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Abstract— A conventional strategic classification problem
takes on a Stackelberg form: a decision maker commits to
a decision rule (e.g., in the form of a binary classifier) and
agents best respond to the published decision rule by deciding
on an effort level so as to maximize their chance of getting
a favorable decision less the cost of the effort. This problem
becomes significantly more complex when agents are allowed
two types of effort: honest (improvement actions) and dishonest
(or cheating/gaming). While the former improves an agent’s
underlying unobservable states (e.g., certain types of qualifica-
tion), the latter merely improves an agent’s outward observable
feature, serving as input to the classifier. Under the natural
assumption that honest effort is more costly than cheating,
prior work has shown that the decision maker has limited
ability to mitigate cheating by simply adjusting the decision
rule. In this paper, we consider a collaboration mechanism,
which the decision maker establishes at a cost and offers to the
agents together with the decision rule. In this case, an agent
best responds by choosing not only its effort but also whether
to participate in the mechanism and if so, with which other
agents it wishes to form a connection or collaboration relation.
While agents outside the mechanism remain independent of
each other, those inside the mechanism are connected to a group
of collaborators and enjoy positive externality in the form of a
boost in their observable features and consequently enhanced
probability of a favorable decision outcome. We show how the
collaboration mechanism can induce agents to participate and
take improvement actions over gaming and how it can benefit
both parties. We also discuss the social value of the system,
including social welfare, social qualification status, and the
mechanism surplus.

I. INTRODUCTION

Conventional strategic classification studies the interac-
tion between a decision maker (algorithm designer) and
individuals/agents subject to the decision outcome, typically
formulated as a Stackelberg game. While the former benefits
from the accuracy of its decisions, the latter may have an
incentive to game the algorithm into making favorable but
erroneous decisions.

Prior works on addressing such misuses typically com-
mences with designing a classifier that achieve robust accu-
racy subject to such strategic maneuvering [1]–[7]. However,
as noted by [2], a robust classifier often adopts a more
conservative boundary, potentially amplifying the social bur-
den on honest agents. This insight underscores the second
objective of strategic classification, which seeks classifiers
that are both robust in accuracy and conducive to honest
behavior among agents. For instance, [8] proposed a decision
model incorporating a weighted strategic recourse term in
the decision maker’s optimization objective. An alternative
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practice is to delegate the responsibility of promoting honesty
to external mechanisms [9]–[12]. The motivation of this
approach is demonstrated by [13]–[15] that no classifier
alone can incentivize improvement actions when gaming is
a more cost-efficient strategy. To the best of our knowledge,
existing literature primarily focuses on transferable, e.g., tax-
or subsidy-based, mechanisms. For instance, [12] examined
the social impact of subsidizing interventions by the deci-
sion maker for disadvantaged groups, and [14] studied the
effects of a subsidy-based mechanism introduced by a third
party. Both studies revealed occasional adverse effects of
transferable mechanisms on inequality gaps. While in the
same line of research, our study introduces a non-transferable
collaboration-based mechanism.

Our proposed mechanism can be viewed as a plat-
form/environment in which agents can form collaborations
(e.g., working on a team project, co-authoring a paper),
which can lead to positive changes in their underlying
attributes. We will show in what sense this mechanism leads
to more robust strategic classification.

Specifically, the decision maker is the first mover, commit-
ting to and publishing a classifier as well as the collaboration
mechanism/platform; this is followed by the simultaneous
moves of N agents best responding to the classifier and
the mechanism. The classifier takes as input an agent’s
observable feature and outputs a binary decision that impacts
the agent’s utility. The collaboration mechanism is designed
and established by the decision maker at a cost.

Participation in the mechanism is voluntary and free of
charge. By opting in, agents form bi-directional connections
with other opt-in agents (i.e., agents decide with whom they
will collaborate/team up). The mechanism sets an upper
bound on how many total connections an agent can have as
well as their strength, which is a positive constant uniform
across all formed connections (this could be indicative of
the nature of the team projects that determines how much
collaboration is required/allowed). The agents thus collec-
tively decide the formed network. This then gives rise to a
positive network effect, where an agent’s observable feature
is a function of not only its own attribute but those of its
collaborators.

