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Abstract— The morning commute bottleneck congestion
problem has classically been modelled as a static game in which
commuters act strategically based on their immediate Value of
Time (VOT). This has restricted existing congestion mitigation
techniques to rely on essentially monetary incentives to affect
the static costs of the commuters. In contrast, a dynamic
model enables characterizing the strategic trade-off between
immediate and future resource access rights and inspires the
design of new classes of fair, non-monetary congestion mitiga-
tion schemes. In this paper, we show how the recently proposed
Dynamic Population Game (DPG) framework can be leveraged
to study a non-monetary economy for bottleneck congestion
management based on karma, a non-tradable mobility credit.
Our DPG model allows to consider an elastic demand of
commuters that only travel if congestion is reduced, and we
show that a Stationary Nash Equilibrium (SNE) is guaranteed
to exist despite of the dynamic participation of these commuters.
Through numerical case studies we illustrate how our tools can
assist policy makers in taking informed decisions about complex
policy outcomes. In particular, we show how the dynamic karma
scheme is robust to a potentially detrimental rebound effect that
would manifest in a static monetary scheme.

I. INTRODUCTION

In the seminal Vickrey bottleneck model [1]–[3], com-
muters participate in a static game in which they strategically
choose their departure times to trade-off between arriving
early/late or facing congestion delays due to a limited bot-
tleneck capacity. Without intervention, the Nash equilibrium
of the game is inefficient as it exhibits costly congestion.
In theory, congestion can be completely eliminated with an
optimal tolling scheme, known as Vickrey’s toll [1], which
charges higher monetary tolls at the most desired departure
times.

Despite of their theoretical efficiency, policies based on
Vickrey’s toll and similar congestion pricing schemes [4]–
[6] are often faced with public dismay [7] as they tend
to favor wealthier travelers [8]–[10]. This has led to a
plethora of credit-based approaches that attempt to address
the fairness issue of classical congestion pricing [11]–[14].
In principle, the scarce supply of mobility credits is meant
to incentivize commuters to spend them when they need it
the most, i.e., when they have highest Value of Time (VOT),
thereby acting as a substitute for money. However, due to
the reliance on static extensions of Vickrey’s model [15]–
[17], existing approaches insist on associating a monetary
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value to the credits. In practice, this manifests in either the
credits being tradable in a monetary market [11], [13], [14]
or being used as vouchers to pay for monetary tolls [12].
This fails to fundamentally address the fairness issue of
classical congestion pricing: wealthier commuters have a
larger capacity to buy credits or bypass the credit system
by paying monetary tolls.

Interestingly and in contrast to that, a dynamic formu-
lation of the congestion management problem enables the
analysis and design of completely non-monetary mobility
credit schemes. In fact, considering their credit budget as
a dynamic state, commuters can learn to ration the use
of credits over multiple days or periods without having to
associate a monetary value to them. However, this is highly
non-standard in the existing literature: it is a setting with a
large number of commuters featuring dynamic credit states
whose evolution depends non-trivially on the commuters’
joint actions. A recently proposed framework for dynamic
games played in large populations is Dynamic Population
Games (DPGs) [18]. DPGs complement similar formulations
of anonymous sequential games [19], [20] and mean field
games [21]–[23] by showing that they can be reduced to the
well studied class of (static) population games [24]. This
eases the analysis of these games and provides tractable
equilibrium computation algorithms based on evolutionary
dynamics [24].

