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Abstract— We consider Byzantine-robust distributed learning
with asynchronous participation of clients at a certain proba-
bility, where Byzantine clients can send malicious messages to
the server. Instead of relying on traditional robust aggregation
rules, such as Krum and Median, that can only tolerate a
limited proportion of Byzantine clients, we propose an asyn-
chronous Byzantine-robust stochastic aggregation method that
employs regularization-based techniques to mitigate Byzantine
attacks, and adopts variance-reduced techniques to eliminate
the effect of stochastic noise of gradient sampling. Leveraging
a properly designed Lyapunov function, we show that the
proposed algorithm converges linearly to an error ball that
is independent of stochastic gradient variance. Extensive ex-
periments are conducted to show its efficacy in dealing with
Byzantine attacks compared to the existing counterparts.

I. INTRODUCTION

Distributed learning [1]–[3] has attracted increasing atten-
tion from academia and industry due to its potential in getting
rid of the dilemma of data island and protecting data privacy,
and has been widely adopted in various application domains.
We are particularly interested in distributed learning systems
consisting of one central server and multiple clients, where
updates of local variables such as stochastic gradients or
model parameters are conducted based on local private data
kept by each client, while the central server is responsible for
aggregating these local variables and broadcasting the aggre-
gated result to clients. However, the distributed nature makes
it vulnerable to malicious attacks. Specifically, some clients
may be compromised to become Byzantine clients in dis-
tributed scenarios, and they can transmit malicious messages
to the central server to disrupt the learning process [4]–[6].
The final model learned by the attacked distributed learning
system may be invalid [7] or backdoored [8], depending on
the attacker’s target. Thus, robustifying distributed learning
against Byzantine attacks is vital for secure learning.

Most existing Byzantine-robust distributed algorithms pri-
marily rely on two key strategies. The first strategy involves
the central server performing robust estimation of the average
of regular clients’ inputs using robust aggregation rules, and
the second strategy is based on regularization techniques.
Typical examples using the first strategy include geomet-
ric median (Gm) [7], [9], [10], median (Med) [11], [12],
trimmed mean [13], [14] and Krum [15], all of which are
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mainly based on the majority rule. Recently, Gupta et al. [16]
proposed a simple yet efficient mechanism termed nearest
neighbor mixing (NNM) which could be easily integrated
with the aforementioned robust aggregation rules and boost
their Byzantine resilience. The main limitation of robust
distributed algorithms based on the above aggregation rules
is that they require explicit assumptions on the maximum
proportion of Byzantine clients.

To avoid the requirement on the proportion of Byzan-
tine clients, regularization-based techniques are widely used
to ensure the robustness of algorithms against Byzantine
attacks. For instance, total variation (TV)-norm penalized
approximation are proposed for robust decentralized opti-
mization [17], where each node aggregates the signs of the
differences between its own model and the neighbors’ in
order to limit the influence of Byzantine attacks. Motivated
by [17], Peng et al. [18] applied stochastic subgradient
descent to solve TV-norm penalized formulation, generat-
ing a Byzantine-robust decentralized stochastic optimization
method. Likewise, for master-slaver architecture, lp-norm
penalty term used in [19] forces the clients’ local models
to be close to the central server’s model, and Byzantine-
robust distributed stochastic optimization method (RSA) is
proposed by applying the stochastic subgradient method to
that lp-norm regularized approximation.

Recently, it has been shown that the stochastic error of
gradient sampling has significant impact on the effectiveness
of Byzantine-robust distributed optimization algorithms [20].
For instance, in the presence of large amounts of variance,
algorithms relying on robust aggregation rules will struggle
to distinguish malicious messages of Byzantine clients from
the noisy stochastic gradients of regular clients. To address
this issue, Wu et al. [20] combined the robust aggregation
rule (geometric median) with a popular variance reduction
method SAGA [21] which has been proven effective in finite-
sum optimization in eliminating the impact of stochastic error
of gradient sampling on Byzantine robustness. Guerraoui et
al. [22] also showed that using momentum acceleration at
the client side can reduce the stochastic sampling variance
and strengthen Byzantine resilient aggregation rules such as
Krum [15], median [12] and Bulyan [23]. For Byzantine-
robust decentralized stochastic optimization problem, Ling
et al. [24] introduced variance reduction methods to the
algorithm in [18] to eliminate the stochastic error of gra-
dient sampling. However, all the aforementioned Byzantine-
robust algorithms only consider an ideal participation pat-
tern where all nodes participate in update at each iteration
(full participation), which may not be efficient in practical
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scenarios due to possible network congestion. There has
been few Byzantine-robust methods taking into account
asynchronous participation of nodes, such as BASGD [25]
and Zeno++ [26]. BASGD combined the aforementioned
robust aggregation rules with the introduction of buffers to
account for asynchrony, while Zeno++ requires the central
server to have access to a validation dataset to evaluate a
descent score for each candidate gradient.