To capture the agent’s ability to both game the decision
rule and make real change, we assume each agent has an en-
dowed pre-response attribute (endowed private information),
that is causal [7] to a set of observable features as well as the
agent’s true label, also referred to as its qualification status.
An agent can exert effort to improve its attribute, referred
to as improvement (or honest effort), thereby improving its
features and its underlying qualification, or employ non-
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causal schemes to improve only its features without changing
its attribute [7], referred to as gaming (or cheating, or
dishonest effort), or both. Both actions are costly, though
gaming is generally assumed to be (much) cheaper than
improvement [2].

This paper sets out to demonstrate that meaningful team
work can offset the cost difference between gaming and
improvement. As a motivating example, we note that the out-
come of team projects (e.g., solar car racing, First Robotics
competition, or research papers with multiple co-authors) is
frequently used as features in real-world classification tasks
such as employment, admissions, and scholarship decisions.
Arguably, all participants of such a team project benefit
from the project’s outcome, which relies on team members’
attributes and genuine effort. Accordingly, we will assume
that agents, once in the mechanism, reveal their endowment
and post-response attributes to other agents, and as a result
their final observable features become independent of their
gaming actions.

Our main contributions are:
1) We propose a collaboration mechanism formulated as

a Stackelberg game, where the simultaneous second
movers best respond by forming a network (Sec. II).
This formulation substantially enriches the literature
on both strategic classification and network games.

2) We establish the existence of a graph-formation equi-
librium in the second stage, under the assumption of
mutual agreement and proper tie-breaking. We identify
a subset of equilibrium graphs as regular graphs and
proposed a systematic procedure of constructing them,
shedding lights on the presence of “local circles” in
real collaboration networks (Sec. III).

3) We show that, at equilibrium, each agent’s post-
response attribute clears an “augmented virtual thresh-
old”. This can be viewed as a successful incentivization
of improvement actions. We also provide an argument
for the equilibrium graph topology using score mono-
tonicity of generalized Katz centrality.

II. PROBLEM FORMULATION

A. Conventional Strategic Interactions (CO)

We start by introducing the conventional strategic (CO)
setting where no incentive mechanisms are implemented
[14]. Consider a Stackelberg game between a decision maker
as the first mover and a set of N agents as the second movers.
Each agent, indexed by i ∈ [N] with [N] := {1, · · · ,N}, is
endowed with a pre-response attribute x(i) ∈ RK

≥0, where
x(i) ∼ px are i.i.d. for all i ∈ [N]; i can take action a(i) =
[a(i)+ ,a(i)− ] ∈RM

≥0 on M := M++M− dimensions, where a(i)+ ∈
RM+ (resp. a(i)− ∈ RM−) denotes the improvement (resp.
gaming) action.

We define a projection matrix P = [P+,P−] ∈ RK×M ,
where P+ ∈RK×M+ ,P− ∈RK×M− . Then the i-th agent’s post-
response attribute is

x̃(i) := x(i)+P+a(i)+ , (1)

which represents the true state of the agent after the im-
provement effort. Let the agent’s pre-response label or
qualification y(i) ∈ {0,1} (resp. post-response label or
qualification ỹ(i) ∈ {0,1}) be determined by its pre-response
attribute x(i) (resp. post-response attribute x̃(i)) through the
following relationship similar to that used in [12], [14]:

E
[
y(i)|x(i)

]
= l(θ T x(i)), E

[
ỹ(i)|x̃(i)

]
= l(θ T x̃(i)), (2)

where we can interpret l : R 7→ [0,1] as a likelihood function
which is weakly increasing (l is a step-function in [12]). We
assume E

[
ỹ(i)|x̃(i)

]
≥E

[
y(i)|x(i)

]
almost surely, i.e., improve-

ment actions do not worsen one’s qualification. Both l and
θ are assumed to be public knowledge.