In this paper, we showcase the potential of a dynamic
model in devising new classes of fair and efficient congestion
mitigation schemes by developing a tractable DPG model
of a non-monetary, credit-based bottleneck congestion man-
agement scheme. This builds on previous work [25], which
develops a DPG model of a general non-monetary economy
for resource allocations, called a karma economy, and [26],
which specializes a karma economy to the bottleneck conges-
tion problem. The bottleneck is split into a regulated fast lane
that is free of congestion and a general purpose slow lane
that is subject to congestion. Commuters use a non-monetary
credit called karma to bid for access to the fast lane, and the
karma collected by those who succeed to enter the fast lane
gets redistributed at the end of each day. Compared to [26],
in this work we depart from previous DPG formulations
by considering a dynamic number of game participants (in
addition to the player state dynamics). Namely, we consider
the presence of an elastic demand of commuters whose
participation in the game is a function of the efficiency of
its outcomes. This lets us investigate the important problem
of rebound effects which manifest when efficiency gains are
counter-acted by newly induced demand [27]–[29].
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In the remainder of the paper, we first introduce the DPG
model for karma-based bottleneck congestion management
under elastic demand in Section II. We then perform a
numerical case study illustrating the benefit of our dynamic
formulation in Section III. We finally conclude with a
discussion in Section IV.

A. Notation

Let a, d ∈ D ⊆ N and let c ∈ C ⊆ Rn, then for
a function f : D × C → R, we distinguish discrete
and continuous arguments through the notation f [d](c).
Alternatively, we write f : C → R|D| as the vector-
valued function f(c), with f [d](c) denoting its d-th element.
Similarly, g[a | d](c) denotes the conditional probability of
a given d and c. Specifically, g[d+ | d](c) denotes one-step
transition probabilities for d. We denote by p ∈ ∆(D) :={
σ ∈ R|D|

+

∣∣∣∑d∈D σ[d] = 1
}

a probability distribution over
the elements of D, with p[d] denoting the probability of ele-
ment d. Finally, when considering heterogeneous commuter
types, we denote by xτ a quantity associated to type τ .

II. DYNAMIC BOTTLENECK MODEL WITH ELASTIC
DEMAND

In this section, we first briefly recap CARMA, the karma-
based bottleneck congestion management scheme proposed
in [26], and introduce its extension to the setting with
elastic demand (Section II-A). We then detail the dynamic
strategic problem that both fixed and elastic commuters
face (Section II-B). The existence of an equilibrium in the
resulting DPG is lastly guaranteed (Section II-C).

A. Description of karma-based congestion management
scheme

We consider Nfix commuters that travel through a bot-
tleneck with total capacity s [veh/min], which is split into
a managed fast lane with capacity sfast and an unmanaged
slow lane with capacity sslow = s − sfast. Commuters not
participating in the karma scheme can only use the slow lane.
On the other hand, commuters participating in the karma
scheme are given an initial endowment of karma which they
can use to bid for access to the fast lane. In particular, we dis-
cretize the feasible departure times into T intervals of length
∆t [min], and every morning commuters make a decision on
their departure time t ∈ T = {1, . . . , T}, as well as, on a
karma bid to enter the fast lane b ∈ B[k] = {0, . . . , k}, where
k ∈ N denotes their current karma budget. Consequently, the
highest sfast∆t bidders departing at t are allowed to enter the
fast lane (settling ties randomly), while all others have to use
the slow lane, as illustrated in Figure 1. At the end of each
day, karma is collected from the fast lane commuters and
redistributed to the population according to some protocol
to be specified by policy makers (discussed in Section II-
B.2), and the process repeats thereafter.

In addition to the Nfix commuters that must travel daily,
we consider the presence of Nelast commuters that travel
only if it is convenient. In particular, in the absence of any
policy intervention (i.e., if sfast = 0), those elastic commuters

bid for fast lane

use slow lane

fast lane

slow lane

Fig. 1: Karma auction to enter the fast lane.

prefer a less costly alternative to travelling under the resulting
congestion, e.g., working from home, moving closer to work,
or taking a different transit mode.

