the mismatch between agents’ opinions and their
game values. We then propose an optimization-based trajectory
optimization algorithm that computes agents’ policies guided
by the evolution of opinions. The efficacy of our method is
illustrated with a simulated toll station coordination example.

I. INTRODUCTION

As deployments of multi-agent autonomous systems, such
as self-driving truck fleets and drone swarms, continue to
scale up, there is a pressing need to coordinate efficient
interaction between controllable agents and uncontrollable
agents, including humans. While dynamic games (cf. [2])
capture rich interactive behaviors for multi-agent systems,
existing game-theoretic formulations do not effectively co-
ordinate agents when there is uncertainty in the game’s
key parameters, such as goal preferences [3, 4], information
structure [5], or equilibrium selection [6]. This can lead to
dangerous behavior in which agents adopt policies leading to
safety-critical deadlocks, sometimes known as the “freezing
robot” problem [7]. The recently developed nonlinear opin-
ion dynamics model [1] offers a principled way of describing
multi-agent opinion formation over multiple discrete options.
In particular, this model provides theoretical guarantees for
breaking deadlocks even with no prior bias for a particular
option. However, choosing appropriate parameters for the
model in practical applications remains an open problem. In
this work, we integrate dynamic games with nonlinear opin-
ion dynamics to achieve efficient multi-agent coordination.

A. Related Work

Dynamic games have shown promise in addressing a
wide range of multi-agent coordination scenarios, from au-
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tonomous driving [8–10] and physical human-robot inter-
action [11] to smart-grid networks [12]. While computing
equilibrium solutions of dynamic games is typically chal-
lenging, recently developed toolboxes solve linear-quadratic
(LQ) approximations of intricate, non-convex games. Recent
work [13] takes advantage of derivative information of sys-
tem dynamics and planning objectives to iteratively optimize
agent trajectories in a dynamic game. This has been shown to
lead to efficient trajectories for multi-agent collision avoid-
ance scenarios. However, in the presence of multiple suitable
equilibria, this method does not offer a solution to the
equilibrium selection problem [6]. Furthermore, the dynamic
game becomes a partially observable stochastic game [14]
when the intents of a player’s opponents are hidden. While
intractable in general, such a game can be approximately
solved using, e.g., scenario-based planning [15], Quasi-
Newton optimization [9], and the QMDP approach [16, 17],
where the Q-value of the underlying Markov decision process
(MDP) is learned. In this work, we propose a novel trajectory
planning framework that relies on opinion dynamics for
handling ambiguities and deadlocks in partially observable
stochastic games while remaining computationally tractable
by leveraging the LQ and QMDP approximation techniques.

Cathcart et al. [18] use the nonlinear opinion dynamics
model [1] for rapid and flexible breaking of social deadlock
in robot social navigation. Park et al. [19] leverage the
nonlinear opinion dynamics model [1] to investigate how
cooperative behavior can emerge in static games that are
played repeatedly. By jointly considering reciprocity and ra-
tionality, cooperation is elicited despite the Nash equilibrium
solution being non-cooperative. The region of attraction to
the mutually cooperative equilibrium is shown to increase
as attention to social interaction increases. However, neither
of these works provides an answer for how the model pa-
rameters of nonlinear opinion dynamics should be chosen. A
central contribution of this work is a principled and automatic
procedure for constructing nonlinear opinion dynamics based
on the outcomes of dynamic games.

B. Contributions and Paper Organization

In this paper, we leverage non-cooperative differential
games and nonlinear opinion dynamics to propose a novel
trajectory planning framework for multi-agent emergent co-
ordination in tasks about which agents are initially unde-
cided. Our contributions are threefold:

1) We propose for the first time an automatic procedure for
synthesizing NOD, in which the coupling parameters
among opinions depend on the game value functions.
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We show how the NOD effectively captures opinion
evolution driven by the physical state of the system.

2) We provide, for the two-player two-option case, precise
stability conditions for NOD equilibria based on the
mismatch between opinions and game values, which
depend on the physical states.

3) We present a computationally efficient trajectory plan-
ning framework that computes agents’ policies guided
by their evolving opinions such that coordination on
tasks emerges.

The paper is organized as follows. Sec. II provides a brief
summary of general-sum differential games and nonlinear
opinion dynamics. In Sec. III, we formulate the problem of
interest as a differential game subject to parameter uncertain-
ties and describe the construction of game-induced nonlinear
opinion dynamics (GiNOD). In Sec. IV, we derive stability
conditions for GiNOD. Sec. V presents our main algorithmic
contributions for emergent coordination using GiNOD. We
show that our proposed planning approach leads to deadlock-
free interactions in a toll station coordination scenario in
Sec. VI. We conclude our work in Sec. VII.

II. PRELIMINARIES

A. General-Sum Differential Games

We consider an Na-player finite-horizon general-sum dif-
ferential game governed by a nonlinear dynamical system:

ẋ = f(x(t),u(t)), (1)

where t ∈ R is the time, x ∈ Rnx is the state of the system,
u(t) := u[1:Na](t) where ui ∈ Rnui is the control of player
i ∈ Ia := {1, 2, . . . , Na}. We assume f is continuous in t
and continuously differentiable in {x(t),u(t)} uniformly in
t. Each player i seeks to minimize a cost functional:

J i
(
π[1:Na]

)
:=

∫ T

0

ci (x(t),u(t)) dt, (2)

where πi is player i’s control policy with ui(t) = πi(t, x(t)),
ci(·) is the stage cost of player i, and we assume ci(·) is twice
differentiable in {x(t),u(t)} for all t ≥ 0.

