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Abstract— This paper studies reference tracking control of
uncertain lateral vehicle dynamics, using a blending based
multiple-model reference adaptive control (MMRAC) approach
to overcome the parametric uncertainties and time-variations,
including those in the tire force capacities and cornering stiff-
ness. The lateral vehicle dynamics model under consideration is
multiple-input, multiple-output, linear, and parameter varying.
The design will assume a time-invariant system, such that all
uncertain parameter variations lie inside of a known, compact,
and convex set. The proposed MMRAC law guarantees perfect
tracking of the desired state values generated by a linear
reference model representing ideal driving conditions, and the
system parameter estimates asymptotically converge to the
unknown true values. We present simulations to show the
stability and effectiveness of the proposed MMRAC scheme,
even in the presence of slow time variations, as well as a
performance comparison with existing lateral vehicle motion
controllers.

Index Terms— Multiple model, Adaptive control, Polytopic
uncertainty, Model reference adaptive control, Lateral vehicle
dynamics.

I. INTRODUCTION

On average 94% of car crashes are due to human error [1].
Moreover, 39% of crash-related fatalities in the US are due to
lane departures [2]. Such statistics exhibits the importance of
improving the safety standards of the systems that intervene
in the steering of vehicles. When it comes to lateral vehicle
dynamics, research mainly splits into lane departure warning
systems [3], [4], lane keeping systems [5], [6], and yaw
stability control systems [7], [8]. In this paper, we consider
the problem of road accidents due to excessive side-slip of
vehicles due to road conditions by applying a novel controller
that improves the performance of the closed-loop.

Extensive research has been proposed, and implemented
in the literature to mitigate excessive side-slip of vehicles
on roads, and to restore the yaw velocity of the vehicle
to the nominal motion expected by the driver. In [9], a
model reference adaptive controller (MRAC) is developed
to improve the vehicle’s manoeuvrability, and a nonlinear
MRAC is designed to compensate the disturbances. In [10],
a fast identification technique using Kalman filters was
developed based on available signals to identify the road
friction coefficients, and evaluated on single and double-lane
maneuvers. Studies on disturbance rejection when applying
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direct yaw moment control to autonomous vehicles can
be found in [11]. In [12] a model predictive controller is
applied to improve the yaw stability of a rear-wheel-drive
vehicle with an electronic limited slip differential. In [13], a
multiple model adaptive parameter identification scheme is
combined with optimal controllers to achieve fast adaptation
of the lateral motion control to changing road conditions.
In [14] an MRAC scheme is applied to the problem of
active front steering and direct yaw moment control that can
overcome variations of the vehicle mass and tire-road friction
coefficients.

Using multiple models in the control design of uncertain
systems has been proven to achieve faster convergence of
parameters and better closed-loop performance than single
model approaches [15]–[18]. Considering a system that
works in different dynamic regimes, multiple-model tech-
niques allows the selection of the best model (the one that
minimizes an error signal) [19], [20] or using the information
of all the models to obtain a unique description of the
system [13], [17], [21], [22].

In this paper we use multiple model reference adaptive
control (MMRAC) with blending developed in [23] to the
problem of lateral vehicle motion control. The controller
generates a continuous input signal calculated using the
identification errors from all the models, similar to [15], [24].
First, we perform a numeric study of the convergence speed
for the control scheme. Second, we verify the performance
of the MMRAC compared with MRAC, and an optimal
controller LQR when we consider an unknown constant
plant. Finally, we compare the MMRAC with MRAC and
LQR when there is an explicit slow time variation of the
parameters, without reinitialization. The lateral vehicle dy-
namics problem of interest is presented in Section II. In Sec-
tion III, we present our blending based MMRAC approach
to this problem, along with its generic design procedure and
stability and convergence properties. In Section IV we design
the controller for the lateral vehicle dynamics application. A
set of numeric simulations are presented comparing lateral
vehicle lane maneuver control with the studied blending
based MMRAC scheme to MRAC and LQR in Section V.
Concluding remarks are given in Section VI.