B. Commuters’ strategic model

The standard DPG model considers that all players par-
ticipate in the game during every time period [18], [25],
[26]. To incorporate the presence of elastic commuters, who
do not always travel through the bottleneck, we enrich the
model proposed in [26] by including these commuters as
a new “type” who have do not travel (denoted by ¬) as a
feasible action. Therefore, the commuters are heterogeneous
with type τ ∈ Γ = {fix, elast}, hereafter referred to
as fixed or elastic, respectively. The distribution of types
in the population is g ∈ ∆(Γ) with gfix = Nfix

N , and
N = Nfix +Nelast. Both types of commuters could have
a different VOT process (denoted by ϕτ [u

+ | u]), that is,
the exogenous Markov chain describing the evolution of
their daily VOT u. For example, this allows to model the
case in which the fixed and elastic commuters belong to
different income classes, see Section III. With minimal loss
of generality, we assume a finite number of VOT levels
u ∈ U = {u1, . . . , unu

}. Each day the commuters feature a
dynamic state x = [u, k] ∈ U×N which consists of their cur-
rent VOT u and karma budget k. The time-varying joint dis-
tribution of types and states in the population is denoted by
d ∈ D = {d ∈ R|Γ|×|U|×∞ | ∀τ ∈ Γ,

∑
u,k dτ [u, k] = gτ}.

On each day, fixed commuters must choose an action
a = [t, b] ∈ Afix[k] = T × B[k] which consists of their de-
parture time t and the karma bid to enter the fast lane
b. In contrast, elastic commuters can choose an action
a ∈ Aelast[k] = Afix[k] ∪ {¬}, where a = ¬ denotes their
choice to not travel through the bottleneck. The policy
followed by the population is denoted by π ∈ Π, with
πτ [a | u, k] ∈ [0, 1] denoting the probability that commuters
of type τ and state [u, k] choose action a ∈ Aτ [k].

The social state is (d, π) ∈ D × Π, which gives the
distribution of commuter types and states as well as their
actions, thereby providing a macroscopic description of the
competitive landscape. Namely, the individual commuter
faces a δ-discounted Markov decision process (MDP) that is
coupled to others through (d, π). In what follows, we specify
the key elements of this MDP: the immediate reward function
ζτ (d, π), and the karma transition function κτ (d, π).

1) Immediate reward function ζτ [u, a](d, π): Following
the classical bottleneck model [1], we divide the immediate
reward for commuters travelling through the bottleneck in
two parts: queuing delay tq, and early or late schedule delay
denoted by te or tl, respectively. Given the departure time
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and bid, how much delay each commuter endures depends
on the outcome of the karma auction. Let ψ[o | a](d, π)
denote the probability of an ego commuter having outcome
o ∈ O = {fast, slow, other}, given its action a and the
other commuters’ actions that are a function of the social
state (d, π). It holds that ψ[o = other | a = ¬] = 1, and
ψ[o = other | a = t, b] = 0 for all [t, b] ∈ Afix. Then, the
immediate reward for a = [t, b] can be written as

ζτ [u, t, b](d, π) = −u
∑
o∈O

ψ[o | t, b]
(
α tq + β te + γ tl

)
,

(1)

where β < α < γ denote the sensitivity to the different
delays, and tq, te and tl are given by

tq[t, o](d, π) =

{
q[t](d,π)

sslow
, o = slow,

0, otherwise,
(2a)

te[t, o](d, π) = max{0, t∗ − t− tq[t, o](d, π)}, (2b)

tl[t, o](d, π) = max{0, t+ tq[t, o](d, π)− t∗}, (2c)

where q[t](d, π) is the queue length on the slow lane at time
t (see [26] for derivation) and t∗ is the commuters’ desired
arrival time. The immediate reward for a = ¬ (by elastic
commuters) is given by

ζelast[u,¬](d, π) = −u cother, (3)

where cother denotes the cost of the alternative to travelling for
the elastic commuters. To model that the elastic commuters
would choose not to travel under no policy intervention, cother

must satisfy

cother ≤ cNOM =
β γ

β + γ

Nfix

s
, (4)

where cNOM is the equilibrium travel cost of the unmanaged
bottleneck (i.e., sfast = 0) with Nfix commuters [30].