Finding equilibrium solutions for a general-sum differen-
tial game with nonlinear dynamics can be computationally
prohibitive in the general case. Fridovich-Keil et al. [13] ap-
proach this problem by finding a feedback Nash equilibrium
to a local approximation of the original game following an it-
erative linear-quadratic (ILQ) scheme. This method linearizes
the dynamics and quadratizes the stage cost function along
the nominal trajectory in each iteration. A finite-horizon
continuous-time LQ game can then be constructed, which
admits a closed-form Riccati differential solution [2, Chap-
ter 6]. The resulting approximate feedback Nash equilibrium
solution consists of a tuple of linear strategies. Specifically,
player i’s policy is πi∗(t, x(t)) = ūi(t)+Ki(t)δx(t)+κi(t)
where ūi(t) is the nominal control, Ki(t) ∈ Rnui×nx are the
gains, κi(t) ∈ Rnui are the affine terms, and δx(t) := x(t)−
x̄(t) with nominal state x̄(t). Given all players’ approximate
Nash equilibrium strategies, the game value function of each

player i ∈ Ia can be locally approximated by a quadratic
function: V i(x) ≈ 1

2δx
⊤Ziδx+δx⊤ζi+vi(x̄) with nominal

value vi(x̄). Matrices Zi ∈ Rnx×nx and ζi ∈ Rnx represent
the quadratic and linear changes in the nominal value due to
small deviations from nominal state x̄(t).

B. Nonlinear Opinion Dynamics

The nonlinear opinion dynamics model [1] captures com-
plex opinion-forming behaviors among multiple agents. For
a multi-agent system of Na agents, each having Nθi options,
the NOD can be expressed as

żi = −dizi + bi + λiSi
z(z

i)

λ̇i = −mλi + Si
λ(z

i)
(3)

where

Si,ℓ
z (zi) =S1

(
αiziℓ +

∑
j∈Ia\{i} γ

ijzjℓ

)
+
∑

p∈Iθi
\{ℓ} S2

(
βizip +

∑
j∈Ia\{i} δ

ijzjp

)
.

Here, Iθi := {1, 2, . . . , Nθi}, zi ∈ RNθi is agent i’s opinion
vector in which an element ziℓ > 0 (ziℓ < 0) if agent i favors
(disfavors) option ℓ ∈ Iθi , di > 0 is the damping term,
bi represents agent i’s own bias, λi > 0 is the attention
weight on nonlinear opinion-exchange, αi ≥ 0 is the self-
reinforcement gain, βi ≥ 0 is the same-agent inter-option
coupling gain, γij is the gain of the same-option inter-agent
coupling with another agent j, δij is the gain of the inter-
option inter-agent coupling with another agent j. Sr, r ∈
{1, 2}, is a nonlinear saturation function satisfying Sr(0) =
0, S′

r(0) = 1, S′′
r (0) ̸= 0, S′′′

r (0) ̸= 0, e.g., a sigmoid
function or the hyperbolic tangent function tanh.

The NOD capture and enable a wide range of dynamic
interactions and behaviors, notably, fast and flexible multi-
agent decision-making. However, it remains an open problem
to synthesize parameters that capitalize on these features.
One key contribution of this paper is a novel and principled
algorithmic approach for automatically synthesizing NOD
from a set of differential game value functions.

III. MODELING INDECISION IN DIFFERENTIAL GAMES
USING NONLINEAR OPINION DYNAMICS

In this section, we derive a class of nonlinear opinion
dynamics, which can be automatically synthesized based on
dynamic game solutions, and are later used in the emergent
coordination planning framework to be presented in Sec. V.

A. Differential Games with Stochastic Parameters

In this paper, we are interested in differential games where
each player’s game value functions are dependent on a set
of stochastic parameters, i.e., V i(x) = V i(x; θ1, . . . , θNa).
We assume that the parameter value θi of each player i is
supported on a discrete set, i.e. θi ∈ Θi := {θi1, . . . , θiNθi

},
which is known to all other players. We further allow Θi

to be heterogeneous for different players. Consequently,
parameter θi ∼ p(θi) := (P (θi1), . . . , P (θiNθi

)) where p(θi)

is a categorical distribution over the (Nθi − 1)-simplex. The
parametrized game value function can capture a broad class
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of differential games with categorically different outcomes.
We provide three examples:

1) Tracking objectives. We can encode different tracking
objectives in players’ stage costs. Specifically, we as-
sume player i’s stage cost ci(·) in (2) can be decom-
posed into two parts: ci

(
·, ·; θi

)
:= ciI (·, ·)+ciD

(
·, ·; θi

)
where ciI (·, ·) is the parameter-independent part that
captures, e.g., regular control objectives and safety
specifications, and ciD

(
·, ·; θi

)
depends on the parameter

θi, which encodes the player’s tracking objectives. We
present a running example below for illustration.

2) Multiple distinct equilibria. It is common for multiple
equilibria to arise in a differential game [6]. In this case,
let Θi ≡ Θ be homogeneous for all players i ∈ Ia and
each θℓ ∈ Θ represent a particular equilibrium solution
of the game. For example, θ1 represents the equilibrium
solution in which player 1 yields to player 2, and θ2 in
which player 2 yields to player 1.

3) Information structure. Similar to the multiple equilib-
ria case, different information structures in a leader-
follower (Stackelberg) game [8] can also define the
parameter set Θ and affect the topology of players’
trajectories. For example, θ1 represents a game where
player 1 is the leader and θ2 where player 2 is the leader.