The i-th agent’s post-response observable feature is
given by

z(i) := x(i)+P+a(i)+ +P−a(i)− . (3)

The decision maker chooses a linear classifier (decision
rule) f : RK 7→ {0,1}, taking as input an agent’s post-
response observable feature and outputs a binary decision
outcome, i.e.,

f (z(i)) := 1{wT z(i)≥τ}, (4)

where the decision maker controls both w ∈ RK
≥0, the coef-

ficient vector, and τ ≥ 0, the threshold. The utility function
of agent i is given by:

u(i)(a(i);x(i)) := f (z(i))−h(a(i)), (5)

whereby the agent benefits from the decision outcome but
pays an action cost h(a(i)) := (c(i))T a(i), where c(i) is the
cost profile of agent i.

Assumption 1: c(i) = γic, ∀i ∈ [N], where γi > 0.
Assumption 1 says that the relative cost between different

actions is the same for all agents. Let γi ∼ pγ i.i.d. for all
i ∈ [N], and denote the joint distribution as (γi,x(i)) ∼ pγ,x
whose marginal distributions are denoted as pγ and px.

Assume the decision maker knows the agents’ action
space, utility function Eq. (5), and the distribution pγ,x, but
does not know the realizations of γi and x(i). The decision
maker anticipates the agents’ best response to the classifier
at a population level and uses backward induction to design
the optimal classifier (w∗, τ∗) to maximize its objective:

UCO( f ) :=
1
N

N

∑
i=1

E(γi,x(i))
[
1{ f (z(i)∗)=ỹ(i)}

]
= E(γi,x(i))

[
1{ f (z(i)∗)=ỹ(i)}

]
,

(6)

where z(i)∗ = x(i) + Pa(i)∗co (x(i)) is the i-th agent’s post-
response observable feature (3) at the second-stage equilib-
rium, and a(i)∗co (x(i)) ∈ RM the agent’s equilibrium action in
the CO system when endowed with x(i). The second equality
follows from the i.i.d. assumption.

[14] shows that, in realistic situations where gaming is
more cost-effective than improvement actions, there is no
decision rule that can incentivize improvement and the deci-
sion maker’s optimal strategy is to choose w = θ . Formally,
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under Assumption 1, let κs denote the substitutability of
action dimension s ∈ [M] [10], [13],

κs := min
a∈RM ,a≥0

cT a
cs

, s.t. Pa−ps ≥ 0, (7)

where ps is the s-th column of P. Note that by assumption 1,
κs is the same for all agents. The intuition of substitutability
is provided in [10], [14]. Specifically, if κs = 1, then there
exists a w that can incentivize action on dimension s, and
such w can be found in polynomial time. Conversely, if
κs < 1,∀s≤M+, then there always exist linear combinations
of gaming actions that weakly dominate every improvement
action for any choice of w.

Assumption 2: (Theorem 3.3 [14]) Assume κi < 1,∀i ≤
M+. Then there is no f that can incentivize improvement
actions, and the decision maker’s optimal CO strategy f ∗C
satisfies w∗ = θ .

B. Augmented Strategic Interactions (AU)

Compared to the conventional case, the augmented strate-
gic setting includes a collaboration mechanism in the first
stage of the Stackelberg game. As the classifier itself cannot
sufficiently incentivize improvement, we are interested in the
extent to which the collaboration mechanism together with
the classifier can help incentivize improvement actions.

Methodologically, we will fix the decision rule at the
CO optimal solution, i.e., w ≡ θ , and fix τ as well, so
that we can better illustrate the mechanism’s impact on
the system. The decision maker then specifies a mechanism
given by a connection strength α > 0, which is applied
to all established connections, and a maximum number of
collaborators allowed D ∈ N for each participant.

