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Abstract— In this paper, we consider optimal control prob-
lems of stochastic discrete-time systems subject to additive
disturbances. Safety of such systems is guaranteed in a proba-
bilistic sense via chance constraints. We solve the corresponding
chance constrained stochastic control problems by extending
the unconstrained model-based Policy Iteration (PI), and thus
chance constrained PI with safety guarantees is proposed. Ad-
ditionally, the stability of generated control policies is analyzed
in the mean square sense. Numerical simulations are provided
to validate the proposed algorithm performance.

I. INTRODUCTION

In recent years, there has been growing interest in learning-
based control algorithms in academia and industry due
to their potential to find optimal control schemes in the
presence of uncertainty, where closed-form solutions may
be unavailable even with known system dynamics. Safety
is essential for learning-based control applied in real-world
scenarios. Nevertheless, the trade-off between exploration
(learning global optimal policies) and exploitation (find-
ing local optimal policies) can lead to unsafe behavior
during learning. To address safety in uncertain or noisy
systems, probabilistic chance constraints are preferable to
hard constraints, as they ensure safety requirements with high
probability, allowing for less conservative control laws. This
approach is vital in practical scenarios where some degree of
constraint violation is acceptable for economic or optimality
reasons. Research in optimal control with chance constraints,
including the emerging field of stochastic model predictive
control (MPC) [1], has explored various approaches [2]–[8].
Additionally, recent literature has explored the use of control
barrier functions (CBFs) for safe control, akin to Lyapunov
functions for stability [9]–[11].

Apart from the aforementioned works primarily focusing
on addressing chance constraints in the context of optimal
control, the rise of learning-based control has led the com-
munity to explore safe learning in a probabilistic sense. Two
main approaches tackle chance constraints in the learning
process. One approach modifies the reward function to
explicitly balance risk management and task completion.
Frameworks for integrating existing learning algorithms with
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CBFs are commonly investigated [12]. The other approach
focuses on modifying the learning procedure, rather than the
reward function, to ensure safe exploration with satisfied
constraints. This is achieved by methods like the penalty
method (which heavily penalizes constraint violations) and
the Lagrangian method (widely used in constrained optimiza-
tion, with an adaptive weight). A recent work [13] addresses
chance-constrained Reinforcement Learning (RL) problems
using a combination of the penalty and Lagrangian methods.
Most works in this domain employ an actor-critic structure
for solving optimization problems by gradient descent meth-
ods. The primary challenge lies in approximating gradients
of probabilities with respect to parameters [14]. Existing
works primarily ensure chance constraint satisfaction but
lack theoretical stability guarantees for control policies in
systems with stochastic disturbances. Notably, off-policy RL
methods may fail to generate stability guarantees in the
presence of unknown disturbances [15]. Dealing with both
stochastic disturbances and chance constraints adds further
complexity to ensuring stability. Our work aims to bridge this
gap by investigating optimal control problems in stochastic
systems with additive disturbances and chance constraints.
We propose a model-based chance-constrained PI method
with stability guarantees, which lays the foundation for future
data-driven chance-constrained learning algorithms.

Contributions: The contributions of this work are twofold.
Safety constraints are embedded in the PI framework in
a stochastic setting, and a model-based PI algorithm with
chance constraints considered is derived. Additionally, a
stability proof of the equilibrium point of the stochastic
closed-loop system is provided in the mean square sense.

Notation: N is the natural number set including zero. E
denotes expectation operator. P denotes probability operator.
A ą 0 (A ľ 0) represents a symmetric positive (non-
negative) definite matrix. trp¨q denotes trace operator. Within
the work, matrix norm refers to Frobenius norm while vector
norm can be any norms including ∥¨∥1, ∥¨∥2, and ∥¨∥8 unless
specified. In represents an identity matrix with dimension n.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Description

Consider the following discrete-time linear time-invariant
(LTI) dynamical system with additive noise represented by:

xk`1 “ Axk `Buk ` wk, (1)

with discrete time index k P N, state vector xk P Rn,
control input uk P Rm, state matrix A P Rnˆn, input matrix
B P Rnˆm, and exogenous noise/disturbance wk P Rn,
which can be interpreted as both model uncertainties and
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real noises disturbing the system. Within the work, assume
the pair pA,Bq is controllable; the disturbance wk follows
an independent and identical Gaussian distribution with a
bounded covariance, i.e., wk „ N p0,Σwq with ∥Σw∥ ă 8;
the initial state x0 is randomly generated from a Gaussian
distribution, i.e., x0 „ N pµ0,Σ0q, and is uncorrelated to wk.