Running example: Consider two autonomous vehicles pro-
ceeding towards a toll station as depicted in Fig. 1. The
toll booths are modeled as static obstacles that the cars
shall avoid. Additional safety-critical specifications include
avoiding collisions with other vehicles and driving off the
road. For each vehicle, i ∈ {1, 2}, let Θi = {θi1, θi2}, where
θi1 (θi2) represents the option that vehicle i goes through toll
booth 1 (toll booth 2). The parameter-independent stage cost
ciI (·, ·) penalizes velocity tracking error, safety violations,
and fuel consumption. The parameter-dependent stage cost
ciD
(
xi; θi

)
:= −wi

θi
1[xi ∈ Tθi ], where wi

θi
> 0 is the

weight and 1[·] is the indicator function, produces a reward
(negative cost) when vehicle i is inside the light green target
region Tθi , and zero reward otherwise.

Fig. 1: Emergent coordination involving two autonomous cars at a
toll station. Superscripts of parameters θ denote the agent number
and subscripts denote the agent’s preferred toll booth.

Remark 1: The above game formulation is related to the
partially observable stochastic game [14] in that opponent
agents’ parameters are uncertain. Our formulation addition-
ally models the ego agent’s parameter as a random variable,
which represents the ego agent’s indecision.

B. QMDP Approximation and Subgames

In this paper, we adopt the QMDP approximation tech-
nique [16] in the game-theoretic setting for tractable com-
putation of players’ strategies. Each player i’s game value
function under parameter uncertainty is computed by solving
a QMDP planning problem:

Ṽ i(x; p(θ1), . . . , p(θNa)) := minui∈Ui ciI(x, u
[1:Na])+

E
θi∼p(θi), ∀i∈Ia

[
V i(x+; θ1, . . . , θNa)

]
x+ = f̄

(
x, ui, {πj(x; θ1, . . . , θNa)}j∈Ia\{i}

)
,

(4)

where set U i ⊆ Rnui encodes the control limit of agent i,
ciI (·, ·) is the parameter-independent stage cost, game value
function V i(x; θ1, . . . , θNa) results from equilibrium poli-
cies under a set of fully revealed parameters, f̄(·) is the
time-discretized dynamics (1), and πj(x; θ1, . . . , θNa) is
player j’s equilibrium policy of the game parametrized by
(θ1, . . . , θNa). We call the game governed by a particular
set of parameters (θ1, . . . , θNa) a subgame. In this paper,
we solve for approximate subgame value functions using the
ILQ Game method [13]. QMDP (4) optimistically assumes
that the parameter uncertainties disappear in one step after
the ego agent takes an action, and that all opponents are
clairvoyant playing their corresponding subgame policies.

Assumption 1: We assume the availability of Subroutine
S that computes (approximate) subgame value functions
V i(x; θ1, . . . , θNa) for all players i ∈ Ia and all possible
parameter combinations θ1 ∈ Θ1, . . . , θNa ∈ ΘNa .

QMDP (4) is now tractable as a single-agent trajectory
optimization problem, and can be solved repeatedly in a
receding horizon fashion. Nonetheless, propagating param-
eter uncertainties p(θi) can still be challenging. Existing
works [6, 15] use Bayesian inference [20] to propagate p(θi)
based on observations of opponents’ behaviors. Drawbacks
of Bayesian approaches include intractability for general
(multi-modal) distributions and difficulty in defining an
appropriate likelihood model. In this paper, we take an
alternative approach by interpreting p(θi) as the agent’s
degree of indecision, and model its time evolution using
nonlinear opinion dynamics.
Running example: There are four subgames resulting from
the parameter combinations (θ11, θ

2
1), (θ

1
1, θ

2
2), (θ

1
2, θ

2
1), and

(θ12, θ
2
2), which encode agents’ choices to go through a

particular toll booth. We solve each subgame using the ILQ
method [13] for agents’ state trajectories that correspond to
an approximate local Nash equilibrium solution.

C. From Probabilities to Opinions

We let opinion state vector zi ∈ RNθi model distribution
p(θi), leveraging the softmax operation:

P (θiℓ)← σℓ(z
i) :=

ez
i
ℓ∑Nθi

q=1 e
zi
q

, (5)

and define σ(zi) :=
(
σ1(z

i), . . . , σNθi
(zi)

)
.

By delegating uncertainties to opinions, given a physical
state x and all players’ opinions z := (z1, . . . , zNa), we can
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define player i’s opinion-weighted game value function:

V̂ i(z, x) :=

Nθ1∑
ℓ1=1

· · ·
N

θNa∑
ℓNa=1

(
Na∏
i=1

σℓi(z
i)

)
V i(x; θ1ℓ1 , . . . , θ

Na

ℓNa
),

(6)

as a proxy for Eθ1,...,θNa

[
V i(x; θ1, . . . , θNa)

]
, the expected

game value in QMDP (4).
Remark 2: The neutral opinion z = (0, . . . , 0) corre-

sponds to an (uninformative) uniform distribution p(θ) ←
σ(z) = 1

Nθ
1Nθ

, where 1Nθ
∈ RNθ is a vector of all ones.

D. Synthesizing Opinion Dynamics from Subgames

Opinion evolution as gradient flow. In this section, we
propose a constructive way to synthesize opinion dynamics
from subgames. We model the agents as selfish players who
seek to drive their opinions in a direction that minimizes
their own expected game value. To this end, we let all
agents implement the gradient flow [21, Ch. 14] dynamics
(the continuous-time counterpart of gradient descent) that
describe the evolution of their opinion states:

ż =
[
−∇zi V̂ i(z, x)

]
i∈Ia

(7)

where [·]i∈Ia
denotes vector concatenation by rows.