Our contributions. In this work, different from the ex-
isting literature, we consider Byzantine robustness of more
practical asynchronous distributed learning where each client
randomly participates in the interaction with the central
server at certain probability. To this end, we develop an
asynchronous Byzantine-robust method (termed AsynRSA-
VR) using regularization techniques, and adopt variance
reduction method to eliminate the impact of the gradient
sampling variance on Byzantine robustness. The proposed
AsynRSA-VR is proven to converge linearly to an error ball
independent of stochastic gradient sampling variance. The
theoretical analysis differs from that in [19] due to the intro-
duction of asynchronous participation pattern and variance
reduction technique, which calls for a careful design of the
Lyapunov function. Extensive experiments are conducted to
verify the effectiveness of AsynRSA-VR.

II. PROBLEM FORMULATION AND ALGORITHM DESIGN

In this paper, we are interested in federated finite-sum
optimization problem under Byzantine attacks. Consider a
system with one central server and n clients, among which
q clients are hidden Byzantine attackers. We use R and
B to denote regular clients set and Byzantine clients set
respectively, with |R| = r and |B| = q. Without loss of
generality, we assume that the total number of data samples
held by each regular client is J , and the loss of the j-th data
sample at the regular client i ∈ R with respect to the model
parameter x̃ ∈ Rd is denoted by fi(x̃; j). The goal is to find
the optimal solution of the following problem

x̃∗ = argmin
x̃∈Rd

∑
i∈R

fi (x̃) + f0 (x̃) , (1)

where fi (x̃) := 1
J

∑J
j=1 fi (x̃; j) is the loss function of

regular client i ∈ R and f0(x̃) is a regularization term.
For participating rule of client, we consider more realistic
asynchronous iterate pattern where each client participates in
the interaction with the central server at certain probability
γ in each iteration. Notably, solving (1) poses a significant
challenge due to the presence of hidden Byzantine clients that
can send arbitrary malicious messages to the central server,
thereby disrupting the learning process.

Let the central server maintain a local model x0 ∈ Rd and
each regular client i ∈ R maintain a local model xi ∈ Rd.
Therefore, (1) can be equivalently rewritten as follows:

min
x:=[xi;x0]

∑
i∈R

fi (xi) + f0 (x0) (2a)

s.t. x0 = xi,∀i ∈ R, (2b)

where x := [xi;x0] ∈ R(|R|+1)d = R(r+1)d is a longer
vector which stacks all regular clients’ local models xi and
the central server’s local model x0.

Similar to [17], [19], we penalize the consensus constraints
in (2) using a lp-norm term:

x∗ := argmin
x:=[xi;x0]

∑
i∈R

(
fi (xi) + λ ∥xi − x0∥p

)
+ f0 (x0) ,

(3)
where λ is a positive penalty parameter and integer p ⩾ 1.
Note that the minimization of the lp-norm penalty term in
(3) forces every model xi to be close to the model x0

of the central server. In absence of Byzantine clients, if
regular clients participate in the update at each iteration,
(3) can be solved by applying stochastic subgradient descent
method [19]. In particular, at iteration k, each regular client
i ∈ R updates xk+1

i according to (4a) and the central server
updates xk+1

0 according to (4b):

xk+1
i = xk

i − α
(
∇fi(x

k
i ; ξ

k
i ) + λ∂xi

∥∥xk
i − xk

0

∥∥
p

)
, (4a)

xk+1
0 = xk

0 − α
(
∇f0(x

k
0) + λ

∑
i∈R

∂x0

∥∥xk
0 − xk

i

∥∥
p

)
, (4b)

where ∂xi

∥∥xk
i − xk

0

∥∥
p

is a subgradient of
∥∥xi − xk

0

∥∥
p

eval-
uated at xi = xk

i and ∂x0

∥∥xk
0 − xk

i

∥∥
p

is a subgradient of∥∥x0 − xk
i

∥∥
p

evaluated at x0 = xk
0 , while the constant α > 0

is the learning rate, and ξki denotes the local sample selected
by regular client i at iteration k.

Now, we consider a more practical setting where there
exist Byzantine clients in the system with asynchronous
participation of clients. We use Sk to denote the set of clients
participating in aggregation at iteration k. For a regular client
i ∈ R, if it participates in aggregation at iteration k, i.e., i ∈
R∩Sk, its update follows (4a). Otherwise, when i ∈ R\Sk,
its local model remains unchanged, i.e., xk+1

i = xk
i . If client

v ∈ B ∩ Sk is Byzantine, it will send arbitrary malicious
messages zkv ∈ Rd to the central server. Due to the fact that
the identities of Byzantine clients are unknown to the central
server, one cannot distinguish between normal message xk

i

from a regular client i ∈ R∩ Sk and malicious message zkv
from a Byzantine client v ∈ B ∩ Sk. Thus, the update rule
of the central server in (4b) becomes

xk+1
0 =xk

0 − α

∇f0(x
k
0) + λ

 ∑
i∈R∩Sk

∂x0

∥∥xk
0 − xk

i

∥∥
p

+
∑

v∈B∩Sk

∂x0

∥∥xk
0 − zkv

∥∥
p

 ,

(5)
where ∂x0

∥∥xk
0 − zkv

∥∥
p

is a subgradient of
∥∥x0 − zkv

∥∥
p

eval-
uated at x0 = xk

0 .
To eliminate the effect of gradient sampling variance on

Byzantine robustness, we introduce the variance reduction
technique SAGA [21] to regular clients’ local update. Each
regular client i ∈ R keeps a stochastic gradient table for
all its own local data samples. At iteration k, each regular
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client i ∈ R∩Sk randomly selects a local data sample with
index ξki and computes the stochastic gradient ∇fi

(
xk
i ; ξ

k
i

)
.