To complete the definition of (1), we now derive
ψ[o | t, b](d, π). We define a threshold bid b∗[t] such that

• if b > b∗[t], the commuter enters the fast lane for sure,
i.e., o = fast;

• if b < b∗[t], the commuter enters the slow lane for sure,
i.e., o = slow;

• if b = b∗[t], the commuter ties with others and enters the
fast lane via a random draw on the remaining capacity.

Let ν[t, b](d, π) be the mass of commuters departing at t and
bidding b, i.e.,

ν[t, b](d, π) =
∑
τ,u,k

dτ [u, k] πτ [t, b | u, k]. (5)

Then, the threshold bid is given by

b∗[t](d, π) = max

b ∈ N

∣∣∣∣∣∣
∑
b′≥b

ν[t, b′] ≥ sfast

N

 . (6)

Note that the ratio sfast/N in (6) is taken with respect to all
players N (including those that are not travelling) since ν

is defined relative to the total population mass. Accordingly,
the probability of entering the fast lane is derived as

ψ[o = fast | t, b](d, π) =


1, b > b∗,

0, b < b∗,
sfast/N−

∑
b′>b∗ ν[t,b′]

ν[t,b] , b = b∗.

(7)

Note that ψ[o = fast | t, b](d, π) is continuous in (d, π)
except where ν[t, b](d, π) = 0. To guarantee the existence
of a SNE, see Section II-C, it can be approximated with a
function that is continuous in (d, π) everywhere, given by

ψϵ[o = fast | t, b](d, π)

=


1,

∑
b′>b ν[t, b

′] ≤ sfast

N
− ν[t, b]− ϵ,

0,
∑

b′>b ν[t, b
′] ≥ sfast

N
,

sfast/N−
∑

b′>b ν[t,b′]

ν[t,b]+ϵ
, otherwise,

(8)

where ϵ > 0 is an arbitrarily small approximation parameter.
2) Karma transition function κτ [k

+ | k, a](d, π): The
karma transition function encodes the protocol by which
karma is exchanged among the commuters. It gives the
probability that a commuter of type τ transitions from karma
level k to k+ after playing action a, as a function of the
social state (d, π). Notably, there is a considerable degree
of freedom for policy makers to design the karma exchange
protocol, as long as it preserves the average amount of karma
in the system, see Section II-C. The effect of the karma
exchange protocol on the equilibrium traffic allocation is
complex, and our modelling framework is flexible enough
to investigate a plethora of possibilities. For the sake of
exposition, in this paper we consider a simple scheme where
all commuters entering the fast lane pay their bids, and,
at the end of each day, the total payments are uniformly
redistributed to all users in the system (including the elastic
commuters that did not travel). Then, the average payment
to be redistributed to all commuters is given by

p̄(d, π) =
∑
t,b

ν[t, b] ψϵ[o = fast | t, b] b. (9)

To preserve the integer value of karma, ⌈p̄(d, π)⌉ is randomly
distributed to a fraction of f(d, π) = p̄(d, π)− ⌊p̄(d, π)⌋ of
the commuters, and ⌊p̄(d, π)⌋ to the others. This yields the
following karma transition probabilities, conditional on the
outcome o:

P[k+ | k, a, o] =



f, o = fast, k+ = k − b+ ⌈p̄⌉ ,
1− f, o = fast, k+ = k − b+ ⌊p̄⌋ ,
f, o ̸= fast, k+ = k + ⌈p̄⌉ ,
1− f, o ̸= fast, k+ = k + ⌊p̄⌋ ,
0, otherwise.