Linear opinion dynamics. The local behavior of gradient
flow (7) around a given z̄ induces a linear opinion dynamics
model, originally introduced as a weighted-averaging pro-
cess [22]. This is given by linearizing (7) at z̄:

δż =

 −H
1
11(x) · · · −H1

1Na
(x)

...
. . .

...
−HNa

Na1
(x) · · · −HNa

NaNa
(x)


 δz1

...
δzNa

 , (8)

where δż := z− z̄, δzi := zi − z̄i, and

Hi
ij(x) := ∇zizj V̂ i(z, x)

∣∣∣
z̄

is the Hessian matrix of V̂ i(·) with respect to zi and zj ,
evaluated at z̄. We can rewrite linear opinion dynamics (8)
equivalently as

δżiℓ =αi
ℓ(x)δz

i
ℓ +

∑Na

j ̸=i
j=1

γij
ℓ (x)δzjℓ

+
∑Nθi

p ̸=ℓ
p=1

βi
ℓp(x)δz

i
p +

∑Nθi

p ̸=ℓ
p=1

∑Na

j ̸=i
j=1

ηijℓp(x)δz
j
p,

(9)

for player i’s parameter θiℓ, where the state-dependent dy-
namics parameters are defined as

αi
ℓ(x) := −

[
Hi

ii(x)
]
ℓℓ

(10a)

γij
ℓ (x) := −

[
Hi

ij(x)
]
ℓℓ

(10b)

βi
ℓp(x) := −

[
Hi

ii(x)
]
ℓp

(10c)

ηijℓp(x) := −
[
Hi

ij(x)
]
ℓp

(10d)

Here, [H(·)]ℓp denotes the entry located at the ℓ-th row and
p-th column of H(·). The reasoning behind those dynamics
parameters is the same as (3) with additional flexibility to
model inter-option dependency (see [23] and Appendix A in

[1]). The linearized gradient flow dynamics (8) synthesized
from subgames fall into the category of linear opinion
dynamics [22], also known, in discrete time, as the DeGroot
model [24].
Game-induced nonlinear opinion dynamics. Motivated by
the discovery made in recent work [1] that nonlinearity ad-
dresses lack of structural stability of agreement and disagree-
ment equilibria and other issues in linear opinion dynamics,
we modify linear opinion dynamics (8) and propose the
Game-induced Nonlinear Opinion Dynamics (GiNOD):

δżi = giz(δz, λ
i, x) := −Diδzi + λi

[
giℓ(δz, x)

]
ℓ∈Iθi

giℓ(δz, x) := S1

(
αi
ℓ(x)δz

i
ℓ +

∑
j∈Ia\{i} γ

ij
ℓ (x)δzjℓ

)
+∑

p∈Iθi
\{ℓ} S2

(
βi
ℓp(x)δz

i
p +

∑
j∈Ia\{i} η

ij
ℓp(x)δz

j
p

)
,

(11)
for all players i ∈ Ia and parameters θiℓ, ℓ ∈ Iθi , where
Di = diag(di1, . . . , d

i
Nθi

) ∈ RNθi×Nθi is a symmetric
positive definite matrix that describes damping of the opinion
states, λi ∈ R is the attention. The attention λi can be
interpreted as a gain on the saturated gradient flow dynamics
giℓ(·). A greater λi promotes opinion formation (zi departing
the origin), and a smaller λi discourages opinion formation
(zi approaching the origin). Note that the full opinion states
are recovered by z = δz + z̄, where the nominal opinion
states z̄ are recursively updated using an iterative algorithm
(Alg. 1) to be introduced in the next section.

E. When to Pay Attention in Games: the Price of Indecision

We now introduce for each player i a measure called the
Price of Indecision (PoI) defined as

PoIi(z, x) :=

max
ℓj∈Iℓj

, ∀j ̸=i

∑
ℓi∈Iθi

σℓi(z
i)V i(x; θ1ℓ1 , . . . , θ

Na

ℓNa
)

minpi∈Iθi
V i(x; θ1ℓ1 , . . . , θ

i
pi
, . . . , θNa

ℓNa
)
.

(12)

The PoI, inspired by the Price of Anarchy [25], is a ratio
lower bounded by 1 that measures how player i’s efficiency
degrades due to indecision. For a set of worst-case parame-
ters selected by opponent players j ̸= i, PoI will be large if
the (expected) game value when player i chooses not to form
an opinion (the numerator in (12)) outweighs the game value
when player i declares an optimal opinion (the denominator
in (12)). Given the player’s PoI, we introduce a state-and-
opinion-dependent dynamic equation for evolving player i’s
attention [1]:

λ̇i = giλ(λ
i, z, x) := −miλi + ρi

(
PoIi(z, x)− 1

)
, (13)

where mi > 0 and ρi > 0 are damping and scaling param-
eters. The PoI-based dynamics (13) increase the attention
λi when PoIi is large, which promotes opinion formation.
In other words, the agents are more inclined to form their
opinions only if doing so increases their efficiency.