However, it does not update xk+1
i using ∇fi

(
xk
i ; ξ

k
i

)
just

like (4a). Instead, ∇fi
(
xk
i ; ξ

k
i

)
is corrected by subtracting

the previously stored stochastic gradient corresponding to
the ξki -th data sample, and then adding the average of all
stored stochastic gradients. With such a corrected stochastic
gradient, regular client i ∈ R∩Sk updates xk+1

i and replaces
the stochastic gradient of the ξki -th data sample in the table
with ∇fi

(
xk
i ; ξ

k
i

)
. In particular, let

ϕk+1
i,j =


ϕk
i,j , i ∈ R\Sk and ∀j

xk
i , i ∈ R ∩ Sk and j = ξki

ϕk
i,j , i ∈ R ∩ Sk and j ̸= ξki

, (6)

where ϕk
i,j refers to the most recent model parameter used

for computing ∇fi (·; j) prior to iteration k. Therefore,
∇fi

(
ϕk
i,j ; j

)
represents the previously stored stochastic gra-

dient for the j-th data sample of regular client i prior to
iteration k, and

gki := ∇fi
(
xk
i ; ξ

k
i

)
−∇fi

(
ϕk
i,ξki

; ξki

)
+

1

J

J∑
j=1

∇fi
(
ϕk
i,j ; j

)
(7)

is the corrected stochastic gradient of regular client i ∈ R∩
Sk at iteration k. Thus, we replace the original stochastic
gradient ∇fi

(
xk
i ; ξ

k
i

)
in (4a) by gki , yielding a new update

rule of xk+1
i for each i ∈ R ∩ Sk at iteration k, i.e.,

xk+1
i = xk

i − α
(
gki + λ∂xi

∥∥xk
i − xk

0

∥∥
p

)
. (8)

We term this new algorithm as AsynRSA-VR, and its com-
plete Pseudocode is given in Algorithm 1.

III. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of the pro-
posed AsynRSA-VR (c.f., Alg. 1), with detailed proofs
provided in the Appendix. To this end, we first make the
following common assumptions.

Assumption 1. The local loss functions fi(x̃) for regular
client i ∈ R and the regularization term f0(x̃) are µ-strongly
convex.

Assumption 2. For every regular client i ∈ R, any model
x̃ ∈ Rd and sample ξi ∈ {1, ..., J}, the local sample loss
functions fi(x̃; ξi) and the regularization term f0(x̃) have
Lipschitz continuous gradients with constant L.

Remark 1. In Assumption 1 and 2, we assume that the regu-
larization term has the same strong convexity and smoothness
constants as the regular clients’ local loss functions, just
for simplicity. In fact, our conclusion (Theorem 1) can
be easily extended to the case where the two constants
for regularization term are different from those for regular
clients’ local loss functions.

Assumption 3 (Unbiased stochastic gradient). For every
regular client i ∈ R and any x̃ ∈ Rd, the expectation of
stochastic gradient is its aggregated gradient, i.e.,

E [∇fi (x̃; ξi)] = ∇fi (x̃) . (9)

Algorithm 1 Asynchronous Byzantine-Robust Stochastic
Aggregation with Variance Reduction (AsynRSA-VR)

Regular Client i:

1: Initialization: model x0
i ∈ Rd, penalty parameter λ >

0, learning rate α > 0, participation probability γ.
2: for j ∈ {1, 2, ..., J} do
3: Initializes ∇fi(ϕi,j ; j) = ∇fi(x

0
i ; j)

4: end for
5: for k = 0, 1, 2, ... do
6: if client i is activated (with probability γ) then
7: Sends the current local model xk

i to the server
8: Receives the server’s local model xk

0

9: Samples ξki from {1, 2, ..., J} uniformly at ran-
dom

10: Computes the corrected gradient by: gki =
∇fi(x

k
i ; ξ

k
i )−∇fi(ϕi,ξki

; ξki ) +
1
J

∑J
j=1 ∇fi(ϕi,j ; j)

11: Stores gradient: ∇fi(ϕi,ξki
; ξki ) = ∇fi(x

k
i ; ξ

k
i )

12: Updates xk+1
i according to (8)

13: else
14: Updates xk+1

i by: xk+1
i = xk

i

15: end if
16: end for

Central Server:

1: Initialization: model x0
0 ∈ Rd, penalty parameter λ >

0, learning rate α > 0.
2: for k = 0, 1, 2, ... do
3: Receives local model xk

i from regular client i ∈
R∩Sk and malicious model zkv from Byzantine client
v ∈ B ∩ Sk.

