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Abstract— We consider a nonlinear discrete stochastic control
system, and our goal is to design a feedback control policy
in order to lead the system to a prespecified state. We adopt
a Stochastic Approximation (SA) viewpoint of this problem.
It is known that by solving the corresponding continuous-
time deterministic system, and using the resulting feedback
control policy, one ensures almost sure convergence to the
prespecified state in the discrete system. In this paper, we
adopt such a control mechanism and provide its finite-sample
convergence bounds whenever a Lyapunov function is known
for the continuous system. In particular, we establish the rate
O (1/ε) to guarantee that the mean square error is less than
ε where the Lyapunov function for the continuous system is
non-smooth and gives exponential rates. Our proof relies on
constructing a Lyapunov function for the discrete system based
on the given Lyapunov function for the continuous system,
and then appropriately smoothing the given function using the
Moreau envelope. We present a numerical experiment in the
selector control example to validate the established rate.

I. INTRODUCTION

In this paper, we consider the problem of controlling a
nonlinear discrete stochastic system of the form,

xk+1 = xk + αk(F (xk, uk) + wk)∀ k ∈ Z, k ≥ 0 (1)

where xk ∈ Rd is the state vector, uk ∈ Rm is the
control, wk is the noise, F (·, ·) is in general a nonlinear
mapping, and αk is a sequence of step-sizes. The goal is
to pick the control sequence uk in order to ensure that the
system reaches a pre-specified state x∗. We will focus on
feedback control strategies of the form uk = ρ(xk) for
some mapping ρ : Rd → Rm to reach the state x∗. In
this paper, we provide finite-time convergence bounds on
the error, ∥xk − x∗∥ depending on the choice of the step-
size sequence αk.

Stochastic recursions of the form (1) are studied under the
name of Stochastic Approximation (SA) [1], and were first
introduced by Robins and Monro [2]. Asymptotic behavior of
such recursions is well understood [3], [4], [1] in terms of the
behavior of the corresponding continuous-time deterministic
control system,

ẋ = F (x, u)∀x ∈ Rd (2)

In particular, it is known that [1] under appropriate assump-
tions on the system, noise and choice of step-sizes, the
almost-sure asymptotic behavior of the discrete-stochastic
system (1) is identical to that of the continuous-deterministic
system (2). Then, in order to lead the system to state x∗,
one would find the optimal feedback solution u = ρ(x(t))
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for the continuous system (2) and use the same solution
for the discrete system (1). The objective of this paper is
to characterize the finite-time convergence error in such an
approach.

Naturally, the convergence rate of the discrete system de-
pends on that of the continuous system. The convergence
behavior as well as the rate of convergence of the continuous
system is usually studied using Lyapunov arguments. In this
paper, we characterize the convergence rate of the discrete
system (1) based on the properties of the Lyapunov function
of the continuous system (2). Suppose that there exists a
feedback control policy and the corresponding Lyapunov
function V for the continuous system that satisfies

dV

dt
= ⟨∇V (x), F (x)⟩ ≤ −γV (x)∀x ∈ Rd (3)

for some γ > 0. This assumption is also known as the global
exponential stability [5]. The convergence rate of the discrete
system was established in the literature (in the context of
optimization [6] and reinforcement learning [7]) when V (·)
is smooth (i.e., has Lipschitz gradients). In contrast, in this
paper, we consider the case when the Lyapunov function
of the continuous system is non-smooth. We show that one
needs O

(
1
ε

)
samples to ensure that E[∥xk − x∗∥2] ≤ ε,

and provide a numerical experiment with the selector control
example in Section III to validate our finding.

A. Relevant literature

Finding the equilibrium point of stabilizing control problems
is essentially a root-finding problem. From this perspective,
the equilibrium point finding problems can be solved through
the framework of SA algorithms, which were first proposed
by [2]. The asymptotic convergence of SA methods was
analyzed using its associated ordinary differential equations
(ODE) [3], [4]. More specifically, it was shown in [1], [8]
that under some conditions, the SA algorithm converges
almost surely as long as the corresponding ODE is stable.
In practice, it is generally preferable to have finite-sample
analyses to provide performance guarantees on the output
of SA algorithms after executing a finite number of opera-
tions.