Notation: For a set S ⊂ Rn, conv (S) denotes the closed
convex hull of S, the interior of S is written int(S). For
two signals f1 and f2 we write f1

λ
= f2 if there exists

λ > 0 such that ef = f1 − f2 satisfies ėf = −λef .
For a vector x ∈ RN , xi denotes the i-th component, and
x̄ = [x1, · · · , xN−1]

⊤ ∈ RN−1. A signal ψ : [0,∞) → Rk
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is persistently exciting (PE) if there exist αΦ1, αΦ2, T > 0
such that for every t ≥ 0

αΦ1I ⪯
∫ t+T

t

Φ(τ)Φ⊤(τ)dτ ⪯ αΦ2I. (1)

II. LATERAL VEHICLE DYNAMICS PROBLEM

In this section, we provide the mathematical model of
lateral vehicle dynamics of interest. We make the following
widely used modeling simplifying assumptions [2]:

• All forces act on a plane flat road. The effect of the
altitude of the center of gravity is neglected.

• The equations of motion are linearized. The tire force
is assumed proportional to the slip angle.

Under these assumptions, the free-body diagram of the lateral
vehicle dynamics using a bicycle model is presented in
Figure 1. The system is represented by the state-space model

ẋp(t) = Ap(η)xp(t) +Bp(η)u(t), xp (0) = xp0, (2)

with state xp(t) :=
[
β(t) ψ̇(t)

]⊤ ∈ R2 and input u(t) :=[
δ(t) Mz(t)

]⊤ ∈ R2, where β is the side-slip angle, r is the
yaw rate, Mz is the yaw moment about the z-axis, δ = δd+δc
is the total steering angle of the front wheels resulting from
addition of the driver command δd and the corrective steering
control input δc. The system matrices Ap(η) ∈ R2×2 and
Bp(η) ∈ R2×2 are unknown due to uncertain variations in
cornering stiffness and longitudinal force capacities of the
tires and are parameterized in the form

Ap(η) = Ap1 + ηfAp2 + ηrAp3, (3)
Bp(η) = ηfBp1 + ηxBp2, (4)

Ap1 =

[
0 −1
0 0

]
, Ap2 =


−Cf

mvx

lfCf

mv2x
−lfCf

Iz

−l2fCf

Izvx

 ,

Ap3 =


−Cr

mvx

lrCr

mv2x
lrCr

Iz

−l2rCr

Izvx

 ,

Bp1 =

 Cf

mvx
0

lfCf

Iz
0

 , Bp2 =

0 0

0
1

Iz

 ,

(5)

where m is the mass of the vehicle, Iz is the moment of
inertia about the z-axis, vx is the longitudinal velocity, lf
and lr are the distance from the center of gravity to the front
and rear wheels, respectively, Cf and Cr are the cornering
stiffness coefficients for the front and rear tires, respectively.
The entries of η =

[
ηf ηr ηx

]⊤
, in order, parameterize

the uncertainties in front tire cornering stiffness, rear tire cor-
nering stiffness, and longitudinal tire force capacity, where
η =

[
1 1 1

]⊤
represents the nominal model case. The

upper and lower bounds of the uncertainty parameters ηi for
i ∈ {f, r, x} are assumed to be known in the form

ηimin ≤ ηi ≤ ηimax, (6)

Fig. 1. Free-body diagram for lateral vehicle dynamics using a bicycle
model.

where 0 < ηimin < 1 and ηimax > 1. These parameter
ranges correspond to the polytope generated by taking the
minimum and maximum values of every entry of the matrices
Ap and Bp.

Under these assumptions, the model is fit to accurately
describe the dynamics under normal driving conditions [25].
The control objective is to design a state-feedback controller
such that the closed-loop plant state xp asymptotically tracks
the desired state xr generated by the reference model

ẋr(t) = Arxr(t) +Brr(t), xr (0) = xr0, (7)

which represents ideal driving behavior on optimal dry road
conditions. The constant matrices Ar ∈ R2×2 and Br ∈
R2×2 are known, Ar is Hurwitz, and r : [0,∞) → R2

is a known, bounded, piece-wise continuous input to the
reference model. For the case of lateral vehicle dynamics,
we expect the car to achieve the yaw rate, with the minimum
possible side-slip, i.e., we expect the car to behave as if the
road had a very high friction coefficient.

III. MULTIPLE MODEL REFERENCE ADAPTIVE
CONTROLLER

In this section, we provide the details to design a blending
based MMRAC scheme [23] to track the states generated by
a linear model for the lateral vehicle dynamics problem.

A. The General Multiple-Model Reference Control Problem

Consider the MIMO LTI system (2) and the linear ref-
erence model (7). We assume the exact matching condi-
tions [26], as stated in the following assumptions.