After the classifier f and the mechanism (α , D) are
announced, the N agents best-respond in a simultaneous-
move game by determining (1) whether to participate in the
mechanism, (2) if yes, which other agents to form connection
with, and (3) what effort to exert. In this second-stage game,
the realizations of x(i) and γi for i∈ [N] are known to all, i.e.,
in the second stage the N agents play a simultaneous-move
non-cooperative game with complete information.

As indicated above, participation in the mechanism is free
and voluntary. However, once agents choose to participate,
they are restricted to improvement actions only. We also
assume that changes (formation or deletion) to a pairwise
connection follows mutual agreement, i.e., it has to be
favored by both agents involved.

The result of the second-stage game is represented as a
weighted graph (mutual agreement implies symmetry, thus
directed and undirected graphs are analytically equivalent),
where G = GT ∈RL×L

≥0 denotes the corresponding adjacency
matrix (G is also frequently referred to as a graph with a
slight abuse of terminology), L is the number of mechanism
participants, and G’s entries are gi j = g ji = α > 0,∀i, j ∈ [L]
with diagonal entries gii := 0,∀i ∈ [L]. We denote by Ni =
{ j| j 6= i,gi j > 0} the set of agent indices of the i-th agent’s
neighbors/collaborators. We call such a graph a (α,D) graph.

We note that the parameters (α,D) is chosen by the
decision maker, but the actual topology of G is decided
by the participating agents. One topology of interest is one
where no additional edges can be established. We call this the
maximum collaboration property formally defined as follows.

Definition 1: The (α,D) graph G achieves maximum
collaboration if gi j = 0⇒ min{Di,D j} = D, where Di is
the degree of agent i on graph G; i.e., for any two agents
i, j that are not presently connected, at least one agent has
already reached the maximum number of connections D.

Maximum collaboration characterizes a graph’s connectiv-
ity. When N ≥ D+ 1 and N ·D is even, a graph satisfying
maximum collaboration is a D-regular graph (a graph where
all nodes have degree D). This kind of graph plays a crucial
role in determining the Nash equilibrium among mechanism
participants, as we will show in Section III.

Assumption 3: (Bounded Externality) αD < 1.
This assumption implies that I+G is invertible, a common

assumption in the network games literature [13], [16].
The mechanism affects the observable feature of each

participant. Given the graph G over the set of participants
P , agent i’s in-mechanism observable feature z(i) is given
by

z(i) := x̃(i)+ ∑
j∈Ni

gi jx̃( j) , ∀i ∈P. (8)

Eqn (8) indicates that each participant’s observable feature
benefits from its own post-response attribute as well as
its neighbors’ post-response attributes (positive externality).
We note that one’s post-response attribute is unaffected by
one’s neighbors. Moreover, gaming actions cannot improve
any participant’s in-mechanism feature. Previous works on
graph neural networks [17], [18] and interdependent strategic
classification [13] use similar feature aggregation methods as
Eq. (8).

When participating in the mechanism, the utility function
of agent i is given by:

ũ(i)(a(i),a(−i);x(i),x(−i)) := f (z(i))−h(a(i)), (9)

where a(−i),x(−i) denotes other participants’ actions and
endowments.

In the AU system, the decision maker’s utility is

UAU ( f ) :=
1
N

N

∑
i=1

E(γi,x(i))
[
1{ f (z(i)∗)=ỹ(i)}

]
− ςH(G), (10)

where H(G) is the cost of implementing the mechanism and
z(i)∗ is the i-th agent’s in-mechanism observable feature (8) at
the second-stage equilibrium a(i)∗ (precisely defined below).
Notice that the latter is also a function of x(i) and γi. The
scalar ς > 0 describes the relative importance between the
classifier accuracy and the mechanism cost. We assume

H(G) := ‖G‖2
F = α

2
∑
i 6= j

1{gi j 6=0}. (11)

As an example, if G is D-regular, then H(G) = NDα2.
For the solution concept under the mechanism, we con-

strain ourselves to the Nash equilibrium satisfying the mutual
agreement property as defined below.
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Definition 2: The tuple (G,{a(i)∗}i∈V ) is a Nash equilib-
rium satisfying mutual agreement (NEMA) over the agent
set V ⊆ [N] if: (i) G is an (α,D) graph with vertex set V ; (ii)
{a(i)∗}i∈V is a Nash equilibrium given the network G; (iii)
adding an edge i↔ j in G is either not allowed, or does not
yield a Nash equilibrium that is strictly preferred by both i
and j; (iv) deletion of an edge i↔ j in G yields no Nash
equilibrium strictly preferred by either i or j.