In order to analyze the stability of dynamical systems, it is
common to employ control Lyapunov functions. In particular,
we show that the time derivative of the Lyapunov function
is upper bounded by some negative constant times the
Lyapunov function itself to achieve exponential stability [9].
Such conditions are found in many settings and applications
in control [10], [11], [5], electrical systems [12] , robotics
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[13] and reinforcement learning [14], [15]. Under gradient-
based perspectives, the exponential stability condition is
equivalent to the Polyak-Lojasiewicz condition [16] when
we take the gradient flow of the iterates. Previously, [7]
established finite-time analysis for nonlinear SA using an
exponential dissipative assumption, which is equivalent to
exponential stability condition for the ℓ2 norm Lyapunov
function. However, due to its reliance on the dissipativeness
assumption, its results are limited to ℓ2 norms and cannot
be used to obtain finite-time bounds for general non-smooth
nonlinear systems with a more generic potentially non-
smooth Lyapunov function.

In practice, many control Lyapunov functions are non-
smooth [10] since the control inputs are usually measured in
discrete time rather than having continuous measurements,
such as logical systems [17] or approximate discrete-time
models [18]. In addition, discontinuous stabilizing feedback
and non-smooth Lyapunov functions are deeply connected
[19] as the non-existence of a smooth control Lyapunov
function implies the absence of a continuous stabilizing
feedback law [10]. To handle this, the theory of Lyapunov
stability for non-smooth systems was developed by [20],
where the Clarke generalized gradient [21] was used to
complement the lack of gradient as we usually have in
the smooth setting. The non-smooth Lyapunov analysis of
equilibria is present in the differential inclusions literature
[21], [22]with applications in robotics [23] and non-smooth
SA [24]. A special application of non-smooth SA is the
switching SA algorithm which is used in networked systems
[25]. However, these prior works did not have a finite-
time convergence guarantee for the non-smooth stochastic
systems.

In order to deal with the non-smoothness of the system,
one can attempt smoothing methods to yield a smoothened
Lyapunov function. In non-smooth optimization, Moreau
envelopes are commonly used [26] where the proximal is
used to handle the non-smooth component of the objec-
tive [27]. In the context of SA, [28] was the first to use
Moreau envelopes to obtain convergence rates for the non-
smooth infinity norms, which is common for the analysis
of Reinforcement Learning algorithms. However, the authors
relied on the contractive property for analysis, which can be
limiting as it excludes a wide range of operators without such
property and many systems in control settings may not have
such properties. In contrast to these prior works, our interest
is to establish finite-time bounds for nonlinear SA algorithms
with Lyapunov exponentially decay conditions instead of the
contractive assumption for arbitrary norms.

II. SYSTEM MODEL AND MAIN RESULTS

A. System model and general assumptions

Recall that we consider the problem of controlling a non-
linear discrete stochastic system (1). This happens when we
can only obtain the value of F via a noisy oracle F̃ such
that for any x it will return F̃ (x, u) = F (x, u) + w where
w is the noise (which can be dependent on the state value

x and the control u). Let Fk = {x0, w0, ..., xk−1, wk−1, xk}
where {wk} is a martingale difference sequence with some
mild conditions on its variance. We have some assumptions
on the noise wk as follows:

Assumption 1. (Noise assumptions) The noise wk is unbi-
ased, that is for any k ∈ Z+:

E[wk|Fk] = 0 (4)

and the noise is square-integrable. That is:

E[∥wk∥22 |Fk] ≤ A+B ∥xk∥22 . (5)

In addition to these noise assumptions, we also assume that
F is Lipschitz:

Assumption 2. (Lipschitz assumption of F ) There exists a
positive constant C such that:

∥F (x, u)− F (y, u)∥2 ≤ C ∥x− y∥2 (6)

for any x, y ∈ Rd.