Assumption 1. There exist matrices K∗ ∈ R2×2 and
L∗ ∈ R2×2 such that

Ap +BpK
∗ = Ar, (8a)

BpL
∗ = Br. (8b)

Moreover, it is assumed that the uncertain system is
contained inside of a polytope generated by N fixed plant
models with system matrices Ai, Bi, satisfying the following
assumption.

Assumption 2. There exist N ∈ N known matrices
Ai ∈ R2×2, Bi ∈ R2×2, i ∈ {1, · · · , N}, such that[
Ap Bp

]
∈ int

(
conv

{[
Ai Bi

]
: i ∈ {1, · · · , N}

})
, and

every convex combination of the Bi matrices is invertible.
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Assumption 2 implies the existence of the non-empty set

W :=

{
w ∈ [0, 1]

N
: [Ap Bp] =

N∑
i=1

wi [Ai Bi] ,

N∑
i=1

wi = 1

}
,

(9)
and means that the problem of identifying the matrices Ap

and Bp is equivalent to identifying a weight vector w ∈ W .
Another consequence of Assumption 2 is that there exist
matrices Ki ∈ R2×2 and Li ∈ R2×2 such that, for all i ∈
{1, · · · , N},

Ai +BiKi = Ar, (10a)
BiLi = Br. (10b)

Given this structure, the MMRAC consists of two parts.
First, a parameter identification scheme that generates esti-
mates Âp (t) and B̂p (t) of Ap and Bp, respectively, as a
weighted sum of the estimates generated by N estimators
based on the N fixed models. Second, generation of a control
input based on the estimated parameters developed in the
identification part. In the following subsections we present
details of our multiple model parameter identification and
MMRAC scheme designs for the specific problem setting in
Section II.

B. Multiple-Model Parameter Identifier Design

Filtering both sides of (2) by the linear filter
1

s+ λ
, where

λ > 0 is a design parameter, we obtain the parametric model

z (t)
λ
= Θp

[
ϕ1 (t)
ϕ2 (t)

]
=: ΘpΦ(t), (11)

where z (t) , ϕ1 (t) , ϕ2 (t) ∈ R2 are generated by the filters[
ϕ̇1(t)

ϕ̇2(t)

]
= −λ

[
ϕ1(t)
ϕ2(t)

]
+

[
xp(t)
u(t)

]
,

[
ϕ1(0)
ϕ2(0)

]
=

[
0
0

]
,

z(t) = ϕ̇1(t) = −λϕ1(t) + xp(t). (12)

For each of the fixed models, define

zi (t) := Θi

[
ϕ1 (t)
ϕ2 (t)

]
= ΘiΦ(t), ∀i ∈ {1, · · · , N} . (13)

Then, the filtered state estimation error for each of the N
fixed models is defined as

εi (t) := z (t)− zi (t) ,∀i ∈ {1, · · · , N} . (14)

For any w ∈ W , (11) is related to (13) via

z (t) =

N∑
i=1

wizi (t) + ez(t).

Hence, using
∑N

i=1 wi = 1 we have

N∑
i=1

wiz (t)−
N∑
i=1

wizi (t) =

N∑
i=1

wiεi (t) = ez(t). (15)

Subtracting εN (t) from both sides of (15), we obtain
N−1∑
i=1

wi (εi (t)− εN (t)) = ez(t)− εN (t) . (16)

Defining the 2× (N − 1) time-varying matrix

E (t) :=
[
ε1 (t)− εN (t) · · · εN−1 (t)− εN (t)

]
, (17)

we can rewrite (16) in matrix form as

E (t) w̄ = ez(t)− εN (t) . (18)

Defining the compact set

Π :=

{
ˆ̄w ∈ [0, 1]

N−1
:

N−1∑
i=1

ˆ̄wi ≤ 1

}
, (19)

let PrΠ, ˆ̄w : RN−1 → Π ⊂ RN−1 denote the parameter
projection operator used to keep ˆ̄w within Π [27]: If ˆ̄w is
on the boundary ∂(Π) of Π and v ∈ RN−1 points to outside
of Π then PrΠ, ˆ̄w(v) is equal to the projection of v on the
tangent plane of ∂(Π) of Π at ˆ̄w; otherwise PrΠ, ˆ̄w(v) = v.
With ˆ̄w(0) ∈ int(Π), the following adaptive law based on
Equation (18) is used to generate the weight vector estimate
ŵ(t):