(10)

Finally, we can construct the karma transition function as

κτ [k
+ | k, a](d, π) =

∑
o∈O

ψϵ[o | a] P[k+ | k, a, o]. (11)
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C. Existence of Stationary Nash Equilibrium (SNE)

We introduce some notation before defining the equilib-
rium concept of the proposed DPG. Given the constituents
of the coupled MDPs ζτ (d, π) and κτ (d, π), we define the
expected immediate rewards Rτ (d, π), state transition matrix
Pτ (d, π), infinite horizon value function Vτ (d, π), and single-
stage deviation rewards Qτ (d, π) as

Rτ [u, k] =
∑
a

πτ [a | u, k] ζτ [u, a],

Pτ [u
+, k+ | u, k] = ϕτ [u

+ | u]
∑
a

πτ [a | u, k] κτ [k+ | k, a],

Vτ [x] = Rτ [x] + δ
∑
x+

Pτ [x
+ | x] Vτ [x+],

Qτ [u, k, a] = ζτ [u, a]

+ δ
∑

u+,k+

ϕτ [u
+ | u] κτ [k+ | k, a] Vτ [u+, k+].

Note that Vτ is the Bellman recursion for the fixed policy
πτ , which is well-known to have a unique and continuous
solution for δ ∈ [0, 1), see [25, Lemma 1].

Definition 1. A social state (d∗, π∗) is a Stationary Nash
Equilibrium (SNE) if, for all τ ∈ Γ, [u, k] ∈ U × N,

d∗τ = Pτ (d
∗, π∗)⊤ d∗τ , (13a)

π∗
τ [· | u, k] ∈ argmax

σ∈∆(Aτ [k])

σ⊤Qτ [u, k, ·]. (13b)

At a SNE (d∗, π∗), d∗ is stationary under the dynamics
induced by π∗ (13a), and π∗

τ is optimal for each type
τ ’s MDP (13b). The existence of a SNE was shown for
general karma economies for resource allocation in [25]
and specialized to the bottleneck model in [26]. The main
technical difficulty lies in that the karma state k belongs to
the countably infinite space N. In addition to the standard
assumption of continuity of ζτ (d, π) and κτ (d, π) in (d, π)
(which can be guaranteed by the continuous approximation
ψϵ in (8)), this requires that κτ (d, π) preserves the average
amount of karma in the system.

Assumption 1. Karma is preserved in expectation for all
(d, π), i.e., E[k+] = E[k], which expands to∑

τ,u,k

dτ [u, k]
∑
a

πτ [a | u, k]
∑
k+

κτ [k
+ | k, a] k+

=
∑
τ,u,k

dτ [u, k] k.

Note that under the presence of elastic commuters that do
not always participate in the game, the karma held by the
fixed commuters need not be preserved. Nonetheless, since
our formulation incorporates the elastic commuters as a sub-
population, we can guarantee that the average karma over
the whole population (both fixed and elastic commuters) is
preserved.

Proposition 1. The karma transition function (11) satisfies
Assumption 1, i.e., karma is preserved in expectation.

The proof is analogous to [26, Proposition 1] and is omit-
ted for brevity. The following is then immediate from [25,
Theorem 1].

Theorem 1. For every average karma level k̄ ∈ N, a SNE
(d∗, π∗) satisfying

∑
τ,u,k d

∗
τ [u, k] k = k̄ is guaranteed to

exist in CARMA with elastic commuters.

The proof relies on Assumption 1 to guarantee that the set
of state distributions D is compact, which enables invoking
an infinite-dimensional version of Kakutani’s fixed point
theorem, see [25]. An algorithm for computing SNE of
dynamic population games is developed in [18], [25], which
is based on showing an equivalency to a standard Nash
equilibrium of a suitably defined (static) population game and
employing standard evolutionary dynamics [24] to compute
the equilibrium. In what follows, we utilize these tools to
illustrate how the dynamic karma mechanism performs at
the SNE in numerical case studies.