In the Stochastic Gradient Descent (SGD) algorithm where
F (x) = −∇V (x), this assumption is the gradient Lipschitz
assumption that is vital to ensure the stability of the algo-
rithm. In addition, this assumption is a much more relaxed
assumption than the usual contractive assumption used in
[28]. Not having to rely on the contractive property will allow
us to apply our results to a wider range of problems rather
than just the optimal control problem with time-discounted
rewards. From these assumptions, we are to analyze the
discrete stochastic systems.

B. Stochastic control of non-smooth exponentially stable
systems

The focus of our main results is the convergence analysis
of non-smooth exponentially stable systems. If the gradient
of the Lyapunov function exists everywhere, the exponential
stability assumption can be written as V̇ (x) = ⟨∇V (x), ẋ⟩ ≈
⟨∇V (x), F (x)⟩ ≤ −γV (x)∀x ∈ Rd for some positive
constant γ. In absence of a smooth Lyapunov function V ,
we define an analogous condition using Clarke generalized
gradient [21] as following: for a locally Lipschitz function
V , define the generalized gradient of V at (x, t) by:

∂V (x, t) = co{lim∇V (x, t)|(xi, ti) → (x, t), (xi, ti) ∈ ΩV }

where co denotes the closed convex hull and ΩV is the set
of points where the gradient of V exists. The exponential
stability assumption of the Lyapunov function can be written
as:

Assumption 3. (Exponential stability assumption of the
Lyapunov function with the Clarke generalized gradient) Let
x ∈ Rd, we have that the following holds:

⟨gx, F (x)⟩ ≤ −γV (x)∀x ∈ Rd, gx ∈ ∂V (x). (7)

In addition, we also assume that the value of V is bounded
polynomially w.r.t the distance of x to x∗, that is:
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Assumption 4. (Polynomial growth assumption of the Lya-
punov function) There exists positive constants C1, C2 such
that ∀x ∈ Rd:

C1 ∥x− x∗∥a2 ≤ V (x) ≤ C2 ∥x− x∗∥a2 . (8)

This assumption restricts how large or how small V can be
given its distance to x∗ and allows us to interchangeably
obtain a bound on the distance to x∗ using V . Next, we
have the norm of the generalized gradient of V at x is also
bounded by some polynomial as well:

Assumption 5. (Gradient growth assumption) Let x ∈ Rd,
for any gx ∈ ∂V (x), we have that:

∥gx∥ ≤ G ∥x− x∗∥a−1
2 (9)

For a = 2, this condition implies a linear upper bound
on the generalized gradient. The linear growth assumption
of the gradient can be found in several works in non-
smooth optimization [29] and control [9]. In the case that
the gradient of the Lyapunov function is Lipschitz, it also
implies linear growth of the gradient and this assumption
holds automatically.

Now, we will move on to the main results. Consider R =
V

2
a , we will show that R preserves the exponential stability

condition and the norm of its gradient will be upper bounded
by a linear function:

Lemma II.1. Assume that V satisfies Assumptions 3, 4 and
let R = V

2
a , we have that:

⟨rx, F (x)⟩ ≤ −2γ

a
R(x)∀x ∈ Rd, rx ∈ ∂R(x). (10)

Furthermore, we also have that:

C
2
a
1 ∥x− x∗∥2 ≤ R(x) ≤ C

2
a
2 ∥x− x∗∥2 ∀x ∈ Rd, (11)

and

∥rx∥ ≤ 2

a
GC2 ∥x− x∗∥ ∀x ∈ Rd, (12)

for rx ∈ ∂R(x) is the Clarke generalized gradient of R at
x.

Now, we construct the Moreau envelope M = R□∥x∥2

2µ
where □ is the infimal convolution operator. In order to
quantify how well our Moreau envelope approximates the
Lyapunov function and the distance of x to x∗, we obtain
some bounds on the Moreau envelope as follows:

Lemma II.2. Let R = V
2
a and M = R□ 1

µ ∥x∥22, we have
that:

• C
2
a
1 ∥x− x∗∥2 ≤ R(x) ≤ C

2
a
2 ∥x− x∗∥2 .

• M is convex and 1
µ -smooth.

• ∃0 ≤ a < b : (1 + a)M(x) ≤ R(x) ≤ (1 + b)M(x).
• If R defines a norm then M also defines a norm.