Assumption 1. Covariance matrices Σw ą 0, Σ0 ą 0. l

For safety-critical systems in practice, certain safety con-
straints need to be guaranteed, which are imposed probabilis-
tically as chance constraints on the states as follows:

P
“

hTk xk ě gk
‰

ě 1 ´ ξk, k P N, (2)

where hk P Rn, gk P R, and ξk P p0, 0.5s is a user-defined
risk tolerance threshold. Accordingly, define the safe region
Sk “ tx P Rn : PrhTk xk ě gks ě 1 ´ ξku, @k P N.
Constraints (2) guarantee that the state trajectories violate the
linear constraint hTk xk ě gk with a probability of at most ξk
at each time step k. In the stochastic context, stability in the
mean square sense is considered. Specifically, mean square
boundedness is considered [16], [17]:

sup
kPN

Er∥xk∥22s ă 8, @x0 P S0. (3)

For a deterministic control policy π : Rn Ñ Rm mapping
from state xk to control input uk, i.e., uk “ πpxkq, define
the infinite-horizon discounted performance functional:

Jpx0, πq “ E

«

8
ÿ

i“0

γirpxi, uiq

ff

, (4)

where 0 ă γ ă 1 is a discount factor, rpxk, ukq “ xTkQxk`

uTkRuk : RnˆRm Ñ R is a stage cost functional incurred at
the kth time step and is defined as non-negative with Q ľ 0
and R ą 0. The expectation operation E is the expectation
with respect to the initial state x0 and the disturbance term
wk. This work aims to determine optimal control policies
π‹p¨q minimizing the expected discounted cumulative cost
(4) with fullfilled chance constraints (2) described by:

Problem 1.

min
π

Jpx0, πq “ E

«

8
ÿ

k“0

γkrpxk, ukq

ff

,

s.t. xk`1 “ Axk `Buk ` wk, uk “ πpxkq, wk „ N p0,Σwq,

x0 „ N pµ0,Σ0q,P
“

hTk xk ě gk
‰

ě 1 ´ ξk, k P N.

Definition 1. A control policy uk “ πpxkq is admissible
for system (1) if the closed-loop system under this policy
satisfies (3) and the cost (4) is finite. l

The limit (4) is well-defined for x0 P S0 if the policy π
is admissible on Sk, @k P N. Assume for system (1) there
exist admissible control policies.

B. Stochastic Optimal Control without Chance Constraints

Now we review some existing results on stochastic optimal
control problems that do not involve chance constraints (2).
These results serve as the foundation for our main results in

the next section. Based on the performance functional (4),
the cost-to-go value function at time step k is defined as
V pxkq “ E

“
ř8

i“k γ
i´krpxi, uiq

‰

. The value function can
be further rewritten as V pxkq “ Errpxk, ukqs ` γV pxk`1q.
According to Bellman’s principle of optimality, the optimal
value function V ‹p¨q needs to meet the infinite horizon
Hamilton-Jacobi-Bellman (HJB) equation [18]:

V ‹pxkq “ min
πp¨q

pErrpxk, ukqs ` γV ‹pxk`1qq . (5)

By stationarity condition for optimality, the optimal control
policy π‹ should satisfy the first-order necessary condition.
This can be achieved by setting the gradient of the right-hand
side (RHS) of (5) with respect to uk equal to 0:

π‹pxkq “ argmin
πp¨q

pErrpxk, ukqs ` γV ‹pxk`1qq

“ ´
γ

2
R´1BT BV ‹pxk`1q

Bxk`1
. (6)

Now consider a linear state feedback control policy πpxkq “

uk “ Kxk with K P Rmˆn. The following lemmas provide
a sufficient condition for the admissibility of the control
policy uk “ Kxk and its corresponding value function.