4: Sends its current local model xk
0 to all participating

clients in the current iteration k.
5: Updates xk+1

0 according to (5)
6: end for

Assumption 4 (Bounded inner variation). For every regular
client i ∈ R and any x̃ ∈ Rd, the variation of its stochastic
gradients is upper bounded by

E
[
∥∇fi (x̃; ξi)−∇fi (x̃)∥2

]
⩽ σ2

i . (10)

The following lemma guarantees that the optimal solution
of lp-norm regularized problem (3) is, indeed, the same
as that of the original problem (1) as long as the penalty
parameter λ is sufficiently large.

Lemma 1 (Theorem 1 in [19]). Suppose that Assumptions 1
and 2 hold. If λ ⩾ maxi∈R ∥∇fi(x̃

∗)∥b with p ⩾ 1 and b
satisfying 1

b+
1
p = 1, then we have x∗ = [...; x̃∗; ...], where x̃∗

and x∗ are the optimal solutions of (1) and (3), respectively.

Next, we consider the case of large λ and focus on the
convergence to (3). The following theorem establishes the
convergence of AsynRSA-VR.

Theorem 1. Let the step size α ⩽ µ
12J(µ+L)L . Suppose
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Assumptions 1, 2 and 3 hold. Then, we have

E
[
T k
]
⩽

(
1− γµL

µ+ L
α

)k

T 0 +△1, (11)

where the Lyapunov function T k :=
∥∥xk − x∗

∥∥2+ 2JµLα
3(µ+L) ·S

k

with Sk :=
∑

i∈R
1
J

∑J
j=1

∥∥x∗
i − ϕk

i,j

∥∥2, while the steady-
state error

△1 =
µ+ L

γµL
α
(
γ · 16λ2rd+ 16λ2r2d+ 2λ2q2d

)
+

(µ+ L)
2
λ2q2d

γµ2L2
+

(1− γ) (µ+ L)
2
λ2r2d

γµ2L2
.

(12)

Proof. See Appendix I.

Remark 2. Theorem 1 shows that AsynRSA-VR can linearly
converge to a neighborhood of the optimal solution of (3)
and the size of the neighborhood △1 is determined by the
penalty parameter λ, the number of Byzantine clients q, the
problem dimension d and participating probability γ.

Remark 3. It follows from Theorem 1 that a larger γ
will lead to faster convergence rate and smaller steady-
state error, but it may lead to severe network congestion
in practical scenarios, which calls for a careful choice of γ
for a better trade-off between convergence performance and
communication efficiency. When γ = 1 which corresponds to
full participation pattern, we observe that the learning error
of AsynRSA-VR is smaller than that of RSA [19] due to the
elimination of gradient sampling variance σ2

i .

IV. EXPERIMENTS

In this section, we validate the robustness against Byzan-
tine attacks for our proposed AsynRSA-VR and compare
it with benchmark Byzantine-robust algorithms. All algo-
rithms are implemented using distributed communication
package torch.distributed in PyTorch [27], where a process
serves as central server or client, and we use inter-process
communication to mimic the communication between cen-
tral server and client. We conduct all experiments on the
MNIST dataset [28] using softmax regression with an l2-
norm regularization term f0(x̃) = 0.01

2 ∥x̃∥2. The MNIST
dataset consists of 10 handwritten digits from 0 to 9, with
60,000 training images and 10,000 testing images. We launch
several processes in a high performance computer with Intel
Xeon E5-2680 v4 CPU @ 2.40GHz, in which one serves
as central server and the rest serve as clients. In order to
simulate the non-IID distribution of the data, training samples
of each handwritten digit are allocated to regular clients
in unbalanced proportions. To verify the robustness of the
proposed algorithm, we consider two types of Byzantine
attacks as follows:

• Same value attack. Each Byzantine client v ∈ B sends
malicious model c · 1 to central server, where 1 is an
all-one vector and c is a constant set as 10000.

• Gaussian attack. Each Byzantine client v ∈ B sends
malicious model following multi-variate Gaussian dis-
tribution N (0, 1002) to central server.

We set p = 1 (i.e., using l1-norm penalty) in our AsynRSA-
VR for simplicity.

A. Impact of Different Penalty Parameter

Before deploying our AsynRSA-VR to actual scenarios
with Byzantine attacks, we conduct some experiments on a
system with only a small number of regular clients to explore
the influence of the value of penalty parameter λ on the
performance of AsynRSA-VR. We launch a server process
and 8 client processes without Byzantine attackers, and vary
the value of λ in the range {0.0001, 0.05, 0.5, 0.8, 1, 3} for
AsynRSA-VR. The learning rate is set as α = 0.001, and
the participating probability of each client in each iteration
is set as γ = 1. It can be seen from the testing accuracy
comparison for different λ shown in Fig. 1 that: too large
or too small λ will reduce the accuracy of AsynRSA-VR,
and λ = 0.05 performs best. It should be noted that this
result is consistent with the fact that small value of λ yields
slow information fusion over the network which in turn
leads to slow convergence and large value of λ incurs large
steady-state-error according to the expression of △1 in (12).
Therefore, we select λ = 0.05 for our AsynRSA-VR in the
subsequent experiments with Byzantine attacks.