In other words, (G,{a(i)∗}i∈V ) constitutes a Nash equi-
librium satisfying mutual agreement if every agent has no
incentive to unilaterally deviate from its action a(i)∗ and every
pair of agents has no incentive to unilaterally change their
mutual connection or lack thereof.

Definition 3: The tuple (P,G,{a(i)∗}i∈P ,{a(i)∗co }i 6∈P) is
a second-stage equilibrium if the following holds: (i)
(G,{a(i)∗}i∈P) is an NEMA over P ⊆ [N]; (ii) {a(i)∗co }i 6∈P
is the CO optimal actions for each agent not in P; (iii)
agents in P satisfy voluntary participation, i.e., for each
i ∈P , ũ(i)∗ ≥ u(i)∗;1 (iv) agents not in P also satisfy strict
voluntary participation, i.e., for each i 6∈P , participating in
the mechanism yields no NEMA in which ũ(i)∗ ≥ u(i)∗.2

This definition reveals a fundamental difficulty of equi-
librium characterization in this problem. First of all, each
second-stage equilibrium may have a different set of partici-
pants P . Secondly, there could be agents that are better off in
some but not all second-stage equilibrium. Both complicate
the characterization of the incentives of agents to opt in/out.
We show in the next section that this can be alleviated under
some appropriate tie-breaking rules.

III. SECOND-STAGE EQUILIBRIUM ANALYSIS

In this section, we study the agents’ optimal strategies or
best response in the second stage given the decision rule
and the mechanism. They compare the equilibrium output
between participation and unilaterally opting out, and choose
whichever yields higher equilibrium utilities.

A. Equilibrium Actions with Fixed Graph

By Assumption 2 and Lemma 3.2 in [14], every agent
only chooses non-zero action in the direction kA (resp. kC)
in the AU (resp. CO) setting. Thus, we consider the following
simplification of notations:

xi := θ
T x(i), ai := [PT

θ ]kA ·a
(i)
kA
,

c := ckA , ci :=
γi

[PT θ ]kA

c,
(12)

where xi∼ px, which is derived from px; also denote (γi,xi)∼
pγ,x. For clarity of presentation, we refer to xi and ai as well
as their vectorized versions directly as endowments and ac-
tions, respectively, for the rest of the paper. Also, without loss
of generality, we index the L participants with 1,2, . . . ,L such
that x1 ≥ x2 ≥ ·· · ≥ xL and let x := (xi)i∈[L], a := (ai)i∈[L] be

1Without loss of ambiguity, we simplify the AU and CO equilibrium
utility for the i-th agent respectively as ũ(i)∗ and u(i)∗

2In case of a tie, we assume the agent would always choose to opt out.
That is, participation only occurs when the agent can strictly benefit from
the mechanism.

the global vectors and x−i := (x j) j∈[L]\{i}, a−i := (a j) j∈[L]\{i}
be the vectors of all other participants. Then, θ T x̃(i) = xi+ai
and an in-mechanism participant i has a utility of

ũi(ai,a−i;x) = 1{θ T x̃(i)+α ∑
l∈Ni

θ T x̃( j)≥τ}− ci ·ai. (13)

Assumption 4: In the case of multiple best-response ac-
tions, an in-mechanism participant always selects the action
with the highest post-response attribute, i.e., xi +ai.

The above assumption is a natural tie-breaking rule as it
favors the highest real improvement with the same utility.

