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Abstract— This paper considers the existence of stealthy
integrity attacks for uncertain cyber-physical systems from
a geometric point of view. We derive geometric structural
conditions for the existence of stealthy integrity attacks and de-
duce the minimal actuator communication channels that, when
protected, no stealthy integrity attacks exists. To examine
different knowledge disclosure conditions for the attacker, we
consider: (a) the attacker has full knowledge of the system
linear terms but only the structure of the uncertain term,
and (b) the attacker only knows the structures of the linear
terms and the uncertain non-linear term. For scenario (a),
the obtained existence condition of stealthy integrity attacks
is that the uncertainty is decoupled with the maximal output-
zeroing controlled-invariant subspace. In scenario (b), a graph
is used to describe the uncertain system and we show that the
existence of stealthy attacks is only possible if the uncertainty
is decoupled with the fixed maximal output-zeroing controlled-
invariant subspace. For each disclosure scenario, we deduce
the minimum actuator communication channels to protect for
guaranteeing the absence of stealthy integrity attacks. Our
results are validated with a numerical example.

I. INTRODUCTION

Motivation and literature review: The cyber-physical sys-
tem (CPS) framework is applicable to a broad range of
systems, such as smart power grids, intelligent transportation
networks, and water distribution networks. However, the
rising integration of control, computation and communication
techniques makes CPS more vulnerable to malicious cyber
attacks [1]. Hence, significant research focus is paid on the
risk management of CPS [2]. This includes a broad variety
of security topics such as attack scenario description [3],
[4], attack analysis [5], [6] and attack mitigation [7]–[10].
An important topic of security analysis is that of attack
prevention, which mainly aims to eliminate the vulnerability
to stealthy integrity attacks in CPS.

Two approaches that have been utilized for attack preven-
tion are information security techniques and system structure
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design. Information security approaches such as encryp-
tion of the communication channels, firewalls and adding
stochastic noise, mainly related to secure information flow
(privacy preservation) are well developed in [11]–[13]. On
the other hand, suitably designing the system structure is
an efficient way for securing the integrity of information
flow, thus enabling the prevention of stealthy attack events.
Recent studies have explored actuator protection design [14],
[15], vertex communication structure design [16], and sensor
placement design [6] for networked linear systems.

The authors in [14], [15] determine the actuator security
indices for systems with known parameters and uncertain
structural systems respectively. The structural left invertibil-
ity property is used to characterize perfectly undetectable
integrity attacks in [16]. In [6], the optimal sensor placement
problem is formulated as a zero-sum game.It should be
noted that most of the current literature addresses perfectly
undetectable attacks, which is not the most general class
of stealthy attacks. In addition, the security structure design
for uncertain systems has not been explored. Motivated by
the aforementioned issues, this paper studies the problem of
security structural design against general stealthy attacks.

Contribution: This paper studies the problem of the ex-
istence of stealthy integrity attacks for uncertain cyber-
physical systems by considering their structural properties.
To examine different knowledge disclosure conditions for the
attacker, we consider: (a) the attacker has full knowledge
of the system linear terms but only the structure of the
uncertain term, and (b) the attacker only knows the structures
of the linear terms and the uncertain non-linear term. In
particular, for scenario (a), we show that stealthy attacks exist
if and only if the uncertainty is decoupled with the maximal
output-zeroing controlled-invariant subspace. Moreover, the
uncertain system is considered as a structural system in
scenario (b). We use a graph to describe this system and
specify a fixed output-zeroing controlled-invariant subspace
that is decoupled with the uncertainty using suitable graphic
properties, and show that no stealthy integrity attacks exist
if and only if this subspace is empty. In each scenario, we
determine the minimum number of actuator communication
channels that when protected, then the non-existence of
stealthy integrity attacks is guaranteed.