Lemma 1. (Lemma 2 in [19]) Assume there is a unique
solution P P Rnˆn to the following Lyapunov equation:

P “ γpA`BKqTP pA`BKq `KTRK `Q, (7)

then the control policy uk “ Kxk is admissible.

Lemma 2. (Lemma 3 in [19]) Assume the control policy
uk “ Kxk is admissible, then the corresponding value
function is given by:

V pxkq “ ErxTk Pxks `
γ

1 ´ γ
trpPΣwq, (8)

where P P Rnˆn is the unique solution to (7).

Substitute the value function (8) into the RHS of (6):

K “ ´γpR ` γBTPBq´1BTPA. (9)

The Policy Iteration (PI) [20] technique solves the HJB
equation iteratively via policy evaluation based on (5) and
policy improvement based on (6) with an admissible initial
control policy, which is summarized in Algorithm 1 with
convergence proof shown by [19].

III. MAIN RESULTS

Algorithm 1 addresses stochastic optimal control problems
without considering chance constraints (2). Inspired by the
work [21], our proposed method for solving Problem 1
employs the PI technique to approximate the solution to
Problem 1 while incorporating chance constraints during
policy improvement. To tackle the challenge posed by chance
constraints, we first convert probabilistic constraints into
deterministic ones. Then, we establish a chance-constrained
PI scheme and finally perform a stability analysis of the
resulting control laws in the mean square sense.
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Algorithm 1 Policy Iteration without Chance Constraints
1: Select an admissible initial control gain K0 and thresh-

old η. For j “ 0, 1, . . . , perform until convergence:
2: repeat
3: Policy Evaluation: Solve for P j such that

P j “ γpA`BKjqTP jpA`BKjq ` pKjqTRKj `Q.

4: Policy Improvement: Update the policy by

Kj`1 “ ´γpR ` γBTP jBq´1BTP jA.

5: Set j “ j ` 1.
6: until j ě 1 and ∥P j ´ P j´1∥ ď η.

A. Representation of Chance Constraints as Deterministic
Constraints

Recursively propagating system (1) to get xk “ Akx0 `
řk´1
i“0 A

k´i´1Bui `
řk´1
i“0 A

k´i´1wi, k ě 1. Under the
assumptions of Gaussian distributed x0 and wk introduced in
Section II-A, the distribution of future states is also Gaussian,
i.e., xk „ N pµk,Σkq, with µk and Σk given by, @k ě 1:

µk “Akµ0 `

k´1
ÿ

i“0

Ak´i´1Bui, (10)

Σk “AkΣ0pAkqT `

k´1
ÿ

i“0

Ak´i´1ΣwpAk´i´1qT. (11)

Remark 1. The state mean at time step k depends on past
control inputs up until k´ 1 (i.e., tu0, u1, . . . , uk´1u) while
the state covariance at time step k does not depend on the
control inputs. This shows states at future steps are Gaussian
distributed with fixed covariance but variant mean. l

Lemma 3. For a univariate Gaussian random variable
Y „ N pµ, σ2q with variant mean µ and fixed variance
σ2, the probabilistic constraint on Y can be converted to
a deterministic constraint on its mean as follows:

PrY ă ts ď δ ðñ µ ě c, (12)

with c “ t`
?
2σ ¨ erf´1

p1 ´ 2δq,

erfpzq “
2

?
π

ż z

0

e´t2dt. (13)

Proof. Let Z “ pY ´µq{σ. Then PrZ ă
t´µ
σ s “ Pr

Y´µ
σ ă

t´µ
σ s “ PrY ă ts ď δ. The random variable Z follows a

standard Gaussian distribution with mean 0 and variance 1.
By inverse standard normal distribution function (also known
as inverse error function), we can solve for µ to obtain a
deterministic constraint on mean, i.e., µ ě t`

?
2σ¨erf´1

p1´

2δq with error function erfp¨q defined by (13) [22].

Based on Lemma 3, the following theorem is introduced
to convert the chance constraints (2) to deterministic ones.