˙̄̂w (t) = PrΠ, ˆ̄w

(
−Γ

(
E⊤ (t)E (t) ˆ̄w (t) + E⊤ (t) εN (t)

))
,

ŵN (t) = 1−
N−1∑
i=1

ŵi (t) , (20)

where Γ ∈ R(N−1)×(N−1) is a preset symmetric positive
definite matrix, which tunes the convergence speed. We
establish the following proposition along Theorem 1 and
Corollary 1 of [28]:

Proposition 1. Consider the system (2). Under Assump-
tion 2, and assuming that Φ(t) is bounded and PE, the esti-
mation scheme (20) guarantees that for any initial estimate
ˆ̄w(0),

∑N
i=1 ŵi(t)Θi asymptotically converges to Θp.

The complete analysis can be found in the proof of
Theorem 2 of [23].

C. Multiple Model Reference Adaptive Control Design

Let w ∈ W , then multiplying both sides of (10b) by wi

and summing over i yields

N∑
i=1

wiBiLi =

N∑
i=1

wiBr = Br,

which implies, together with (8b) from Assumption 1, that

L∗ = B−1
p

N∑
i=1

wiBiLi. (21)

Applying the same steps on (10a) we get

Ar =

N∑
i=1

wiAr = Ap +

N∑
i=1

wiBiKi. (22)

Comparing (22) to (8a) we get that

K∗ = B−1
p

N∑
i=1

wiBiKi. (23)
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Equations (21) and (23) motive us to generate estimates of
the gains K∗ and L∗ using the estimates ŵ (t), keeping in
mind the invertibility supposition in Assumption 2, as

K̂ (t) = B̂−1
p (t)

N∑
i=1

ŵi (t)BiKi, (24)

L̂ (t) = B̂−1
p (t)

N∑
i=1

ŵi (t)BiLi. (25)

The control law we will consider to achieve asymptotic
tracking of the reference model is

u (t) := K̂ (t)xp (t) + L̂ (t) r (t) . (26)

We have the following proposition for the closed loop
system:

Proposition 2. Consider the plant (2) and the reference
model (7). Under Assumptions 1 and 2, and assuming
that Φ(t) is PE, the control law (26), with the adaptation
scheme (20) guarantees that for any initial state xp0 of
the plant (2), and any initial state xr0 and any piecewise
continuous and bounded reference signal r : [0,∞) → R2 in
the reference model (7), all closed-loop signals are bounded
and xp(t) asymptotically converges to xr (t).

The complete analysis can be found in the proof of
Theorem 3 of [23].

IV. APPLICATION OF MMRAC TO LATERAL VEHICLE
MOTION CONTROL

In this section we verify that the model (2) satisfies As-
sumptions 1 and 2 from Section III for any physically
meaningful values of the plant parameters, and finally we
give an expression for the complete controller.

In order to verify Assumption 1 we need to be able to
invert the matrix Bp. Re-writing (4) with the definitions
from (5) we obtain

Bp(η) = ηf

 Cf

mvx
0

lfCf

Iz
0

+ ηx

0 0

0
1

Iz

 . (27)

Note that the parameters Cf , m, vx, lf , and Iz need to be
strictly greater than zero to be physically meaningful during
forward motion. This implies that, since the values of ηf min

and ηxmin are strictly positive, the matrix Bp will be lower
triangular with positive values on the main diagonal, hence it
will always have a positive determinant, which implies that
it will always be invertible. With these considerations we can
calculate K∗ and L∗ from (8a) and (8b), respectively.

To satisfy Assumption 2 we need to select the fixed models
pairs

[
Ai Bi

]
, for i ∈ {1, · · · , N}. We consider all possible

combination of minimums and maximums of ηf , ηr, and
ηx to obtain eight corner models. This selections guarantees
that Bp is in the interior of some convex combination of the
corner model, and Assumption 2 is satisfied. Note that this

TABLE I
VALUES USED TO RUN SIMULATIONS.