Proof: Note that the first property is trivial from
Assumption 4. The second and fourth properties follow from

lemma 2.1 in [28]. Thus, we only need to show the third
property. We have:

M(x) = min
u∈Rd

{R(u) +
∥x− u∥2s

2µ
} ≤ R(x), (13)

which equality holds when u = x. For the LHS, note that
from Assumption 4 and from V (x)

2
a :

C1 ∥x− x∗∥a ≤V (x) ≤ C2 ∥x− x∗∥a

⇔ C
2
a
1 ∥x− x∗∥2 ≤R(x) ≤ C

2
a
2 ∥x− x∗∥2 .

Thus, we have:

M(x) = min
u∈Rd

{
R(u) +

∥x− u∥2s
2µ

}

≥ min
u∈Rd

{C
2
a
1 ∥u− x∗∥2s +

(∥x− x∗∥s − ∥u− x∗∥s)2

2µ
}

≥
∥x− x∗∥2s

1

C
2
a
1

+ 2µ
⇒ R(x) ≤

(
C

2
a
2

C
2
a
1

+ 2C
2
a
2 µ

)
M(x). (14)

Lemma II.2 allows us to quantify how well M approximates
R and its smoothness in terms of µ. While smaller µ gives
a better approximation of R, it also scales inversely with the
smoothness parameter. From here, we will show that M will
also have a negative drift given a sufficiently small µ:

Lemma II.3. There exists a constant 0 < γM < 2γ
a

(
C1

C2

) 2
a

such that for sufficiently small µ > 0:

⟨∇M(x), F (x)⟩ ≤ −γMM(x)∀x ∈ Rd.

Proof: Let us denote u = argminy

{
R(y) +

∥x−y∥2
s

2µ

}
.

It is well-known that ∇M(x) = x−u
µ = gu ∈ ∂R(u) [6].

From here, we obtain that:

⟨∇M(x), H(x)− x⟩ = ⟨gu, F (u)⟩+ ⟨gu, F (x)− F (u)⟩

≤ −2γ

a
R(u) + C ∥x− u∥ ∥∇M(x)∥

≤ − 2γC
2
a
1 ∥x− x∗∥2

a

(
1 +

2µGC
2
a

−1

1

a

)2 + µC

(
2GC

2
a−1
2

a

)2

∥u− x∗∥2

≤

− 2γC
2
a
1

a

(
1 +

2µGC
2
a

−1

1

a

)2 + µC

(
2GC

2
a−1
2

a

)2

 ∥x− x∗∥2

where the first inequality is from (10) and Assumption 2, the
second inequality is from the Cauchy-Schwarz inequality and
triangle inequality respectively and the last one follows from
the non-expansiveness of the proximal operator. Since 0 <

γM < 2γ
a

(
C1

C2

) 2
a

, we can choose µ small enough such that
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− 2γC
2
a
1

a

1+
2µGC

2
a

−1

1
a

2 + µC

(
2GC

2
a

−1

2

a

)2

≤ −γMC
2
a
2 . From

here, we are done since:− 2γC
2
a
1

a

(
1 +

2µGC
2
a

−1

1

a

)2 + µC

(
2GC

2
a−1
2

a

)2

 ∥x− x∗∥2

≤ −γMC
2
a
2 ∥x− x∗∥2 ≤ −γMR(x),

and by the definition of Moreau envelope, note that M(x) ≤
R(x)∀x ∈ Rd. Thus ∀x ∈ Rd, we have ⟨∇M(x), F (x)⟩ ≤

−γMM(x) for some γM ∈
(
0, 2γ

a

(
C1

C2

) 2
a

)
.