Preliminaries: The notation ek represents a vector with the
kth element being 1 and all other elements being 0. Then,
the vectors e1, · · · , en constitute a unit basis for Rn. The sets
of real matrices of dimension m × n with real and binary
entries are denoted by Rn×n and Bn×n respectively, where
B = {0, 1}. The kernel and image of A ∈ Rn×n are denoted
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by kerA and ImA respectively. For A ∈ Rn×m and a set S,
|A|0 is the number of the nonzero elements of A. For a set
S, |S| represents the cardinality of S. In addition, we use ⊕
to represent the direct sum of two subspaces. For a vector
signal x(t), x(t) ≡ 0 for t ∈ [t1, t2] means that x(t) = 0
identically for all t ∈ [t1, t2]; x(t) ̸≡ 0 for t ∈ [t1, t2] means
x(t) ̸= 0 for at least one time instant t ∈ [t1, t2].

Some definitions for controlled invariant subspace are
given below. To this end, the state and output under initial
condition x0 and input ū are denoted by x(x0, ū, t) and
y(x0, ū, t) respectively.

Definition 1. [17, Dfn. 4.1] A subspace V is controlled
invariant for system (A,B,C) if for any x0 ∈ V , there exists
an input ū such that x(x0, ū, t) ∈ V for all t ≥ 0.

Definition 2 ((A,B) Invariant Subspace Contained in kerC).
For the system (A,B,C), the following statements are equal:

• A subspace V is a controlled invariant subspace con-
tained in kerC;

• AV ⊂ V + ImB and CV = 0;
• There exists a matrix L with proper dimensions such

that (A+BL)V ⊂ V and CV = 0.

To describe structural matrices, we introduce the concept
of pattern matrices with elements being in the set {0, ∗}. The
set of all m × n pattern matrices is denoted by {0, ∗}m×n.
For a given m× n pattern matrix M , we define the pattern
class of M as follows:

P (M ) = {M ∈ Rm×n|Mij = 0 if Mij = 0,

Mij ̸= 0 if Mij = ∗}.

II. PROBLEM FORMULATION

In this section we provide a mathematical description of
the CPS considered in this paper, define stealthy integrity
attacks and state the problem examined in this paper.

A. System Description

A general structure of CPS subject to integrity type cyber
attacks is depicted in Fig. 1. The attacker compromises the

Fig. 1. General architecture of CPSs under potential integrity cyber attacks.

actuator communication network Na by injecting additive
false data. Suppose that the CPS has m actuator communi-
cation channels. Let K ⊆ {1, · · · ,m} represent the set of
disruption resources, i.e., the set of actuator communication
channels that may be affected by the adversary. Throughout
this paper, we use T0 to denote the attack event occurrence

time. Then, in the presence of an actuator attack associated
with the disruption resource K at T0, the transmitted and
received control signals by Na, denoted by ũ and u respec-
tively, satisfy the following relation:

ũ(t) = u(t) + Γa(t), ∀ t ≥ T0, (1)

where a = [a1, · · · , ak]T ∈ R|K| is the actuator attack. For
each i ∈ K, ai(t) ≡ 0 for t ≥ 0 if there is no attack
occurring on the i-th Na channel. The distribution matrix
Γ ∈ Bm×|K| is the binary diagonal matrix related to the
disruption resources K.

The closed-loop CPS, denoted by W in the attack case, is
described by

W :


ẋ = Ax+ Ff(t, x) +Bũ+ ω1, x(0) = x0, (2a)
ũ = u(y, yref) + Γa(t), (2b)
y = Cx+ ω2, (2c)

where x ∈ Rn is the state, ũ, u ∈ Rm are the control
data received by the actuator and computed by the controller
respectively, and y ∈ Rp denote the sensor measurements
received by the controller. The signal yref ∈ Rp is the
reference signal, and ω1 ∈ Rn and ω2 ∈ Rm represent the
lumped disturbances and noise. The function f : R≥0 ×
Rn → Rq represents the lumped unmodelled uncertainties.
The function u : Rp × Rp → Rm is the nonlinear output
feedback control law. Moreover, u is continuous in y and
yref , and satisfies u(0, 0) = 0. Finally, the matrices A,B, F
and C have proper dimensions.

In the absence of attacks, W is denoted by Wn given by:

Wn :


ẋn = Axn + Ff(t, xn) +Bũn + ω1, (3a)
ũn = u(yn, yref), (3b)
yn = Cxn + ω2, (3c)

where xn, yn, and ũn, are the state, output, and the received
control input in the nominal case, corresponding to xn, yn,
and ũn, respectively.