Theorem 1. Assume states follow the propagation rule of
(1), then the chance constraints (2) on states can be con-
verted to deterministic constraints on their mean as follows:

PrhTk xk ě gks ě 1 ´ ξk ðñ ψpµkq ě 0, (14)

where

ψpµkq “hTk µk ´ gk ´

b

2hTkΣkhk ¨ erf´1
p1 ´ 2ξkq, (15)

with the error function erfp¨q defined by (13).

Proof. Given xk „ N pµk,Σkq for states following the sys-
tem dynamics (1), the term hTk xk ´gk follows the following
Gaussian distribution hTk xk´gk „ N phTk µk´gk, h

T
kΣkhkq.

Denote vk “ hTk xk ´ gk, then we have vk „ N pµv, σ
2
vq

with µv “ hTk µk ´ gk and σv “

b

hTkΣkhk. It follows
from equation (12) with t “ 0 in Lemma 3 that Prvk ă

0s ď ξk ðñ µv ě
?
2σv ¨ erf´1

p1 ´ 2ξkq. Thus, we
obtain the deterministic version of the chance constraints
PrhTk xk ě gks ě 1 ´ ξk ðñ PrhTk xk ă gks ď ξk ðñ

hTk µk ´ gk ´

b

2hTkΣkhk ¨ erf´1
p1 ´ 2ξkq ě 0.

B. Chance Constrained Policy Iteration

In order to solve Problem 1 with chance constraints, the
optimal value function V ‹p¨q needs to meet the HJB equation
subject to chance constraints as follows, k P N:

V ‹pxkq “ min
πpxkq

pErrpxk, πpxkqqs ` γV ‹pxk`1qq ,

s.t. xk`1 “ Axk `Buk ` wk, P
“

hTk xk ě gk
‰

ě 1 ´ ξk.

Regarding the policy evaluation stage in Algorithm 1, the
goal is to find the approximate value in terms of the current
policy by solving (5). Given an admissible policy πj , there
is always a solution to (5) and thus an approximate solution
V j`1. For the policy improvement stage in PI, an updated
policy aims to minimize the RHS of (5) with the solved V j`1

subject to chance constraints as follows:

π‹pxkq “ argmin
πp¨q

pErrpxk, ukqs ` γV ‹pxk`1qq ,

s.t. P
“

hTk xk ě gk
‰

ě 1 ´ ξk, k P N.
(16)

The chance constraints in equation (16) lack an additive
structure, making them challenging to handle. To address
this, we apply Theorem 1, which converts chance constraints
into deterministic ones. This transformation renders the con-
strained optimization problem (16) equivalent to

π‹pxkq “ argmin
πp¨q

pErrpxk, ukqs ` γV ‹pxk`1qq ,

s.t. ψpµkq ě 0, k P N,
(17)

with ψpµkq defined by (15). With this conversion, we can
address the chance constraints using the penalty function
method. We introduce an additional cost penalty for con-
straint violation during the policy improvement stage in PI,
effectively transforming the constrained optimization prob-
lem into an unconstrained one as follows:

π‹pxkq “ argmin
πp¨q

´

Errpxk, ukqs ` γV ‹pxk`1q

`λmaxp´ψpµk`1q, 0q2
¯

, (18)

where λ ą 0 is a penalization parameter. This formulation
implies that in the policy improvement stage at time step k,
once the chance constraint at time step k ` 1 under current
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control input is violated, i.e., ψpµk`1q ă 0, the penalized
cost is enforced to generate a feasible policy within the safe
region such that the constraint at time step k`1 is satisfied.

Remark 2. We draw inspiration from recent work [21], which
deals with a continuous-time system subject to hard con-
straints. Here, in contrast, we incorporate chance constraints
for a single future time step in the infinite horizon setting,
while the approach in [21] integrates constraints from the
current time instant to the final finite time horizon. l

With the integration of chance constraints in the policy
improvement stage by the penalty function method, the
following theorem is introduced to derive the solution to the
unconstrained optimization problem (18).