This allows us to obtain the one-iterate bound using the
smooth inequality as follows:

Proposition 1. Suppose that V satisfies Assumptions 3, 4,

and 5 and suppose that there exists 0 < γM < 2γ
a

(
C1

C2

) 2
a

such that Lemma II.3 holds, we have:

E[M(xk+1)|Fk] ≤
(
1− αkγM

2

)
M(xk)

+
α2
k(A+ 2B ∥x∗∥22)

µ
. (15)

Proof: Let R = V
2
a . From the Lemma II.1, we

have C
2
a
1 ∥x− x∗∥2 ≤ R(x) ≤ C

2
a
2 ∥x− x∗∥2 ∀x ∈ Rd

and ⟨rx, F (x)⟩ ≤ − 2γ
a R(x)∀x ∈ Rd, rx ∈ ∂R(x). where

∂R(x) = co{lim∇R(x)|xi → x, xi ̸∈ ΩV } is the gen-
eralized gradient of R. Let M = R□∥·∥2

2µ , from the 1
µ -

smoothness of M , we obtain:

M(xk) ≤ M(xk−1) + ⟨∇M(xk−1), xk − xk−1⟩

+
1

2µ
∥xk − xk−1∥22 (16)

Taking expectations on both sides, we have:

E[M(xk)|Fk−1] ≤ M(xk−1) + αk−1⟨∇M(xk−1), F (xk−1)⟩

+
α2
k−1E[∥F (xk−1) + wk−1∥2 |Fk−1]

2µ
.

Thus, from II.3, we have that:

⟨∇M(x), F (x)⟩ ≤ −γMM(x)∀x ∈ Rd

where γM = − 2γC
2
a
1

a

1+
2µGC

2
a

−1

1
a

2

C
2
a
2

+ Cµ

C
2
a
1

(
2GC

2
a

−1

2

a

)2

.

Denote Ek = E[M(xk)|Fk−1], we have:

Ek ≤ M(xk−1) + αk−1⟨∇M(xk−1), F (xk−1)⟩

+
α2
k−1E[∥F (xk−1) + wk−1∥2 |Fk−1]

2µ
.

This gives:

Ek ≤ (1− αk−1γM )M(xk−1)︸ ︷︷ ︸
contraction term

+
α2
k−1

2µ
E[∥F (xk−1) + wk−1∥22 |Fk−1]︸ ︷︷ ︸

noise term

from the fact that F (x∗) = 0. The noise term can be further
bounded as:

α2
k−1

2µ
E[∥F (xk−1) + wk−1∥22 |Fk−1]

(a)

≤
α2
k−1

2µ
E[(∥F (xk−1)− F (x∗)∥2 + ∥wk−1∥2)

2|Fk−1]

(b)

≤
α2
k−1

2µ
E[(C ∥xk−1 − x∗∥2 + ∥wk−1∥2)

2|Fk−1]

(c)

≤
α2
k−1(C

2 ∥xk−1 − x∗∥22 + E[∥wk−1∥22 |Fk−1])

µ
(d)

≤
α2
k(C

2 ∥xk−1 − x∗∥22 +A+B ∥xk−1∥22)
µ

(e)

≤
α2
k−1(C

2 + 2B) ∥xk−1 − x∗∥22
µ

+
α2
k−1(A+ 2B ∥x∗∥22)

µ

(f)

≤
α2
k−1(C

2 + 2B)M(xk−1)

µ

(
1

C
2
a
1

+ 2µ

) +
α2
k−1(A+ 2B ∥x∗∥22)

µ
.‘

The first inequality (a) follows from triangle inequality,
the second inequality (b) follows from Assumption 2, the
third inequality (c) follows from Cauchy-Schwarz, the fourth
inequality (d) follows from the Assumption 1 and the last
inequality (f) follows from Lemma II.2. Thus, we have the
bound on Ek = E[M(xk)|Fk−1] as:

Ek ≤

1− αk−1γM +
α2
k−1(C

2 + 2B)

2µ2 + µ

C
2
a
1

M(xk)

+
α2
k−1(A+ 2B ∥x∗∥22)

µ
.

Now, choose α0 ≤
γM

2µ2+ µ

C

2
a
1


2(C2+2B) and choose the step size

sequence {αk}k≥0 to be decreasing, we have that:

E[M(xk+1)|Fk] ≤
(
1− αkγM

2

)
M(xk)

+
α2
k(A+ 2B ∥x∗∥22)

µ
.

Hence, we are done.