III. NUMERICAL ANALYSIS OF REBOUND EFFECT

In this section, we perform numerical computations of the
SNE under varying number of Nelast in order to shed light
on the performance of the karma-based bottleneck congestion
management scheme. We consider two cases: in the former,
both fixed and elastic commuters belong to the same income
class, and in the latter, the elastic commuters belong to a
higher income class than the fixed commuters. We compare
our results to those obtained under no policy intervention
(denoted by “NOM”) as well as the Vickrey-optimal monetary
tolling [1] of the fast lane (denoted by “TOLL”). This serves
as an example to illustrate the benefit of our dynamic karma
scheme, and to showcase how our model can assist in making
informed policy decisions.

A. Performance measures and benchmarks

As performance measures, we consider the average travel
cost at the equilibrium traffic assignment, both at the
commuter-type level (measure of fairness) and the over-
all system level (measure of efficiency). Let Pτ [u] be the
probability that type τ commuters have VOT level u,
which is given by the stationary distribution of ϕτ , and let
ūτ =

∑
u Pτ [u] u be the average VOT of type τ . Empiri-

cal evidence has shown a strong correlation between the
(monetary) VOT and the income of the commuters [31],
[32]. Thus, we consider ūτ to represent the income class
of type τ . To define income-invariant performance metrics,
we express costs on a scale normalized by ūτ respectively
for each τ . Accordingly, let c̄τ be the (normalized) average
travel cost of type τ , and c̄ = gfix c̄fix + gelast c̄elast be
the system-level (normalized) average travel cost. Table I
gives the expression of c̄τ for both benchmarks NOM and
TOLL as well as the karma-based scheme CARMA. In the
equilibrium of NOM, all elastic commuters prefer to not
travel regardless of u since cother ≤ cNOM. The equilibrium
of TOLL is determined by the distribution of the immediate
VOT in the population, namely, higher VOT commuters
occupy the fast lane closer to the desired arrival time t∗
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TABLE I: Average travel cost per commuter type.

Fixed (c̄fix) Elastic (c̄elast)

No intervention (“NOM”) cNOM cother

Optimal tolling (“TOLL”) 1
ūτ

∑
u Pτ [u] cTOLLτ [u]

Karma scheme (“CARMA”)⋆ − 1
ūτ gτ

∑
u,k d∗τ [u, k]Rτ [u, k]

⋆computed at the SNE (d∗, π∗).

as they can afford to pay higher tolls. The resulting average
travel cost of commuters of type τ and VOT u, denoted by
cTOLLτ [u], was derived in [26] following basic principles of
the classical bottleneck model [30] under no elastic demand.
In the presence of elastic commuters, those commuters will
have an incentive to use the fast lane at all times t for
which u max{β (t∗ − t), γ (t− t∗)}+ p(t) ≤ u cother, where
p(t) denotes the toll price. This could affect the equilibrium
by shifting more fixed commuters to the slow lane. The
exact derivation of the mixed-population tolling equilibrium
is omitted for brevity as it follows similar principles to [26].

B. Results and discussion

The default values of the model parameters used in our
numerical investigation are reported in Table II. For the num-
ber of elastic commuters Nelast, we perform a sweep with
values lying in the grid {0, 0.1, . . . , 0.9, 1}Nfix. Moreover,
we consider the following two cases:

1) Homogeneous income: both fixed and elastic com-
muters have the same independent and identically
distributed (i.i.d.) VOT process with u ∈ U =
{ulow, uhigh}, ulow = 1, uhigh = 2, P[ulow] = 0.8, and
P[uhigh] = 0.2;

2) Heterogeneous income: fixed commuters have the
same VOT process as in Case 1, whereas the elastic
commuters’ process is characterized by ulow = 3,
uhigh = 6, and the same parameters otherwise. This
translates to elastic commuters having three times the
income level of the fixed commuters.