Theorem 2. The solution to optimization problem (18) is
given by, @k ě 1:

π‹pxkq “ u‹
k “

#

Kxk, if ψpµk`1q ě 0

Kcxk ` uc, otherwise
(19)

where

K “ ´γpR ` γBTPBq´1BTPA, (20)

Kc “ ´γpR ` γBTPB ` λBThk`1h
T
k`1Bq´1BTPA,

(21)

uc “ ´λpR ` γBTPB ` λBThk`1h
T
k`1Bq´1φk`1, (22)

φk`1 “

˜

hTk`1A
k`1µ0 ` hTk`1

k´1
ÿ

i“0

Ak´iBui ´ gk`1

´

b

2hTk`1Σk`1hk`1 ¨ erf´1
p1 ´ 2ξk`1q

¯

BThk`1. (23)

Proof. To solve the unconstrained optimization problem
(18), we apply the first-order necessary condition for opti-
mality by setting the derivative of RHS of equation (18) with
respect to uk equal to 0. If ψpµk`1q ě 0, there is no extra
penalty cost and thus the optimal control policy is the same to
(6) with the state feedback gain given by (9). If ψpµk`1q ă 0,
the penalty cost is enforced. Given value function (8), state
mean (10) and deterministic constraints (15), set the deriva-
tive of RHS of equation (18) with respect to uk to zero to
obtain: 0 “ 2Ruk`γBT BV ‹

pxk`1q

Bxk`1
`2λψpµk`1q

Bψpµk`1q

Buk
“

2Ruk`2γBTPBuk`2λhTk`1BukB
Thk`1`2γBTPAxk`

2λφk`1. Note that the term ψpµk`1q contains uk due
to µk`1, whereas the term φpµk`1q does not contain
uk. So in the above manipulation, we substitute the
state mean (10) to separate uk from ψpµk`1q. The ob-
jective is to rearrange the terms such that those con-
taining uk are on one side with all remaining terms
on the other side. Note that the term hTk`1BukB

Thk`1

contains uk in the middle. Applying trace operation to
both sides and leveraging the cyclic property of trace
operation: tr

`

pR ` γBTPB ` λBThk`1h
T
k`1Bquk

˘

“

trp´γBTPAxk ´ λφk`1q. The summation term R `

γBTPB ` λBThk`1h
T
k`1B ą 0 since R ą 0, P ą 0,

and BThk`1h
T
k`1B ľ 0, and thus is invertible. So,

u‹
k “ ´ pR ` γBTPB ` λBThk`1h

T
k`1Bq´1pγBTPAxk

` λφk`1q

“ ´γpR ` γBTPB ` λBThk`1h
T
k`1Bq´1BTPA

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

Kc

xk

´λpR ` γBTPB ` λBThk`1h
T
k`1Bq´1φk`1

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

uc

.

This completes the proof.

Remark 3. For the case of ψpµk`1q ă 0, the extra term
uc acts as a compensation controller to compensate for the
unknown disturbance and violation of constraints. l

Based on Theorem 2, PI with chance constraints is pro-
posed as Algorithm 2, using policy evaluation based on
(5) and policy improvement based on (18). Algorithm (18)
contains two steps. First, the offline PI is implemented to
obtain the converged P and K. Then, for each time step,
assume control policies uk with control gain K. If the
constraint (23) is violated, compute the controller gain Kc
and the compensation controller uc, and apply uk “ Kc `uc
to system (1) to compensate for constraint violation.

Algorithm 2 Policy Iteration with Chance Constraints
1: Select an admissible initial control gain K0, convergence

threshold η, threshold ξ, penalty parameter λ, and time
steps T . For j “ 0, 1, . . . , perform until convergence:

2: repeat
3: Solve for P j such that

P j “ γpA`BKjqTP jpA`BKjq ` pKjqTRKj `Q.

4: Update the policy by

Kj`1 “ ´γpR ` γBTP jBq´1BTP jA.