From the one-iterate bound, we are able to achieve the
finite-time bounds of the algorithm. This can be done by
expanding the one-iteration bound from the beginning to the
k-th iteration and choosing a suitable step size. The bounds
are summarized in the following theorem:
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Theorem II.4. Under the Assumptions 1, 2 and suppose
that there exists a Lyapunov function V satisfying the As-
sumptions 3, 4, 5, and with the step size αk = α

(k+K)ξ

where K = max
{
1, α(4C2+8B)

γ

}
for ξ = 1 and K =

max

{
1,
(

α(4C2+8B)
γ

) 1
ξ

,
(

2ξ
αγ

) 1
1−ξ

}
for ξ ∈ (0, 1), the rate

of convergence for the SA problem is:

For ξ = 1 :

E[∥xk − x∗∥22] ≤


O
(

1

k
αγM

2

)
if α ∈

(
0, 2

γM

)
O
(

log k
k

)
if α = 2

γM

O
(
1
k

)
if α ∈

(
2

γM
,∞
)

For ξ ∈ (0, 1) :

E[∥xk − x∗∥22] ≤ C
2
a
2

(
1

C
2
a
1

+ 2µ

)
∥x0 − x∗∥22 ×

exp

[
− αγM
2(1− ξ)

((k +K)1−ξ −K1−ξ)

]
+

4α

γM (k +K)ξ
A+ 2B ∥x∗∥22

µ

(
1

C
2
a
1

+ 2µ

)
.

For ξ = 0 :

E[∥xk − x∗∥22] ≤ C
2
a
2

(
1

C
2
a
1

+ 2µ

)
∥x0 − x∗∥22 ×

(
1− αγM

2

)k
+

2(A+ 2B ∥x∗∥22)α
µγM

(
1

C
2
a
1

+ 2µ

)
.

Proof sketch: We expand the one-iterate bound in Proposition
1 to obtain:

E
[
Mµk+1

(xk+1)|Fk

]
≤

k∏
i=1

(1− ναk)︸ ︷︷ ︸
T1

Mµ0(x0)

+
(
A∗ +B∗ ∥x∗∥2

) k∑
i=0

α2
i

∏k
j=i+1 (1− ναj)

µi︸ ︷︷ ︸
T2

.

The T1 term represents how fast the RHS vanishes with each
1−ναk term is the diminishing factor at each iteration while
the T2 term represents the impact of noise in our bound.
By appropriately choosing the step size αk and with proper
bounds, we obtain the finite-time bounds.

Note that since we can treat M as a smooth Lyapunov
function, we can apply similar proof techniques to obtain the
finite-time convergence for the smooth exponentially stable
setting. From the finite-time bounds, we can easily extend the
result to obtain almost sure convergence results. A detailed
description of the theorem and the proof of the following
corollary is in the Appendix of [30].

Corollary II.4.1. Let {xk}k≥0 be the sequence of iterates
generated by the update rule (1), then when the stepsize se-

quence {αk}k≥0 satisfies
∑∞

k=1 αk = +∞ and
∑∞

k=1 α
2
k <

+∞, we have limk→∞ dist(xk,X ) = 0 almost surely.

III. NUMERICAL EXPERIMENTS

In practical applications of control systems, oftentimes we
will have discrete measurements which make our control
systems non-smooth. Furthermore, external factors such as
numerical precision, hardware, and environmental issues can
yield noisy measurements. One such example is the selector
control (Example 4.4 in [31]). Consider the system as shown
in Figure 1a with the dynamic ẋ = Ax+Bu, we can write
the closed-loop dynamic as:

ẋ = Ax+Bmin{kT1 x, kT2 x}
= (A+BkT1 )x+Bmin{0, kTx},

where k = k2 − k1. Let A1 = A+Bk1, A2 = A+Bk2 and
consider the system:

A1 =

[
−5 −4
−1 −2

]
, B =

[
−3
−21

]
, k =

[
1
0

]
.