Lemma 3.1: Suppose Assumption 1-4 hold. Given any
(α,D) graph G among participants, there exists a unique
Nash equilibrium (NE) profile a∗ such that3

a∗i = max

{
0, τ− xi−α ∑

j∈Ni

(x j +a∗j)

}
, ∀i ∈ [L]. (14)

Denoting by τ̃ := τ/(1+αD). We partition the agents into
three zones according to their pre-response attributes

X1 := {x(i) | xi ≥ τ},
X2 := {x(i) | xi ∈ [τ̃, τ)},
X3 := {x(i) | xi ∈ [0, τ̃)} .

(15)

These partitions divide the non-negative real line into 3
zones, ordered in decreasing endowment from X1 to X3.
Agents in X1 have already met the decision rule’s require-
ment τ and thus, they would always take zero actions,
irrespective of their participation in the mechanism. In the
case of participation, they are indifferent to establishing
any connection with other agents as they have already
achieved the maximum utility 1. Agents in X2 possess lower
endowments than the required level τ . However, they can
form a D-regular graph within their zone (if |X2| ·D is odd,
they can ask an agent in X1 to form a D-regular graph) so
that everyone’s in-mechanism equilibrium action is zero, in
which case they can also achieve their maximum utility 1.
On the contrary, agents in X3 may not be able to reach zero
equilibrium actions just by collaborating within themselves.

B. Tie-breaking Rule and Second-Stage Equilibrium

Assumption 5 (Tie-breaking Rule): (i) agents in X1 par-
ticipate only when suggested by the decision maker; (ii)
agents in X2 can only collaborate with other agents in X2
or upgraded agents from X3 (see (iv)); (iii) if the number
of the sum of X2 agents and upgraded agents is odd, the
decision maker randomly selects an X1 agent to join the
mechanism and collaborate with others; and (iv) any agent
in X3 can become an upgraded agent by choosing an action
no less than τ̃− xi i.e., xi +ai ≥ τ̃ .

Intuitively, these are valid tie-breaking suggestions for the
following reasons. (i) and (iii) are indeed tie-breaking rules
since agents in X1 are indifferent to making connections as
discussed above. (ii) works since the upgraded agents can be
viewed as newly arrived X2 agents with minimum endow-
ment τ̃ and, as we discussed above, the participants from X2

3Please find all proofs in the online appendix [19].
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can always get the positive decision outcome when having D
collaborators among themselves, i.e., they are always weakly
better off in the mechanism following the suggestions. Part
(iv) simply defines who is considered an upgraded agent and
does not influence tie-breaking; participation by agents in X3
is still voluntary.

This tie-breaking rule combined with our definition en-
sures that agents in X2 can always get the highest possible
utility by forming D-regular graphs. It also allows some
agents to be upgraded by collaborating with sufficiently
competitive peers if they agree to exert a high enough
effort. This is akin to rewarding hard-working agents and,
intuitively, reduces free-riding of X3 agents, which makes
the mechanism design problem tractable.

Define the following quantities

h∗A(x
(i)) :=

c(i)kA

(PT θ)kA

(τ̃− xi) = ci(τ̃− xi), (16)

h∗C(x
(i)) :=

c(i)kC

(PT θ)kC

(τ− xi), (17)

and denote the following subset of X3 by

X p
3 := {i ∈X3 | h∗A(x

(i))< min{1, h∗C(x
(i))}}.4 (18)

Eq. (16) and (17) define, for an agent i∈X3, the equilibrium
action cost of participation and opting out, respectively. Eq.
(18) identifies the set of in-mechanism participants from X3.
We summarize this point in the theorem below.