IV. STABILITY ANALYSIS OF GAME-INDUCED NOD

In this section, we derive precise stability conditions for
GiNOD equilibria (11) in a two-player, two-option setting,
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i.e. Ia = {1, 2}, Θ1 = {θ11, θ12}, and Θ2 = {θ21, θ22}. Note
again that the elements in Θ1 and Θ2 need not coincide with
each other. Key properties1 of GiNOD discovered from our
analysis are summarized below:

1) The neutral opinion for both players is unstable for an
arbitrarily small damping parameter. That is, when z̄ =
0, δz = 0 is an unstable equilibrium of GiNOD and thus
indecision is easily broken (Theorem 1),

2) When both agents have formed their non-neutral opin-
ions, δz = 0 is a locally exponentially stable equi-
librium for GiNOD for an arbitrarily small damping
parameter, if both agents’ opinions correspond to a
lower (i.e. better) game value from the current physical
state (Theorem 2),

3) If for both agents there is no difference between game
values of distinct options, then the opinions are driven
purely by the damping terms (Corollary 1).

We start by reviewing two useful linear algebra lemmas.
Lemma 1 (Theorem 4.2.12 [26]): Let A ∈ Rm×m and

B ∈ Rn×n with λ ∈ spec(A) and µ ∈ spec(B), where
spec(·) denotes spectrum. Then λµ is an eigenvalue of A⊗B,
where ⊗ is the Kronecker product. Any eigenvalue of A⊗B
arises as such a product of eigenvalues of A and B.

Lemma 2: Let D = dIn where d ∈ R and In is the
identity matrix in Rn×n. If λ is an eigenvalue of H ∈ Rn×n,
then d+ cλ is an eigenvalue of D + cH where c ∈ R.

Proof: Since λ ∈ spec(H), we have that Hv = λv
where v is the eigenvector associated with λ. It follows that
(D + cH)v = dIv + cHv = (d+ cλ)v.

In the two-player, two-option case, it is possible to derive
and analyze each entry of the system matrix in opinion
dynamics (8), as shown in Lemma 3. To ease the notation
we denote value function V i

ℓp := V i(x; θ1ℓ , θ
2
p).

Lemma 3: Let value function V̂ i(z, x) be defined in (6).

Matrix H(x) := −
[
Jz∇zi V̂ i(z, x)

]
i∈Ia

∣∣∣∣
z̄

= Γ ⊗ H with

H :=

[
1 −1
−1 1

]
and Γ :=

[
a1 b1
b2 a2

]
where

a1 := ϕa(z̄
1)
[
σ1(z̄

2)
(
V 1
11 − V 1

21

)
+ σ2(z̄

2)
(
V 1
12 − V 1

22

)]
a2 := ϕa(z̄

2)
[
σ1(z̄

1)
(
V 2
11 − V 2

12

)
+ σ2(z̄

1)
(
V 2
21 − V 2

22

)]
bi := ϕb(z̄

1)ϕb(z̄
2)
(
−V i

11 − V i
22 + V i

12 + V i
21

)
ϕa(z̄

i) :=
(
σ1(z̄

i)− σ2(z̄
i)
)
ϕb(z̄

i)

ϕb(z̄
i) := σ1(z̄

i)σ2(z̄
i)

for i ∈ {1, 2}, and Jz(·) denotes the Jacobian matrix with
respect to z. Furthermore, spec(H(x)) = {0, 0, a1 + a2 ±(
(a1 − a2)

2 + 4b1b2
)1/2}.

Proof: Entries of H(x) are computed from the Jacobian
matrices of ∇zi V̂ i(z, x) for i ∈ {1, 2}. Spectrum of H(x)
follows by Lemma 1 since spec(Γ) = { 12 [a1 + a2 ±(
(a1 − a2)

2 + 4b1b2
)1/2

]} and spec(H) = {0, 2}.
It is easily observed that δz = 0 is an equilibrium of (11).

To facilitate the analysis of stability of δz = 0, we consider

1All informal conclusions listed here are subject to additional technical
assumptions, which can be found in the Theorems and Corollary.

GiNOD (11) with a steady-state attention λ1 = λ2 ≡ λ̄ :=
λ∞(PoI) > 0 under attention dynamics (13) with a fixed
PoI, i.e. PoI1(·) = PoI2(·) ≡ PoI ≥ 1. The steady-state
attention λ̄ is guaranteed to exist in practice since mi > 0
and thus limt→∞ λi(t) < ∞ for any PoI < ∞. We also
assume the same damping term for both players’ options,
i.e., D1 = D2 = D = diag(d, d). Define block diagonal
matrix D = blkdiag(D,D).

Theorem 1 (Instability at neutral opinion): Let z̄ = 0,
i.e., all agents hold a neutral opinion. Then, δz = 0 is an
unstable equilibrium of GiNOD (11) if d < 2λ̄Re(

√
b1b2).

Proof: When z̄ = 0, linearization of GiNOD at δz = 0
gives linear system δż = (−D+ λ̄H)δz, where a1 = a2 = 0
in H since ϕa(z̄

1) = ϕa(z̄
2) = 0. By Lemma 2 and 3, we

have spec(−D + λ̄H) = {−d,−d,−d ± 2λ̄
√
b1b2}. Thus,

δz = 0 is unstable if d < 2λ̄Re(
√
b1b2).