Figure 2 shows the results attained in the above two
cases. In the homogeneous income case (Figure 2a–2b), both
CARMA and TOLL achieve qualitatively similar efficiency in
terms of the system-level average travel costs, see Figure 2b.
However, there are considerable differences when investi-
gating the average costs per type, see Figure 2a. From the
fixed commuters’ point of view, CARMA is less sensitive than
TOLL to low penetration of elastic demand, as illustrated by
the more gradual slope for Nelast ≤ 0.4 Nfix. The trend
reverses, however, for Nelast ≥ 0.6 Nfix. In this regime,
a sharp rise in the average travel cost of fixed commuters
is observed in CARMA, while it remains constant in TOLL.
The former occurs because in CARMA, elastic commuters
bid to enter the fast lane less often than fixed commuters,
meanwhile commuters of both types receive the same karma
redistribution. This has a minor effect at low penetration
of elastic demand but eventually leads to elastic commuters

TABLE II: Default values of model parameters.

Name Notation Unit Value
Number of fixed commuters Nfix 9000

Bottleneck capacity s veh/min 60 (100%)
- Fast lane sfast 24 (40%)
- Slow lane sslow 36 (60%)

Length of discrete time step ∆t min 15

Normalized VOT cost/hour⋆

- queuing delay α 6.4
- early arrival β 4
- late arrival γ 16

Nominal equilibrium cost cNOM 8

Cost of elastic alternative cother 7.2

Desired arrival time t∗ min 120

Discount factor δ 0.99

Parameter for model continuity ϵ 10−4

Average karma per commuter k̄ 10
⋆in TOLL the unit is $/hour.

holding a higher share of the system karma and degrading
the performance for fixed commuters. A possible counter-
measure is to redistribute less karma to commuters that do
not travel, which can be achieved through a suitable design
of κτ (d, π), see Section II-B.2. The latter occurs because
in TOLL, the slow lane eventually becomes costly to the
extent that low VOT fixed commuters are willing to pay
more toll to enter the fast lane than additional high VOT
elastic commuters.

Despite the degradation of fixed commuter costs in CARMA
at high penetration of elastic demand, a detrimental rebound
effect does not manifest in the homogeneous income case,
where both types of commuters experience strict benefits
with respect to NOM in CARMA and TOLL. This is however
not the case when considering the heterogeneous income
case (Figure 2c–2d), where the higher income elastic com-
muters experience serious benefits in comparison to the fixed
commuters in TOLL. Since the elastic commuters can afford
higher toll prices, they quickly occupy the fast lane to the
extent that fixed commuters experience higher average travel
costs than if no policy was in place for Nelast ≥ 0.2Nfix,
see Figure 2c. In contrast, CARMA is completely invariant to
income, since ūτ only introduces a constant scaling of the
costs in the dynamic optimization of the commuters. This
also implies that CARMA is more efficient than TOLL with
respect to the income-normalized average travel costs c̄ for
the wide range of 0.1 ≤ Nelast/Nfix ≤ 0.7, see Figure 2d.
The peak in c̄ for TOLL coincides with when no additional
elastic commuters find it benefitial to use the fast lane at the
equilibrium toll prices.

IV. CONCLUSIONS

We demonstrated that dynamic models allow devising new
classes of fair congestion mitigation schemes by formulating
a non-monetary karma economy for bottleneck congestion
management as a Dynamic Population Game (DPG). Our
model incorporates the presence of an elastic demand of
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Fig. 2: Performance measures plotted against the ratio of
elastic to fixed demand for the cases of homogeneous income
and heterogeneous income.

commuters that only travel if congestion is reduced. We guar-
antee the existence of a Stationary Nash Equilibrium (SNE)
through a suitable design of the karma exchange protocol
which preserves the amount of karma in the system. Through
numerical analysis we illustrate the benefit of our dynamic
karma scheme in comparison to a static monetary tolling
scheme. Namely, the karma scheme is invariant to income
heterogeneity, and robust against a detrimental rebound effect
manifesting when high income elastic commuters cause low
income fixed commuters to experience worse congestion than
if the bottleneck is left uncontrolled.
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