Symbol Value Meaning

m 1140 kg Mass of the car
Iz 1020 kgm2 Moment of inertia about the yaw-axis
lf 1.165 m Distance from CG to the front wheel
lr 1.165 m Distance from CG to the rear wheel
vx 100 m/s Longitudinal velocity
Cf 86849 N/rad Front tire cornering stiffness
Cr 90950 N/rad Rear tire cornering stiffness
λ 20 Linear filter design parameter
Γ 50I7×7 Symmetric matrix to tune convergence speed

selection process does not minimize the number of corner
models. The corner model pairs are as follows:

Ai = Ap1 + ηfiAp2 + ηriAp3, (28)
Bi = ηfiBp1 + ηxiBp2, (29)

where i ∈ {1, · · · , 8}, and

ηfi =

{
ηf min, if i = {1, 3, 5, 7}
ηf max, if i = {2, 4, 6, 8},

(30)

ηri =

{
ηrmin, if i = {1, 2, 5, 6}
ηrmax, if i = {3, 4, 7, 8},

(31)

ηxi =

{
ηxmin, if i = {1, 2, 3, 4}
ηxmax, if i = {5, 6, 7, 8}.

(32)

From (4), (5) and strictly positive ηf and ηx are, the
determinant of Bi is strictly greater than zero, for every
i ∈ {1, · · · , 8}. This implies that any convex combination
of the Bi matrices will have a strictly positive determinant,
which further implies that any convex combination of the Bi

matrices is invertible, hence the proposed controller can be
applied to the uncertain model of lateral vehicle dynamics.

Finally, we can calculate the gains Ki and Li, for i ∈
{1, 2 · · · , 8} as

Ki = B−1
i (Ar −Ai), (33)

Li = B−1
i Br. (34)

Selecting a value of λ > 0, and a positive definite matrix
Γ ∈ R7×7, the full controller is described by Equations (12),
(20) and (24)–(26), with N = 8.

V. SIMULATIONS

In this section we present simulation results, and compare
the performance of the MMRAC with other controllers.
The parameters used to run the simulations are in Table I.
Moreover, all the uncertainty of the system and the time-
variations satisfies (6) with

ηimin = 0.1, ηimax = 1.3, i ∈ {f, r, x}. (35)

With these values, we fixed the corner systems, and we track
the states generated by the reference model defined by

Ar =

[
−13.6 1.96
17 −18.85

]
, Br =

[
6.8 0

124.67 0.001

]
. (36)
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Fig. 2. r(t) for the reference model.
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Fig. 3. States of the system for different control techniques assuming
η =

[
1 1 1

]⊤.
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Fig. 4. Control effort of the different control techniques assuming η =[
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]⊤.
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Fig. 6. States of the system for different control techniques assuming
η = η(t).

First, we present a set of simulations that assumes a
constant unknown value of ηf = ηr = ηx = 1. We compare
the proposed multiple-model technique with a single model
reference adaptive controller, and a single model optimal
LQR controller. The reference signal r(t) shown in Figure 2
represents a change of lanes, and was obtained on CarSim.
In Figure 3 we observe that MMRAC and MRAC are able
to track the desired side-slip and LQR has the largest error.
When we look at the yaw rate instead, we see that LQR
and MMRAC are able to track the desired state, but not
the MRAC control. As observed in Figure 4 the control
efforts applied are comparable, which suggests that there is
an advantage in using the proposed MMRAC scheme.

Finally, we present a set of simulations that assumes that
the unknown parameter η is slowly time-varying, and takes
values contained in the set (35) as shown in Figure 5. Once
again, we compare the results with an MRAC technique and
an LQR controller. In Figure 6 we observe that the MMRAC
scheme alone tracks the desired side-slip, and MMRAC and
LQR are able to track the desired yaw rate, with similar
control efforts, as shown in Figure 7. Simulations with
time-varying parameters show clear advantages of using the
proposed MMRAC scheme over single model controllers.

In the presence of process and measurement noise, all
closed loop signals remain bounded. A more comprehensive
example of the behavior under process and measurement
noise can be found in [28].
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VI. CONCLUSIONS

In this article, we have applied an MMRAC scheme
to reference tracking control of uncertain lateral vehicle
dynamics. We have established that the conditions to apply
MMRAC scheme are satisfied by the assumed lateral vehicle
dynamics model. Simulations show that the tracking error
goes to zero, even in the case of unknown slowly time-
varying parameters. The presented simulations compare the
MMRAC scheme with a single model MRAC controller, and
an optimal LQR controller. The simulation results indicate a
superior performance by the proposed method, most notably
in the case of slowly time-varying parameters.
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