B. Stealthy Integrity Attacks

In this section, we provide a rigorous definition of stealthy
integrity attacks for systems described by (2). To this end,
we let y(x0, a, t) and yn(x0 + ∆x0, 0, t) denote the output
of system W with the initial condition x0 and input a
and the output of system Wn with the initial condition
x0 + ∆x0 respectively. Below, we provide a description of
the typical model-based anomaly detector depicted in Fig. 1.
The residual r of the anomaly detector is a function of y. In
addition, since the initial state x0 is frequently not exactly
known, the detector threshold, denoted by r̄, is typically
designed as a function of x0+∆x0 for some bounded value
of ∆x0. Typically, no alarm is triggered by the detector in
the presence of the output yn(x0+∆x0, 0, t), since |r(t)| <
r̄(t) for any t and any ∆x0 that abides by certain bound
conditions. Stealthy integrity attacks with respect to the
typical model-based anomaly detector is defined as follows.

Definition 3 (Stealthy Integrity Attacks). Consider the sys-
tem W . Then, an attack a(t) ̸≡ 0 for t ≥ T0 is a stealthy
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integrity attack with respect to typical model-based anomaly
detectors if there exists ∆x0 such that

y(x0, a, t) = yn(x0 +∆x0, 0, t), ∀ t ≥ T0. (4)

C. Problem Statement

Below we state the problems considered in this paper,
which are explored in the following sections.

Problem 1. By analyzing the structure of the nonlinear
closed-loop system W , described by (2), we intent to
(a) obtain geometric conditions that enable the nonexistence

of stealthy integrity attacks;
(b) determine the minimum actuator communication chan-

nels that, when secured, it is guaranteed that no stealthy
integrity attacks exist,

when the attacker has knowledge of either of the following:
(i) A, B, and C and the partial structure of Ff(t, x);
(ii) the partial structures of A, B and C and Ff(t, x).

Cases (i) and (ii) are considered in Sections III and IV
respectively.

III. SECURITY ANALYSIS UNDER UNCERTAIN
NONLINEAR DYNAMICS

This section explores the problem described in Section
II-C when the attacker side has complete knowledge of the
matrices A,B and C and the partial structure of Ff(t, x),
of the closed-loop system W , described by (2).

A. Geometric Existence Condition

This subsection provides geometric conditions for the ex-
istence of stealthy integrity attacks when the attacker knows
A, B, and C, but has uncertain knowledge of Ff(t, x). More
specifically, the attacker has knowledge of all elements of the
matrices A, B, and C, and the zero entries of the matrix F ,
associated with (2), while the remaining elements of F are
unknown. Recalling the knowledge resources known by the
attacker, a pattern matrix F can be defined such that, from
the attacker’s point of view, F belongs to a pattern class
P(F ). For the matrix F with uncertain parameters ∗, its
image ImF varies with respect to these uncertain parameters.
In the analysis that follows, we denote the smallest fixed
subspace containing generically ImF by FF . The space FF

can be described through the unit basis vector ek.
In addition, in order to focus on the system security

structure analysis and not be misled by the knowledge of
system states, we assume that the attacker access to all
system states at all times. Moreover, we assume the worst
case that the attacker is able to disrupt only a subset of the
inputs, which is denoted by K.

An incremental system of Wn in (3) with initial condition
x0 + ∆x0 is utilized to determine the existence of attacks.
To define such a system, we denote ∆x = x−xn and ∆y =
y − yn. Then, from (2a), (2b), (3a) and (3b), the changes in
x and y due to an attack can be expressed as

∆W :

{
∆ẋ = A∆x+ F (f(t, x)− f(t, xn)) +BΓa,
∆y = C∆x,

(5)

where ∆x(T0) = ∆x0. Note that u(y, yref)−u(yn, yref) = 0
is used to derive the above incremental system.