5: Set j “ j ` 1.
6: until j ě 1 and ∥P j ´ P j´1∥ ď η.
7: for k “ 0 to T do
8: Set uk “ Kj`1xk.
9: if ψpµk`1q ă 0 then

10: Kc “ ´γpR`γBTPB`λBThk`1h
T
k`1Bq´1ˆ

BTPA
11: set uk “ Kc ` uc with uc given by (22).
12: end if
13: Apply uk to system (1) and store the next state xk`1.
14: end for

C. Stability Analysis

This section will focus on analyzing the stability of gener-
ated control policies by chance constrained PI Algorithm 2.
We will demonstrate the boundedness of the control policies
(19) and then prove the mean square boundedness for the
closed-loop system (1) under these policies.

Lemma 4. The optimal control policies (19) are bounded,
i.e., ∥uk∥8 ď Umax, @k P N.

Proof. When φpµk`1q ě 0, the control gain K given by (20)
is the same to that by Algorithm 1 and thus is bounded. When
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φpµk`1q ă 0, consider the terms R and λBThk`1h
T
k`1B in

(21) together as one single term so that Kc has the same
structure to K given by (20) and thus is bounded. uc is
bounded since ϕk`1 contains a summation of finite bounded
terms. So, uk is bounded in both cases.

With Lemma 4, the stability of closed-loop systems under
the control policies (19) in the mean square sense is verified.

Theorem 3. Assume the matrix A is Schur stable. System (1)
with chance constraints (2) under the control policies (19)
is mean square bounded.

Proof. The proof follows a similar reasoning to that in [23].
For system (1), we have ErxTk`1Pxk`1s “ ErpAxk `

Buk ` wkqTP pAxk ` Buk ` wkqs “ ErxTkA
TPAxk `

2xTkA
TPBuk`2xTkA

TPwk`uTkB
TPBuk`2uTkB

TPwk`

wT
k Pwks “ xTkA

TPAxk ` 2xTkA
TPBuk ` uTkB

TPBuk `

trpPΣwq. Considering the boundedness of uk and using
Hölder’s inequality, i.e., ∥xTy∥1 ď ∥x∥p∥y∥q with 1

p `
1
q “ 1, the terms on the RHS of the above equation
are bounded by ∥xTkATPBuk∥1 ď ∥ATPBuk∥1∥xk∥8 ď

∥ATPB∥1∥uk∥8∥xk∥8 ď ∥ATPB∥1Umax∥xk∥8 and
∥uTkBTPBuk∥1 ď ∥BTPB∥1U2

max. Then it follows that
ErxTk`1Pxk`1s ď xTkA

TPAxk ` 2c1∥xk∥8 ` c2 with c1 “

∥ATPB∥1Umax, c2 “ ∥BTPB∥1U2
max ` trpPΣwq. Given

ATPA´ P ď ´In and Schur stable matrix A,

ErxTk`1Pxk`1s ď xTk Pxk ´ ∥xk∥22 ` 2c1∥xk∥8 ` c2.
(24)

Define a compact set D “ tx P Rn : ∥xk∥8 ď βu with
β “ 1

θ pc1 `
a

c21 ` c2θq and θ P pmaxt0, 1 ´ λmaxpP qu, 1q.
Note that the matrix A being Schur stable guarantees that
such θ exists. Then it follows that

2c1∥xk∥8 ` c2 ď θ∥xk∥28 ď θ∥xk∥22, @xk R D. (25)

Substitute (25) into (24) to get ErxTk`1Pxk`1s ď xTk Pxk ´

p1 ´ θq∥xk∥22, @xk R D. Combine the above equation with
xTk Pxk ď λmaxpP q∥xk∥22, then we get ErxTk`1Pxk`1s ď

p1 ´ 1´θ
λmax

qxTk Pxk, @xk R D. This leads to supkPN V pxkq ă

8 according to Lemma 8 in [23]. Then it follows
from λminpP q∥xk∥22 ď xTk Pxk and the value func-
tion (8) that supkPN Er∥xk∥22s ď 1

λminpP q
ErxTk Pxks “

1
λminpP q

´

V pxkq ´
γ

1´γ trpPΣwq

¯

ă 8.