Remark 3 (Instability and (dis)agreement): It is desirable
that, at the neutral opinion, GiNOD can be made unstable
even if damping d is not close to zero so that agents can
quickly and reliably form a non-neutral opinion to break any
deadlock. This requires that

√
b1b2 has a non-zero real part,

or b1b2 > 0. Since ϕb(z̄
1)ϕb(z̄

2) > 0, b1b2 > 0 if and only
if Vb :=

∏
i∈{1,2}

(
−V i

11 − V i
22 + V i

12 + V i
21

)
> 0. This is

true in two cases. First, if both players find that agreeing
to the same option would be costly (e.g. squeezing into the
same toll station in the Running Example), i.e. V 1

ℓℓ and V 2
pp

are large for some ℓ, p ∈ {1, 2}, then Vb > 0 as a result
of multiplying two negative numbers. Second, if the cost
of disagreement is high for both players (typical case in
cooperative settings), i.e. V 1

ℓ¬ℓ and V 2
p¬p are large for some

ℓ, p ∈ {1, 2}, where ¬ℓ denotes the alternative option to ℓ,
then Vb > 0 since it is the product of two positive numbers.

Theorem 2 (Opinion reflects game value): If for ℓ1, ℓ2 ∈
{1, 2} it holds that σℓ1(z̄

1) > σ¬ℓ1(z̄
1), σℓ2(z̄

2) > σ¬ℓ2(z̄
2),

V 1
ℓ1ℓ2

< V 1
¬ℓ1ℓ2

, V 2
ℓ1ℓ2

< V 2
ℓ1¬ℓ2

, and a1a2 > b1b2, then δz =
0 is a locally exponentially stable equilibrium of GiNOD
with an arbitrarily small damping d > 0.

Proof: We follow the proof of Theorem 1 by examining
the spectrum of the linearized system matrix −D+λ̄H. From
σℓ1(z̄

1) > σ¬ℓ1(z̄
1), σℓ2(z̄

2) > σ¬ℓ2(z̄
2), V 1

ℓ1ℓ2
< V 1

¬ℓ1ℓ2
,

and V 2
ℓ1ℓ2

< V 2
ℓ1¬ℓ2

, we have that a1, a2 < 0. δz = 0 is
locally exponentially stable with any d > 0 if and only if
max(spec(−D+ λ̄H)) = max{−d,−d+ λ̄(a1+a2+((a1−
a2)

2 + 4b1b2)
1/2)} < 0. Since the steady-state attention

λ̄ > 0, if a1 + a2 + ((a1 − a2)
2 + 4b1b2)

1/2 < 0, then
max(spec(−D+ λ̄H)) < 0 with an arbitrarily small d > 0.
Solving the inequality gives a1a2 > b1b2.

Remark 4 (Interpreting inequality a1a2 > b1b2): We ob-
serve that a1a2 > b1b2 holds with mild assumptions on game
values when both players have formed their opinions, that
is, σℓ1(z̄

1) → 1 and σℓ2(z̄
2) → 1 for some ℓ1, ℓ2 ∈ {1, 2},

and players’ opinions reflect their game values (conditions
V 1
ℓ1ℓ2

< V 1
¬ℓ1ℓ2

and V 2
ℓ1ℓ2

< V 2
ℓ1¬ℓ2

in Theorem 2). Since
a1, a2 < 0, a1a2 > b1b2 trivially holds if b1b2 < 0.

When b1b2 > 0, a1a2 > b1b2 holds if a1a2/b1b2 > 1.
Without loss of generality, assume σ1(z̄

i)→ 1 and σ2(z̄
i)→

0 for both players. Since σ1(z̄
i)→ 1, the ratio a1a2/b1b2 →
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c1c2V
′ where c1 := (σ1(z̄

1) − σ2(z̄
1))/σ2(z̄

2) ≫ 1, c2 :=
(σ1(z̄

2) − σ2(z̄
2))/σ2(z̄

1) ≫ 1 and V ′ := Va/Vb where
both the numerator Va :=

(
V 1
11 − V 1

21

) (
V 2
11 − V 2

12

)
and the

denominator Vb :=
∏

i∈{1,2}
(
−V i

11 − V i
22 + V i

12 + V i
21

)
are

positive. Therefore, as long as the game values V i
ℓ1ℓ2

are such
that V ′ is not too small (e.g., when those game values are
roughly of the same magnitude), a1a2 > b1b2 holds.

Remark 5 (Guidelines for choosing damping): Based on
Theorem 1 and 2, it is recommended to pick a damping term
that satisfies 0 < d < 2λ̄

√
b1b2 when b1b2 > 0. In this way

the equilibrium δz = 0 of GiNOD is unstable at the neutral
opinion, while remaining locally exponentially stable when
agents’ opinions match their game value differences.

Corollary 1 (Identical game values cannot form opinion):
If both agents have the same game values for different
options, i.e. V 1

11 = V 1
21, V 1

12 = V 1
22, V 2

11 = V 2
12, V 2

21 = V 2
22,

then the opinions are purely driven by the damping term d,
i.e., δz = 0 is always locally exponentially stable.

Proof: By Lemma 3 we have in this case H = 0.
GiNOD (11) becomes δżi = −Diδzi for i ∈ {1, 2}.

V. EMERGENT COORDINATION PLANNING USING
GAME-INDUCED NONLINEAR OPINION DYNAMICS

In this paper, we seek to combine the best attributes from
differential games and game-induced nonlinear opinion dy-
namics towards efficient, deadlock-free multi-agent emergent
coordination, in which all players are initially undecided
about their parameters of the game. To this end, we first
formulate an opinion-weighted QMDP based on the up-to-
date opinions evolved with GiNOD in Sec. V-A. Then we
modify and extend the QMDP formulation using ideas from
cognitive hierarchy to enable active opinion manipulation in
Sec. V-B. The overall framework of our approach applied in
receding horizon fashion is summarized in Algorithm 1.