Fig. 1. Performance comparison for different λ.

B. Full Participation

Now we consider the actual scenario with Byzantine
attacks, and launch 1 server process and 25 client processes
in which 5 clients are Byzantine who will launch same
value attack (gaussian attack). For the case where all clients
participate in aggregation in each iteration (i.e., γ = 1), we
compare our proposed AsynRSA-VR with several bench-
marks including RSA [19], Distributed geometric median
(Gm) [7], Distributed median (Med) [12] and Distributed
Krum [15]. For all these 5 algorithms, we set the learning
rate as α = 0.001. It follows from the results shown in Fig. 2
that: for both two types of attacks, our AsynRSA-VR outper-
forms other Byzantine-robust algorithms, implying stronger
robustness of AsynRSA-VR against Byzantine attacks.

C. Partial Participation

In this part, we consider a practical asynchronous partic-
ipation pattern. We consider 1 central server and 25 clients,
where 5 clients are Byzantine and the rest are regular, and

154



(a) (b)

Fig. 2. Performance comparison of AsynRSA-VR with RSA, Distributed
Gm, Distributed Krum and Distributed Med under Byzantine attacks: (a)
Same value attack; (b) Gaussian attack

each client participates in aggregation at a probability of
γ = 0.4. We compare AsynRSA-VR with Federated SGD,
which also works for asynchronous way of updating. For
Federated SGD, the central server performs gradient descent
based on the mean of all received messages

{
mk

i : i ∈ Sk
}

(mk
i is local stochastic gradient if i is regular and malicious

message if i is Byzantine). The result shown in Fig. 3
demonstrates that Federated SGD fails under two types of
Byzantine attacks while our AsynRSA-VR still achieves high
testing accuracy, implying better robustness of AsynRSA-VR
against Byzantine attacks.

(a) (b)

Fig. 3. Comparison of AsynRSA-VR with Federated SGD (γ = 0.4) under
Byzantine attacks: (a) Same value attack; (b) Gaussian attack.

V. CONCLUSIONS

We have proposed a Byzantine-robust algorithm based
on regularization techniques for distributed learning where
nodes may participate for updating in an asynchronous
pattern. Variance-reduced method is utilized in the proposed
AsynRSA-VR algorithm to eliminate the stochastic error of
gradient sampling for achieving better Byzantine robustness.
Leveraging a properly designed Lyapunov function, we have
showed that AsynRSA-VR converges linearly to an error
ball that is independent of stochastic gradient variance.
Extensive experiments have been conducted to demonstrate
the effectiveness of AsynRSA-VR against Byzantine attacks.
However, it is also important to extend our algorithm to more
practical settings (e.g., non-convex), in the future work.

APPENDIX I
PROOF OF THEOREM 1

Proof. According to (18) and (42) in [20], we have the
following two useful properties with Assumption 2 and 3:

E
[
gki
]
= ∇fi

(
xk
i

)
, (13a)

E
[∥∥gki −∇fi

(
xk
i

)∥∥2] ⩽ L2 · 1
J

J∑
j=1

∥∥xk
i − ϕk

i,j

∥∥2. (13b)

Bounding E
[∥∥xk+1

i − x∗
i

∥∥2] for ∀i ∈ R. According to the
update of regular client in Algorithm 1, we have

E
[∥∥xk+1

i − x∗
i

∥∥2] = (1− γ) · E
[∥∥xk

i − x∗
i

∥∥2]
+ γ · E

[∥∥∥xk
i − x∗

i − α(gki + λ∂xi

∥∥xk
i − xk

0

∥∥
p
)
∥∥∥2]︸ ︷︷ ︸

A0

. (14)

For A0, we have

A0 = E
[∥∥xk

i − x∗
i

∥∥2]+ α2E
[∥∥∥gki + λ∂xi

∥∥xk
i − xk

0

∥∥
p

∥∥∥2]
− 2αE

[〈
gki + λ∂xi

∥∥xk
i − xk

0

∥∥
p
, xk

i − x∗
i

〉]
(a)
=
∥∥xk

i − x∗
i

∥∥2 + α2E
[∥∥∥gki + λ∂xi

∥∥xk
i − xk

0

∥∥
p

∥∥∥2]︸ ︷︷ ︸
A1

−2α
〈
∇fi

(
xk
i

)
−∇fi (x

∗
i ) , x

k
i − x∗

i

〉︸ ︷︷ ︸
A2

(15)

−2α
〈
λ∂xi

∥∥xk
i − xk

0

∥∥
p
− λ∂xi

∥x∗
i − x∗

0∥p , x
k
i − x∗

i

〉
,

where in (a) we have used (13a), and the optimality condi-
tion of (3) w.r.t. xi, i.e.,

∇fi (x
∗
i ) + λ∂xi

∥x∗
i − x∗

0∥p = 0. (16)