IV. SIMULATION RESULTS

Consider a quadrotor described by [24], @k,

A “

»

—

—

—

—

—

–

0.99 0 0 0.02 0 0
0 0.99 0 0 0.02 0
0 0 0.99 0 0 0.02
0 0 ´0.02 0.99 0 0
0 0 0 0 0.99 0
0 0 0 0 0 0.99

fi

ffi

ffi

ffi

ffi

ffi

fl

,

B “

„

0 0 0.06 0 0.02 0
0 0 0 0 0 0.02

ȷT

,

where the states are xk “ rx, 9x, y, 9y, ϕ, 9ϕsT with px, yq

the two-dimensional quadrotor positions, ϕ the counter-
clockwise angle to the vertical, u1 is the vertical thrust, and

u2 is the torque. We slightly modify matrix A to ensure
Schur stability, as per the assumption in this work compared
to that in [24]. The safety constraint enforces x3 ě 0.05 (y
position), with hk “ r0, 0, 1, 0, 0, 0sT and gk “ 0.05.
Disturbance covariance is generated as random numbers from
a normal distribution in the range of [0,1], scaled by 0.001.
Weight matrices are set as R “ 1 and Q “ 10I2. The system
is simulated for 40 seconds with a sampling time of 0.1
seconds, resulting in a total of 400 time steps.

As a benchmark, we first employ model-based PI without
chance constraints using Algorithm 1 in 500 independent
implementations. Figure 1 displays state trajectories, with the
blue line representing the mean, the shaded area indicating a
75% confidence interval, and the red dotted line representing
the safety constraint x3 “ 0.05. Algorithm 1 effectively
stabilizes the system with states’ mean values close to zero.
However, due to stochastic disturbances, the 75% confidence
interval for x3 is wide, indicating multiple violations of the
safety constraint x3 ě 0.05. This implies that not considering
chance constraints (2) increases the likelihood of violating
safety constraints for state x3.

Fig. 1. State trajectories by the PI Algorithm 1 without chance constraints.
The shaded area represents a 75% confidence interval for 500 independent
experiments. The red dotted line denotes the safety constraint of x3 “ 0.05.

Next, we explore different risk tolerance levels, namely
ξ “ 0.2 and ξ “ 0.45, within the same simulation framework
using Algorithm 2, conducting 500 independent experiments.
Figure 2 illustrates state trajectories, with the blue line
denoting the mean, shaded areas indicating 75% confidence
intervals, and the red dotted line representing the safety
constraint x3 “ 0.05. Among the 500 experiments, a certain
number of state trajectories violate safety constraints in both
cases, as expected due to probabilistic constraints. However,
the mean state value with a risk tolerance threshold of
ξ “ 0.2 deviates further from safety constraints compared
to ξ “ 0.45. This suggests that smaller risk thresholds result
in fewer trajectories breaching safety constraints.

Our proposed algorithm also accommodates time-varying
chance constraints. Consider time-varying chance constraints
defined by hk “ r0, 0, 1, 0, 0, 0sT and gk “ 0.05 ` vk,
where vk is a randomly generated number from a uni-
form distribution between 0 and 0.05. Figure 3 displays
x3 trajectories, indicating that the control policies generated
by Algorithm 2 effectively ensure a high probability of
fullfillment with the time-varying safety constraints.
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(a) Risk tolerance threshold ξ “ 0.2

(b) Risk tolerance threshold ξ “ 0.45

Fig. 2. State trajectories by Algorithm 2 with chance constraints. Shaded
areas indicate 75% confidence intervals. The red dotted line denotes x3 “

0.05. Smaller thresholds lead to fewer trajectories violating constraints.

Fig. 3. Trajectories of x3 by PI Algorithm 2 with chance constraints.
The shaded area represents a 75% confidence interval for 500 independent
experiments. The red dotted line denotes the time-varying safety constraints.

V. CONCLUSION AND FUTURE WORK

This work addresses optimal control problems in stochas-
tic discrete-time systems with additive disturbances and
chance constraints. We introduce a model-based PI algorithm
with chance constraints and analyze the stability of control
policies in the mean square boundedness sense. We validate
the algorithm’s performance through numerical simulations
for a steering system in autonomous vehicles. Future work
will explore the relationship between risk tolerance (ξ) and
penalty parameter (λ), handle joint chance constraints, and
extend the algorithm to data-based learning frameworks.
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