A. Opinion-Weighted QMDP

Given a physical state x and players’ opinions z, we
can formulate the opinion-weighted QMDP by combining
QMDP (4) and opinion-weighted game value function (6).
Player i’s strategy is given by:

πi
L0(x, z) := argminui∈Ui ciI(x, u

i) + V̂ i(z, x+)

x+ = f̄
(
x, πi

L0(x, z), {πj(x; θ1, . . . , θNa)}j∈Ia\{i}
)
,

(14)

where ciI (·, ·) is the parameter-independent stage cost, V̂ i(·)
is the opinion-weighted game value function defined in (6),
and πj(x; θ1, . . . , θNa) is player j’s equilibrium policy of
the subgame parametrized by (θ1, . . . , θNa). We refer to
policy (14) as the Level-0 opinion-weighted QMDP (L0-
QMDP) policy, whose namesake will become clearer in the
next section as we introduce the Level-1 QMDP policy.
Aligned with the QMDP principle, an agent using the L0-
QMDP policy first declares an action, then commits to an
option and assumes that the parameter uncertainties of other
agents disappear. The following proposition shows that if the
subgames are LQ games, then the L0-QMDP, under mild
assumptions, can be cast as a convex quadratic program,
which can be solved efficiently via off-the-shelf solvers.

Proposition 1: If all subgames are LQ games, the (physi-
cal) state evolves under a control-affine dynamic model, i.e.
x+ = f̄(x) +

∑
i∈Ia

ḡi(x)ui, stage cost ciI(·, ·) is a convex
quadratic function in ui, and control set U i is convex, then
QMDP (14) is a convex quadratic program.

Proof: Each term V i(x+; θ1ℓ1 , . . . , θ
Na

ℓNa
) in V̂ i(·) can

be expanded by plugging in the dynamic model as V i(·) =
[(ui − ūi)⊤gi(x)⊤Z̄i + ζ̄i,⊤]gi(x)(ui − ūi) + C̄, which is
a quadratic function in ui, where (ūi, Z̄i, ζ̄i) are shorthand
notations for the value function parameters of the subgame
defined by (θ1ℓ1 , . . . , θ

Na

ℓNa
), and C̄ ∈ R is a constant.

Despite its simplicity and efficient computation, we note
that the L0-QMDP policy does not take into account opinion
evolution as a result of agents’ actions, thereby unable to
actively steer the opinions. In the next section, we modify the
L0-QMDP to enable active manipulation of agents’ opinions.

Remark 6: As an alternative to QMDP (14) where oppo-
nents are assumed as clairvoyant players, we may solve a
QMDP Game:

πi(x, z) := argminui∈Ui ciI(x, u
i) + V̂ i(z, x+)

x+ = f̄
(
x, π1(x, z), . . . , πNa(x, z)

)
,

in which the agents’ QMDP problems are coupled. If the
conditions in Prop. 1 are satisfied and all agents’ inputs are
unconstrained, then it can be shown that the QMDP Game is
an LQ Game, whose global feedback Nash equilibrium can
be computed efficiently via coupled Riccati equations [2].

B. Actively Manipulating Opinions
We now introduce the Level-1 opinion-weighted QMDP

(L1-QMDP) policy, which is inspired by the established work
on cognitive hierarchy (K-level reasoning) [27]. The ego
player using the L1-QMDP policy assumes that all oppo-
nents apply the L0-QMDP policy. This way, the ego player
can declare two actions sequentially in time—the first one
evolves the current opinions forward in time through GiNOD,
and all uncertainties are assumed to disappear after the ego’s
second action is determined. Given players’ physical state
x, opinions z, and attentions Λ := (λ1, . . . , λNa), we can
formulate the L1-QMDP planning problem as:

πi
L1(x, z,Λ) = ui

0(x, z,Λ)

min
ui
0,u

i
1∈Ui

ciI(x0, u
i
0) + ciI(x1, u

i
1) + V̂ i(z1, x2)

s.t. x0 = x, z0 = z, Λ0 = Λ

x1 = f̄(x0, u
i
0, {π

j
L0(x0, z0)}j∈Ia\{i})

x2 = f̄(x1, u
i
1, {πj(x1; θ

1, . . . , θNa)}j∈Ia\{i})

z1 = ḡz(z0,Λ0, x1(u
i
0)),

(15)
where ḡz(·) := [ḡiz(·)]i∈Ia

is the discrete-time joint opinion
dynamics given by concatenating players’ time-discretized
GiNOD giz(·) defined in (11). From (15) we can see that the
control action of the ego agent i who players the L1-QMDP
policy is optimized given the knowledge that it is able to
affect opinion z1 through GiNOD ḡz(·). Problem (15) is in
general a non-convex optimization problem as it involves the
nonlinear physical dynamics f̄(·) and GiNOD ḡz(·).
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Algorithm 1 Receding Horizon QMDP using GiNOD

Input: Initial state x(0), opinions z(0), nominal opinions
z̄(0), attentions Λ(0), horizon step T

1: Initialize time step t← 0
2: for t = 0, 1, . . . , T − 1 do

// Solve subgames
3: V i(x(t); θ1, . . . , θNa)← Solve subgames using Sub-

routine S for all players i ∈ Ia and all parameter
combinations θ1 ∈ Θ1, . . . , θNa ∈ ΘNa