For A1, we have

A1 ⩽ 2
∥∥∥∇fi

(
xk
i

)
+ λ∂xi

∥∥xk
i − xk

0

∥∥
p

∥∥∥2
+ 2E

[∥∥gki −∇fi
(
xk
i

)∥∥2]
(b)

⩽ 4λ2
∥∥∥∂xi

∥∥xk
i − xk

0

∥∥
p
− ∂xi

∥x∗
i − x∗

0∥p
∥∥∥2

+ 4
∥∥∇fi

(
xk
i

)
−∇fi (x

∗
i )
∥∥2 + 2L2 · 1

J

J∑
j=1

∥∥xk
i − ϕk

i,j

∥∥2
(c)

⩽ 4
∥∥∇fi

(
xk
i

)
−∇fi (x

∗
i )
∥∥2 + 16λ2d

+ 2L2 · 1
J

J∑
j=1

∥∥xk
i − ϕk

i,j

∥∥2 ,
(17)

where in (b) we plugged the optimality condition (16) and
used (13b), while in (c) we used the property that the
absolute value of every element of the ∂xi∥xk

i − xk
0∥p(or

∂xi∥x∗
i − x∗

0∥p) is no larger than 1.
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For A2, by Assumption1 and 2, we have

A2 ⩾
µL

µ+ L

∥∥xk
i − x∗

i

∥∥2+ 1

µ+ L

∥∥∇fi
(
xk
i

)
−∇fi (x

∗
i )
∥∥2 .

(18)

Substituting (17) and (18) into (15), and letting the step
size

α ⩽
1

2 (µ+ L)
, (19)

(15) can be relaxed as

A0 ⩽

(
1− 2αµL

µ+ L

)∥∥xk
i − x∗

i

∥∥2
+ α2

16λ2d+ 2L2 · 1
J

J∑
j=1

∥∥xk
i − ϕk

i,j

∥∥2
− 2α

〈
λ∂xi

∥∥xk
i − xk

0

∥∥
p
− λ∂xi

∥x∗
i − x∗

0∥p , x
k
i − x∗

i

〉
.

(20)

Substituting (20) into (14), we get

E
[∥∥xk+1

i − x∗
i

∥∥2] ⩽ (1− 2γαµL

µ+ L

)∥∥xk
i − x∗

i

∥∥2
+ γ · α2

16λ2d+ 2L2 · 1
J

J∑
j=1

∥∥xk
i − ϕk

i,j

∥∥2
− γ · 2α

〈
λ∂xi

∥∥xk
i − xk

0

∥∥
p
− λ∂xi

∥x∗
i − x∗

0∥p , x
k
i − x∗

i

〉
.

(21)

Bounding E
[∥∥xk+1

0 − x∗
0

∥∥2] for central server. According
to the update of the server in (5), we have

E
[∥∥xk+1

0 − x∗
0

∥∥2] = ∥∥xk
0 − x∗

0

∥∥2
+ α2E

∥∥∥∥∥∥∇f0(x
k
0) + λ

∑
i∈R∩Sk

∂x0

∥∥xk
0 − xk

i

∥∥
p

+λ
∑

v∈B∩Sk

∂x0

∥∥xk
0 − zkv

∥∥
p

∥∥∥∥∥∥
2


− 2αE

〈
∇f0(x

k
0) + λ

∑
i∈R∩Sk

∂x0

∥∥xk
0 − xk

i

∥∥
p
, xk

0 − x∗
0

〉
︸ ︷︷ ︸

A4

−2αE

〈
λ
∑

v∈B∩Sk

∂x0

∥∥xk
0 − zkv

∥∥
p
, xk

0 − x∗
0

〉
︸ ︷︷ ︸

A5

.

(22)

Denoting the expectation term in the second term at the

RHS of the above inequality by A3, we have

A3 ⩽ 2E


∥∥∥∥∥∥∇f0(x

k
0) + λ

∑
i∈R∩Sk

∂x0

∥∥xk
0 − xk

i

∥∥
p

∥∥∥∥∥∥
2


+ 2λ2E


∥∥∥∥∥∥
∑

v∈B∩Sk

∂x0

∥∥xk
0 − zkv

∥∥
p

∥∥∥∥∥∥
2


(d)

⩽ 4E
[∥∥∇f0(x

k
0)−∇f0(x

∗
0)
∥∥2]+ 2λ2q2d+ 4λ2·

E


∥∥∥∥∥∥
∑

i∈R∩Sk

∂x0

∥∥xk
0 − xk

i

∥∥
p
−
∑
i∈R

∂x0
∥x∗

0 − x∗
i ∥p

∥∥∥∥∥∥
2


⩽ 4
∥∥∇f0(x

k
0)−∇f0(x

∗
0)
∥∥2 + 16λ2r2d+ 2λ2q2d,

(23)
where in (d) we have plugged the optimality condition of (3)
w.r.t. x0, i.e., ∇f0(x