Remark 1. It can be observed from (5) that the nonlinearity
disappears if f(t, x) is independent on x since f(t, x) −
f(t, xn) = 0. Hence, in the case that f(t, x) is independent
on x, the attack existence problem is trivial since many
associated works have been done (see e.g., [4], [18]). The
considered nonlinear function f(t, x) that depends on x
brings significant challenges. It is also worth pointing out that
the existence of the attack does not rely on the form of the
nonlinear function f(t, x), while depends on the distribution
matrix F . Hence, this paper does not require any limitation
for the uncertain nonlinear function f(t, x). ∇

The attack is conducted based on the incremental system
(5). Recalling that all disclosure resources are supposed to
be available to the attacker, the attack a is designed as
a = L∆x such that the output ∆y is decoupled with the
nonlinearity Ff(t, x), i.e., in the context of the transfer
function, C(sI − A − BΓL)−1F = 0 for any F ∈ P(F ).
The existence of such matrix L implies the existence of a
stealthy integrity attack satisfying Definition 3. Hence, the
existence of stealthy attacks is equivalent to the existence of
a matrix L that satisfies the above condition.

Recalling Definition 2, we characterize the (A,BΓ) in-
variant subspace V contained in kerC as follows:

AV ⊂ V + ImBΓ, CV = 0. (6)

Let V∗ be the maximal (A,BΓ) invariant subspace contained
in kerC. Then, the following theorem provides conditions
for the existence of stealthy integrity attacks for system W .
In addition, we remind that FF denotes the smallest fixed
subspace containing ImF .

Theorem 1 (Geometric Existence Condition). There exists a
stealthy integrity attack for the system W in (2) if and only
if FF ⊂ V∗. ■

B. Minimal Actuator Protection for Security

The aim of this subsection is to determine the minimum
key actuator communication channels to secure such that no
stealthy integrity attack exists even though the attacker can
disrupt all the remaining actuators. By protecting these key
actuator communication channels, the attacker has limited
actuator disruption resources to obtain the required space
V∗ and thus, the defender can manipulate the inclusion
relationship between FF and V∗. Hence, following from
the result in Theorem 1, the existence of the stealthy attack
can be eliminated. The objective can be characterized by the
following optimization problem:

max
Γ

|Γ|0 (7a)

s. t. ∃ V ≠ ∅, (7b)
FF ⊂ V, AV ⊂ V + ImBΓ, CV = 0. (7c)

The above optimization problem is studied based on a system
decomposition presented below. In particular, we consider
the case where FF ⊂ kerC, which is necessary for the
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existence of stealthy attacks, as follows from Theorem 1.
Suppose that the matrix C is full row rank and B is full
column rank. Let V ⊂ Rn be a state subspace satisfying

FF ⊂ V ⊂ kerC. (8)

Then, we have q ≤ d ≜ dim (V) ≤ n − p, and we can
also define the quotient space Rn/V and a linear map Π :
Rn → Rn/V . (the notation Π represents the corresponding
matrix of the linear map Π). Moreover, based on Rn/V , we
can define two full column rank matrices B1 ∈ Rd×m1 and
B2 ∈ R(n−d)×m2 with m1 +m2 = m, satisfying

Im
[

B1
0(n−d)×m1

]
⊂ V, Im

[
0d×m2

B2

]
⊂ Rn/V,

ImB =
[

B1
0(n−d)×m1

]
⊕
[
0d×m2

B2

]
.

Corresponding to the dimensions of B1 and B2, we have
Γ1 ∈ Rm1×m1 and Γ2 ∈ Rm2×m2 such that Γ =
diag(Γ1,Γ2).

Let {e1, · · · , ed, · · · , en} be a basis of Rn with
{e1, · · · , ed} being a basis of V . Then, in this basis, the
system (A, [BΓ, F ], C) can be written in the following form

A =

[
A11 A12

Π A22

]
, B =

[
B1Γ1 0
0 B2Γ2

]
, (9a)

F =

[
F1

0

]
, C = [0 C2], (9b)

where Π ∈ R(n−d)×d, A11 ∈ Rd×d, A22 ∈ R(n−d)×(n−d),
F1 ∈ Rd×q and C2 ∈ Rp×(n−d). It should be noted that
C2 is full row rank since C is full row rank. Hence, we are
ready to present a result as follows:

Lemma 1. The conditions (7b) and (7c) hold for some
given fixed space V satisfying (8) if and only if the actuator
communication channels accessed by the attacker satisfy
ImB2Γ2 ⊇ ImΠ. Moreover, the minimum number of such
channels is given by |Γ|0 = rankΠ where Γ = diag(Γ1,Γ2)
with Γ1 = 0. ■

Remark 2. It should be noted that the number of the V satis-
fying (8) is finite for a system with finite dimensions. Hence,
based on the result of Lemma 1, the optimization problem
(7) can be solved by using the brute-force algorithm [14]. In
particular, we can derive the minimum number of the actuator
communication channels to protect for each V satisfying (8).
The infimum of the minimum numbers is the objective value
minΓ |Im − Γ|0, and can be obtained by comparing them.
However, this brute-force algorithm is not applicable to high-
dimension systems due to the computation complexity of this
algorithm. Hence, we derive the analytically optimal solution
to (7) presented in the following theorem. ∇

The following theorem characterizes the solution to (9),
by determining the minimum number of actuators that, when
protected, the non-existence of stealthy attacks is guaranteed.

Theorem 2. Consider the optimization problem (7). The
minimum number of actuator communication channels to
secure is given by |Im −Γ∗|0 +1 = m− rankΠ∗ +1 where

Π∗ : Rn → Rn/V∗ with V ∗ = kerC and Γ∗ = diag(0,Γ∗
2)

with Γ∗
2 satisfying ImB2Γ

∗
2 ⊇ Π∗. ■

IV. SECURITY ANALYSIS UNDER UNCERTAIN LINEAR
AND NONLINEAR DYNAMICS

This section considers the case where the attacker is only
aware of the partial structure of matrices A and B and the
uncertainty Ff(t, x) of system W in (2). This significantly
complicates the analysis compared to the case presented
in Section III, due to the lack of exact knowledge of the
matrices A and B. In particular, the attacker knows only the
structure of the matrices A, B and F . Let A ∈ {0, ∗}n×n,
B ∈ {0, ∗}n×m and F ∈ {0, ∗}n×q . Then, from the
attacker’s point of view, A, B and F belong to the pattern
classes given below:

A ∈ P(A ), B ∈ P(B), F ∈ P(F ). (10)

In addition, the attacker knows the kernel of matrix C, i.e.
is aware of which states are not measured.

A. Geometric Existence Condition

Let V be the (A,B) invariant subspace contained in
kerC (see Definition 2), and let V∗ be the maximal (A,B)
invariant subspace contained in kerC. Then, we define VF

as a fixed subspace contained in V and V∗
F as the maximal

fixed subspace contained in V∗ for all A ∈ P(A ) and
B ∈ P(B). The following result provides conditions for
the existence of the stealthy integrity attack.

Theorem 3 (Geometric Existence Condition). Consider the
structural system W described by (2). There exists a stealthy
integrity attack for W with respect to A ∈ P(A ), B ∈
P(B) and F ∈ P(F ) if and only if FF ⊂ V∗

F . ■

B. Minimal Protection of Actuator Communication Channels

The aim of this subsection is to determine, for the case
considered in this section, the minimal key actuator com-
munication channels that, when protected, ensure that no
stealthy attack exists. The latter is achieved by utilizing the
inclusion relation FF ⊂ VF , which is a requirement for the
existence of stealthy integrity attacks (see Theorem 3). In
analogy to previous section, this aim is achieved by solving

max
Γ

|Γ|0 (11a)

s. t. ∃ VF ̸= ∅, (11b)
FF ⊂ VF , AVF ⊆ VF + ImBΓ, CVF = 0. (11c)

Since FF ⊂ kerC, we choose a fixed VF ⊂ Rn satisfying

FF ⊂ VF ⊂ kerC. (12)

Then, we have q ≤ d ≜ dim (VF ) ≤ n − p. Similar to
the previous section, by replacing V with VF , we define the
matrices Π, B1 and B2, and the associated matrices Γ1 and
Γ2. The subspace VF satisfies FF ⊂ V in (11b) and CVF =
0 in (11c). Moreover, by using a state permutation based
on P(F ) and kerC, the system can be transformed into
the form presented in (9). Let [wT