// Construct opinion dynamics
4: Set nominal opinions z̄(t)← z(t)
5: Construct GiNOD giz(δz, λ

i, x) in (11) and attention
dynamics giλ(λ

i, z, x) in (13) for all players i ∈ Ia
// Compute QMDP policies

6: ui(t)← Compute control action using the L0-QMDP
policy πi

L0(x(t), z(t)) in (14) or the L1-QMDP policy
πi

L1(x(t), z(t),Λ(t)) in (15) for each player i ∈ Ia
// Update states, opinions, and attentions

7: x(t+ 1)← Integrate f(x(t),u(t))
8: if t ≥ 1 then
9: δzi(t)← Integrate GiNOD giz(δz(t− 1), λi(t−

1), x(t)) for all players i ∈ Ia
10: λi(t) ← Integrate attention dynamics giλ(λ

i(t −
1), z(t), x(t)) for all players i ∈ Ia

11: z(t)← z̄(t− 1) + δz(t)
12: end if
13: end for

VI. SIMULATION RESULTS

We apply the receding-horizon opinion-weighted QMDP
planning framework (Alg. 1) to the toll station coordination
task described in the Running Example. Both vehicles i ∈
{1, 2} are described by a kinematic bicycle model [28],
whose state is defined as xi = (pix, p

i
y, φ

i, vi). Here, pix
and piy are the center position of car i’s rear axes, φi is
the yaw angle with respect to the x-axis, and vi is the
velocity with respect to the rear axes. The joint state vector
is x := (x1, x2) ∈ R8. All continuous-time dynamics were
discretized with a time step of ∆t = 0.2 s using the forward
Euler method. We used a JAX [29]-based implementation
of the ILQ Game method [13] as the Subroutine S for
solving the subgames. The QMDP optimization problems
were modeled and solved using CasADi [30]. The open-
source code is available online.2

The physical states of the vehicles were initialized to be
x(0) = (0 m, 5 m, 0 rad, 3 m/s, 5 m, 2 m, 0 rad, 3 m/s). We
modeled the initially undecided agents by using an almost-
neutral initial opinion ziℓi = ϵ for i ∈ {1, 2} and ℓi ∈ {1, 2}
in all simulations, where ϵ > 0 is a small number that
prevents opinions from staying at equilibrium δz = 0 forever.
Recall that the parameter-dependent stage cost is defined as
ciD
(
xi; θi

)
= −wi

θi
1[xi ∈ Tθi ] where wi

θi > 0 is the cost
weight that encodes agent i’s degree of preference to go
through a toll booth.

2https://github.com/SafeRoboticsLab/opinion_game
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Fig. 2: Agents’ state, opinion (original and softmax), attention, and
PoI trajectories using the L0-QMDP policy with homogeneous cost
weights. Vehicle snapshots are plotted every 3 seconds.

Homogeneous cost weights. We first examine a case in
which both vehicles had the same cost weight w1

1 = w1
2 =

w2
1 = w2

2 = 15. The resulting closed-loop state, opinion,
attention, and PoI trajectories using the L0-QMDP policy
are plotted in Fig. 2. At the beginning of the simulation,
agents’ opinions were constantly neutral since the vehicles
were farther away from the toll stations and the parameter-
dependent cost ciD

(
xi; θi

)
evaluated to 0 for both options,

hence the subgame values were identical. This validated
Corollary 1. As ciD(·) started to produce nonzero rewards
for car 1 at around t = 10 s and car 2 at around t = 7
s, the attentions driven by the PoI spiked up, agents rapidly
formed an opinion, and both cars safely passed through a
toll station, which empirically verified Theorem 1.

Heterogeneous cost weights. Next, we consider a set of
heterogeneous cost weights w1

1 = 40, w1
2 = 50, w2

1 = 50,
w2

2 = 40, encoding that car 1 prefers to go through toll booth
2, and car 2 prefers to go through toll booth 1. The state and
opinion trajectories when both cars are using the L0-QMDP
policy are plotted in Fig. 3. Due to the interference from car 2
(cutting in front of car 1), car 1 formed an opinion to stay in
the left lane and went through the less preferred toll station.
In another trial under the same initial condition, we applied
the L1-QMDP policy to car 1 while keeping the L0-QMDP
policy for car 2. The resulting trajectories are shown in Fig. 4.
By leveraging the active opinion manipulation feature of the
L1-QMDP policy, car 1 was able to plan a more efficient tra-
jectory toward its preferred toll booth. We also simulated the
above scenario with both cars applying the L1-QMDP policy.
Interestingly, we observed similar opinion formation and
physical trajectories to Fig. 4 in this case, despite the agents’
incorrect assumption of their opponent’s cognitive level. In
general, however, if the opponent agent’s behavior deviates
significantly from the L0-QMDP or L1-QMDP assumption,
unexpected opinion evolution or optimized trajectories could
appear as a result of applying Alg. 1.
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Fig. 3: Agents’ state and opinion (original and softmax) trajectories
using the L0-QMDP policy with heterogeneous cost weights.Level-1 QMDP Heterogeneous cost weights (Trial 2)
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Fig. 4: Agents’ state and opinion (original and softmax) trajectories
with heterogeneous cost weights. Car 1 uses the L1-QMDP policy
and car 2 uses the L0-QMDP policy.

VII. CONCLUSIONS

We proposed a principled theoretical and algorithmic
framework for synthesizing game-induced nonlinear opinion
dynamics (GiNOD) based on the value functions of dynamic
games under different agent intent parameters. We provided
a detailed stability analysis for GiNOD in the two-player
two-option case. And we developed a trajectory optimization
algorithm that uses opinions evolved through GiNOD as
guidance. Future works include generalizing the stability
analysis to the multi-player multi-option case and demon-
strating our approach with robotic hardware.
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