∗
0) + λ

∑
i∈R ∂x0

∥x∗
0 − x∗

i ∥p = 0.
For A4, plugging the optimality condition ∇f0(x

∗
0) +

λ
∑

i∈R ∂x0
∥x∗

0 − x∗
i ∥p = 0 again, we obtain

A4 = E
〈
∇f0(x

k
0)−∇f0(x

∗
0), x

k
0 − x∗

0

〉
+ E

〈
xk
0 − x∗

0,

λ
∑

i∈R∩Sk

∂x0

∥∥xk
0 − xk

i

∥∥
p
− λ

∑
i∈R

∂x0 ∥x∗
0 − x∗

i ∥p

〉
(e)

⩾
µL

µ+ L

∥∥xk
0 − x∗

0

∥∥2 + 1

µ+ L

∥∥∇f0(x
k
0)−∇f0(x

∗
0)
∥∥2

+

〈
λ
∑
i∈R

(
γ∂x0

∥∥xk
0 − xk

i

∥∥
p
− ∂x0 ∥x∗

0 − x∗
i ∥p
)
, xk

0 − x∗
0

〉
,

(24)
where (e) is due to the fact that f0 is strongly convex and has
Lipschitz continuous gradients (c.f., Assumptions 1 and 2).

For A5, using Young’s inequality, we have

A5 ⩽αβE
[∥∥xk

0 − x∗
0

∥∥2]
+

αλ2

β
E


∥∥∥∥∥∥
∑

v∈B∩Sk

∂x0

∥∥xk
0 − zkv

∥∥
p

∥∥∥∥∥∥
2


⩽αβ
∥∥xk

0 − x∗
0

∥∥2 + αλ2q2d

β
,

(25)

where β > 0 is a tunable parameter.
Substituting (23), (24) and (25) into (22), and letting the

step size α satisfy (19), we have

E
[∥∥xk+1

0 − x∗
0

∥∥2] ⩽ (1− ( 2µL

µ+ L
− β

)
α

)∥∥xk
0 − x∗

0

∥∥2
+ α2

(
16λ2r2d+ 2λ2q2d

)
+

αλ2q2d

β
− 2α·〈

λ
∑
i∈R

(
γ∂x0

∥∥xk
0 − xk

i

∥∥
p
− ∂x0

∥x∗
0 − x∗

i ∥p
)
, xk

0 − x∗
0

〉
.

(26)
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Summing up (21) for all i ∈ R and adding (26), we have∑
i∈R

E
[∥∥xk+1

i − x∗
i

∥∥2]+ E
[∥∥xk+1

0 − x∗
0

∥∥2]
⩽

(
1− 2γαµL

µ+ L

)∑
i∈R

∥∥xk
i − x∗

i

∥∥2
+

(
1−

(
2µL

µ+ L
− β

)
α

)∥∥xk
0 − x∗

0

∥∥2
+ 2γα2L2

∑
i∈R

1

J

J∑
j=1

∥∥xk
i − ϕk

i,j

∥∥2 + αλ2q2d

β

+ α2
(
16λ2r2d+ 2λ2q2d

)
+ 16α2γλ2rd

− 2γαλ

(∑
i∈R

〈
∂xi

∥∥xk
i − xk

0

∥∥
p
− ∂xi

∥x∗
i − x∗

0∥p , x
k
i − x∗

i

〉
+

〈∑
i∈R

∂x0

∥∥xk
0 − xk

i

∥∥
p
−
∑
i∈R

∂x0
∥x∗

0 − x∗
i ∥p , x

k
0 − x∗

0

〉)

+ (1− γ) · 2αλ ·

〈∑
i∈R

∂x0
∥x∗

0 − x∗
i ∥p , x

k
0 − x∗

0

〉
︸ ︷︷ ︸

A7

.

(27)
We denote the quantity in the bracket of the seventh term

at the RHS of the above inequality by A6, and using the
convexity of h (x) :=

∑
i∈R ∥xi − x0∥p, we have that

A6 =
〈
∂xh

(
xk
)
− ∂xh (x

∗) , xk − x∗〉 ⩾ 0. (28)

For A7, using Young’s inequality, we can bound it by

A7 ⩽

α

ν
∥∥xk

0 − x∗
0

∥∥2 + (1− γ)
2
λ2

ν

∥∥∥∥∥∑
i∈R

∂x0
∥x∗

0 − x∗
i ∥p

∥∥∥∥∥
2


⩽ αν
∥∥xk

0 − x∗
0

∥∥2 + α (1− γ)
2
λ2r2d

ν
,

(29)
where ν > 0 is a tunable parameter.

Substituting (28) and (29) into (27), we obtain∑
i∈R

E
[∥∥xk+1

i − x∗
i

∥∥2]+ E
[∥∥xk+1

0 − x∗
0

∥∥2]
⩽

(
1− 2γαµL

µ+ L

)∑
i∈R

∥∥xk
i − x∗

i

∥∥2
+

(
1−

(
2µL

µ+ L
− β − ν

)
α

)∥∥xk
0 − x∗

0

∥∥2 + αλ2q2d

β

+ γ · 2α2L2 ·
∑
i∈R

1

J

J∑
j=1

∥∥xk
i − ϕk

i,j

∥∥2 + α (1− γ)
2
λ2r2d

ν

+ α2
(
γ · 16λ2rd+ 16λ2r2d+ 2λ2q2d

)
.