1 , w
T
2 ]

T be the state of the
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system described in (9). Then, the subsystem that describes
the evolution of state w2 is given by

Σ̂ :

{
ẇ2 = A22w2 +B2Γ2u2 +Πw1, (13a)
z = w2. (13b)

In the context of system Σ̂, AVF ⊆ VF + ImBΓ in (11c) is
equivalent to a disturbance decoupling problem of system Σ̂,
i.e., z is decoupled with w1 by state feedback u2 through the
input distribution matrix B2Γ2. Hence, below we present a
graphic condition based on system Σ̂ that enables to deduce
the minimum number of actuators to be protected such that
no stealthy integrity attacks exist.

System Σ̂ in (13) can be represented by a direct graph
G(Σ̂) = (V,E) where the vertex set is V = X ∪ U ∪ D ∪ Z
with X = Z = {w21, · · · , w2(n−d)}, U = {u21, · · · , u2m2}
and D = {w11, · · · , w1d}. The edge set E ⊆ V×V represents
the connections/communications among w1, w2, u2 and z. A
path P in G(Σ̂) from a vertex i0 to a vertex il is a sequence
of edges (i0, i1), (i1, i2), · · · , (il−1, il) such that ij ∈ V for
j = 0, 1, · · · , l and (ij−1, ij) ∈ E for j = 1, 2, · · · , l. If
i0 ∈ Vs and il ∈ Ve, where Vs and Ve are two subsets
of V, P is called a Vs − Ve path. Moreover, if i0 is the
only vertex belonging to Vs and il ̸= i0 is the only vertex
belonging to Ve, P is called a direct Vs−Ve path. A set of
paths with no common vertex is said to be vertex disjoint.
A Vs − Ve linking of size k is a set of k vertex disjoint
Vs − Ve paths. A linking is maximal when k is maximal.

Let Σ1 and Σ2 represent the system Σ̂ without input Πw1,
and the system Σ̂ without input B2Γ2u2, respectively, that
is

Σ1 :

{
ẇ2 = A22w2 +B2Γ2u2, (14a)
z = w2, (14b)

Σ2 :

{
ẇ2 = A22w2 +Πw1, (15a)
z = w2. (15b)

Correspondingly, G(Σ1) = (V1,E1) and G(Σ2) = (V2,E2)
are the graphs of Σ1 and Σ2 respectively, where V1 = X ∪
U∪Z, E1 ⊆ V1×V1, V2 = X∪D∪Z and E2 ⊆ V2×V2. To
facilitate the subsequent analysis, we provide the following
definitions for systems G(Σi), i ∈ {1, 2}.

Definition 4. [19] A separator S of the graph G(Σi), i ∈
{1, 2} is a set of vertices of G(Σi) such that any U−Z (or
D− Z) path has at least one vertex in S.

Definition 5. A separator S is an output separator if |S′| >
|S| for any separator S′ such that any direct S − Z path
contains a vertex in S′.

Among all the output separators, the output separator
which has the minimal dimension is unique [20], and such
separator is referred to as the minimal output separator S0.
Then, we have the following result.

Lemma 2. The conditions (11b) and (11c) hold for some
given fixed space V if and only if the inputs in U connect to
the vertices of a separator S′ between D and S0 satisfying
S′ ∩ D = ∅. Moreover, the minimal number of actuator

communication channels that have to be accessed by the
attacker is equal to |S0|. ■

Similar to Theorem 2, we derive the analytically optimal
solution to the optimizaiton problem (11) below. Let S∗

0 be
the minimum output separator of D− Z when VF = kerC.
Then, we have the following result.