The system is piecewise linear hence it is straightforward to
see that this system satisfies Assumption 2. Note that there is
no global quadratic Lyapunov function for this system, hence
we have to choose a piecewise quadratic Lyapunov, which is
non-smooth, in order to take into account the hybrid nature
of the system:

V =

{
xTPx if kTx ≤ 0

xT (P + ηkkT )x otherwise

where: P =

[
1 0
0 3

]
, η = 9. One can check that P, P ′ =

P + ηkkT are symmetric positive definite matrix that satis-
fies:

(A+BkT1 )P + P (A+BkT1 )
T < 0,

(A+BkT2 )P
′ + P ′(A+BkT2 )

T < 0,

which implies that there exists λ, λ′ > 0 such that V̇ ≤
−λ ∥x∥2 ⇒ V̇ ≤ −λ′V . Thus, the system satisfies As-
sumptions 3. Furthermore, since the Lyapunov function is
piecewise quadratic and, consequently, the Clarke general-
ized gradient is linearly bounded. Hence, the Assumptions 4
and 5 are satisfied for a = 2. Applying the SA algorithm, we
obtain results in Figure 1b. Note that the slope value −1.03
of the linear regressor of the log plot in 1b roughly matches
the complexity O

(
1
k

)
for ξ = 1.

IV. CONCLUSION AND FUTURE WORKS

In this work, we investigated the SA framework for the non-
linear discrete stochastic systems and showed that a sample
complexity of O

(
1
ε

)
is required to obtain an ε-approximation

solution. A natural extension of our work is to consider more
generalized stability conditions as suggested in [9] and apply
the SA framework to other control settings.
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(a) Selector control illustrations in the feedback control form

(b) The value of the Lyapunov function when ξ = 1

Fig. 1: An example of a non-smooth exponentially stable
system with the elector control example.

REFERENCES

[1] V. S. Borkar, “Stochastic approximation: A dynamical systems view-
point,” 2008.

[2] H. Robbins and S. Monro, “A stochastic approximation method,”
Annals of Mathematical Statistics, vol. 22, pp. 400–407, 1951.

[3] A. Benveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and
Stochastic Approximations, 1st ed. Springer Publishing Company,
Incorporated, 2012.

[4] H. Kushner and D. Clark, “Stochastic approximation methods for
constrained and unconstrained systems,” SIAM Review, vol. 22,
no. 3, pp. 382–384, 1980. [Online]. Available: https://doi.org/10.
1137/1022079

[5] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 4,
pp. 876–891, 2014.

[6] A. Beck, First-Order Methods in Optimization. Philadelphia, PA,
USA: SIAM-Society for Industrial and Applied Mathematics, 2017.

[7] Z. Chen, S. Zhang, T. T. Doan, J.-P. Clarke, and S. T. Maguluri,
“Finite-sample analysis of nonlinear stochastic approximation with
applications in reinforcement learning,” 2019. [Online]. Available:
https://arxiv.org/abs/1905.11425

[8] L. Ljung, “Analysis of recursive stochastic algorithms,” IEEE Trans-
actions on Automatic Control, vol. 22, no. 4, pp. 551–575, 1977.

[9] H. Khalil, Nonlinear Control. Pearson Education, 2014. [Online].
Available: https://books.google.com.vn/books?id=OyGvAgAAQBAJ

[10] P. Osinenko, G. Yaremenko, and G. Malaniya, “On stochastic
stabilization via non-smooth control lyapunov functions,” IEEE
Transactions on Automatic Control, pp. 1–8, 2022. [Online].
Available: https://arxiv.org/abs/2205.13409

[11] Q. Nguyen and K. Sreenath, “Exponential control barrier functions
for enforcing high relative-degree safety-critical constraints,” in 2016
American Control Conference (ACC), 2016, pp. 322–328.

[12] W. Cui, J. Li, and B. Zhang, “Decentralized safe reinforcement
learning for voltage control,” 2021. [Online]. Available: https:
//arxiv.org/abs/2110.01126

[13] T. Westenbroek, F. Castaneda, A. Agrawal, S. Sastry, and K. Sreenath,
“Lyapunov design for robust and efficient robotic reinforcement
learning,” 2022. [Online]. Available: https://arxiv.org/abs/2208.06721
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