(30)
Knowing that

∥∥xk
i − ϕk

i,j

∥∥2 ⩽ 2
∥∥xk

i − x∗
i

∥∥2 +

2
∥∥x∗

i − ϕk
i,j

∥∥2 and letting

Sk :=
∑
i∈R

1

J

J∑
j=1

∥∥x∗
i − ϕk

i,j

∥∥2, (31)

we further have

E
[∥∥xk+1 − x∗∥∥2] ⩽ αλ2q2d

β
+

α (1− γ)
2
λ2r2d

ν

+

(
1− 2αγµL

µ+ L
+ 4α2γL2

)∑
i∈R

∥∥xk
i − x∗

i

∥∥2
+ 4α2γL2 · Sk + α2

(
γ · 16λ2rd+ 16λ2r2d+ 2λ2q2d

)
+

(
1−

(
2µL

µ+ L
− β − ν

)
α

)∥∥xk
0 − x∗

0

∥∥2 .
(32)

By the definition of Sk in (31), we have

E
[
Sk+1

]
=
∑
i∈R

1

J

J∑
j=1

E
[∥∥x∗

i − ϕk+1
i,j

∥∥2]
=
∑
i∈R

1

J

J∑
j=1

((
1− γ

J

)∥∥x∗
i − ϕk

i,j

∥∥2 + γ

J

∥∥x∗
i − xk

i

∥∥2)
=
(
1− γ

J

)
Sk +

γ

J

∑
i∈R

∥∥xk
i − x∗

i

∥∥2.
(33)

By computing (32) + (33)×c (c is a positive constant to
be properly determined later), and choosing the value of β
and ν as β = µL

µ+L and ν = (1−γ)µL
µ+L , we get

E
[∥∥xk+1 − x∗∥∥2]+ c · E

[
Sk+1

]
⩽

α (µ+ L)λ2q2d

µL

+

(
1− 2γµL

µ+ L
α+ 4α2γL2 +

γc

J

)∑
i∈R

∥∥xk
i − x∗

i

∥∥2+(
1− γµL

µ+ L
α

)∥∥xk
0 − x∗

0

∥∥2 + [c(1− γ

J

)
+ 4α2γL2

]
Sk

+ α2
(
γ · 16λ2rd+ 16λ2r2d+ 2λ2q2d

)
+

α (1− γ) (µ+ L)λ2r2d

µL
.

(34)
If the step size α is chosen such that

4α2γL2 +
γc

J
⩽

γµL

µ+ L
α, (35)

the coefficient in front of
∑

i∈R
∥∥xk

i − x∗
i

∥∥2 satisfies

1− 2γµL

µ+ L
α+ 4α2γL2 +

γc

J
⩽ 1− γµL

µ+ L
α, (36)

and the coefficient in front of Sk satisfies

c
(
1− γ

J

)
+ 4α2γL2 ⩽

(
1− 2γ

J

)
c+

γµL

µ+ L
α. (37)

Further, if α and c are chosen such that

µL

µ+ L
α ⩽

1

2J
(38)

and

c =
2JµL

3 (µ+ L)
α ⩾

µL

(µ+ L)
(

2
J − µL

µ+Lα
)α, (39)
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the factor in (37) further satisfies

c
(
1− γ

J

)
+ 4α2γL2 ⩽

(
1− 2γ

J

)
c+

γµL

µ+ L
α

⩽

(
1− 2γ

J

)
c+

(
2γ

J
− γµL

µ+ L
α

)
c

=

(
1− γµL

µ+ L
α

)
c.

(40)
Therefore, (34) becomes

E
[∥∥xk+1 − x∗∥∥2]+ c · E

[
Sk+1

]
⩽

(
1− γµL

µ+ L
α

)(∥∥xk − x∗∥∥2 + c · Sk
)

+
α (µ+ L)λ2q2d

µL
+ α2

(
γ · 16λ2rd+ 16λ2r2d+ 2λ2q2d

)
+

α (1− γ) (µ+ L)λ2r2d

µL
.

(41)
According to the definition of T k in Theorem 1, the above

inequality (41) further implies that

E
[
T k+1

]
⩽

(
1− γµL

µ+ L
α

)
T k +

α (1− γ) (µ+ L)λ2r2d

µL

+
α (µ+ L)λ2q2d

µL
+ α2

(
γ · 16λ2rd+ 16λ2r2d+ 2λ2q2d

)
.

(42)
Using telescopic cancellation on (42), we get (11) and (12)

in Theorem 1. To sum up, the step size α must satisfy (19),
(35) and (38), i.e.,

α ⩽ min

{
1

2 (µ+ L)
,
µ+ L

2JµL
,

µ

12 (µ+ L)L

}
, (43)

which can be satisfied with

α ⩽
µ

12J (µ+ L)L
. (44)

We thus complete the proof.
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