Theorem 4. Consider the optimization problem in (11). The
minimum number of actuator communication channels to
secure is given by |Im−Γ∗|0+1 = m−|S∗

0 |+1 where Γ∗ =
diag(Γ∗

1,Γ
∗
2) with Γ∗

1 = 0 and the actuators characterized
by Γ∗

2 connected to the minimal output separator S∗
0 . ■

V. ILLUSTRATIVE NUMERICAL EXAMPLE

In this section, we validate our analytical results with
a suitable numerical example. In particular, we consider a
system described by (2) with the following matrices:

A =

[
0 λ1 λ2 0
λ1 0 0 λ2

−λ3 0 −λ3 −λ1

0 −λ3 −λ1 −λ3

]
, B =

[ 0 0 0
λ4 0 0
0 −λ5 0
0 0 −λ5

]
, (16a)

F =

[
λ6 0
0 0
0 0
0 0

]
, C =

[
0 0 λ7 0
0 0 0 λ7

]
, (16b)

where λ1, · · · , λ7 are constant parameters. It can be observed
from Theorems 2 and 4 that the form of the nonlinear
uncertainty f(t, x) does not affect the main results. Hence, a
description of f(t, x) is not required. Due to space limitation,
we only validate the results in Theorem 4.

In this section, we also use the brute-force algorithm
to calculate the minimum number of the actuator channels
to protect and then compare the obtained result with that
derived based on Theorem 4. The values of the parameters
λ1, · · · , λ7 are supposed to be unknown by the attacker.
However, the attacker knows the locations of the zero entries
in A,B,C and F . Based on the attacker’s knowledge, this
system has a structure given by the graph shown in Fig. 2.
To this end, the procedure to use the brute-force algorithm

Fig. 2. Graphic description of the considered numerical system.

is given below. In order to satisfy (12), V can be selected
as V1 = Im[1, 0, 0, 0]T or V2 = Im[I2, 02×2]

T . In the case
V = V1, we have w1 = x1 and w2 = [x2, x3, x4]

T . The
graph G(Σ̂) in this case is depicted in Fig. 3. We list the
output separators of G(Σ2) as follows:

• S1 = {z1, z2, z3} is an output separator with |S1| = 3;
• S2 = {x2, x3, x4} is an output separator with |S2| = 3;
• S3 = {x2, x3} is an output separator with |S3| = 2.
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Hence, the minimal output separator is S0 = S3 = {x2, x3}.
Based on Lemma 2, the minimal number of actuators that the
attacker has to access is |S0| = 2, and these actuators have
to connect to x2 and x3. Hence, the minimal number of the
actuator communication channels to protect is |I3−Γ|0+1 =
2 where Γ = diag(I2, 0).

Fig. 3. Graph of G(Σ̂) in the case V = V1.

In the case V = V2, we have w1 = [x1, x2]
T and w2 =

[x3, x4]
T , and the associated graph G(Σ̂) is depicted in Fig.

4. Then, we list the output separators of G(Σ̂2) as follows:
• S1 = {z1, z2} is an output separator with |S1| = 2;
• S2 = {x3, x4} is an output separator with |S2| = 2.

Hence, the minimal output separator is S0 = S1 = {z1, z2}.
Based on Lemma 2, the minimal number of the actuator
communication channels that the attacker has to access is
|S0| = 2, and these actuators have to connect to z1 and
z2 (x3 and x4). Hence, the minimal number of the actuator
communication channels to protect is |I3−Γ|0+1 = 2 where
Γ = diag(0, I2). It can be observed from the calculation in
both cases V = V1 and V2 that the minimum number of the
actuator communication channels to protect is 2.

We turn to show the result derived based on Theorem 4.
Given the minimal output separator S∗

0 = {x3, x4}, based
on Theorem 4, the minimal number of the actuator commu-
nication channels to protect is 3 − |S0| + 1 = 2, and these
channels connect to x3 and x4. This result coincides with
that obtained using the brute-force algorithm and validates
Theorem 4.

Fig. 4. Graph of G(Σ̂) in the case V = V2.

VI. CONCLUSION

This paper explored the existence of stealthy integrity
attacks for cyber-physical systems with uncertain nonlinear
dynamics, when only incomplete information is available to
the attacker side, by using tools from structural analysis and
systems theory. We provide analytic geometric conditions
for the existence of stealthy integrity attacks, by considering

suitable controlled-invariant subspaces where state trajecto-
ries do not affect the system output. Moreover, we formulate
and solve suitable optimization problems that obtain the
minimum number of actuation channels that, when protected,
guarantee that non-existence of stealthy integrity attacks.
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