Theorem 3.2: Under Assumptions 1-5, P := X2 ∪X p
3

defines the set of in-mechanism participants, which is invari-
ant to specific second-stage equilibrium outcomes.5 More-
over, the set of second-stage equilibrium, denoted by SNE ,
is non-empty, and

1) (Decision Outcome) for each equilibrium in SNE , all
agents in P receive positive decision outcomes;

2) (Upgraded Agents) for each equilibrium in SNE , every
agent in X p

3 becomes an upgraded agent;
3) (Equilibrium Graph) each D-regular graph among

agents in X2 ∪X p
3 corresponds to some equilibrium

in SNE , i.e., the set of equilibrium graphs include all
D-regular graphs;

4) (Equilibrium Action) for each equilibrium in 3), a∗i = 0
for all i ∈X2 and a∗i = τ̃− xi for all i ∈X p

3 .
Notice that D-regular graphs yield the highest utility for

every agent. For technical reasons, we impose another tie-
breaking rule where the decision maker favors D-regular
equilibria over others.

Assumption 6: The decision maker favors an equilibrium
with D-regular graphs over others, and agents are willing to
break-tie in favor of the decision maker.

4With a slight abuse of notation, we will not distinguish between i ∈X3
and x(i) ∈X3 in the rest of the paper. The meaning of both should be clear
from the context.

5For simplicity, we assume an arbitrary X1 agent is automatically inserted
into X2 in case of odd number of participants. Thus, the cardinality of the
set of participants P is always even.

An interesting observation from the above theorem is
that there is an observable pattern of symmetry in agents’
post-response qualification status, i.e., xi + a∗i = τ̃ for X3
agents, where τ̃ can be thought of as an “augmented virtual
threshold” created by the mechanism. It also indicates that in
the second-stage equilibrium, every agent provides the same
externality to all its collaborators. Thus, they are indifferent
to the identity of collaborators and only care about their
zones. This symmetry and equivalence result benefits both
the agents and the mechanism designer since finding their
respective optimal strategies becomes much simpler.

C. Two Examples

Example 1: Consider the following two situations.
(1) (Same Cost) c(i) = c, ∀i ∈ [N];
(2) (Same Endowment) xi = x̂≤ τ

2 < τ̃ , ∀i ∈ [N].
Example 1-(1) models the situation where the action costs

can be standardized e.g., in time and monetary terms such
as the number of credits taken in a specific field. But each
agent is endowed with different skills or experiences such
that some agents get positive decision outcomes easier than
others. On the other hand, Example 1-(2) models the situation
where agents do not possess advantage over each other (e.g.,
no prior experience), but their cost of action can differ.

Definition 4: A (α,D) graph is a (D+1)-ordered clique
graph w.r.t. the partial order � over its vertex set if the first
(left-most) D+ 1 vertices form a complete sub-graph, the
next first D+ 1 vertices form another complete sub-graph,
and so on.

Note that any (D + 1)-ordered clique graph obviously
satisfies maximum collaboration. We can show that the
equilibrium graphs of the two scenarios in Example 1 can
be found by simply creating (D+ 1)-ordered clique graphs
w.r.t. some appropriate partial order. This provides a stable
graph formation process that helps the mechanism designer
from having to enumerate through the exponentially growing
number of collaboration options.

Proposition 3.3: Let �x and �γ be partial orders such that
i�x j if xi≥ x j and i�γ j if γi≤ γ2. Then, under Assumptions
1-6, a (D+1)-ordered clique graph over X2∪X p

3 w.r.t. �x
constitutes a second-stage equilibrium of Example 1-(1) and
that w.r.t. �γ a second-stage equilibrium of Example 1-(2).

For the first D+ 1 participants, forming a D+ 1 clique
among themselves guarantees the highest participation utility
for each of them. Then, by induction, after removing the first
D+1 participants (since they have all reached the collabo-
ration limit), the next highest endowed D+ 1 participants
may form another D + 1 clique among themselves. This
describes a process of forming the (D+ 1)-ordered clique
graph, the stability of which is guaranteed because every
participant attains its maximum utility, given the fact that all
its precedents have already been grouped. The result of this
process is that the graph consists of multiple “local circles”
which is reminiscent of real-world cases of research teams
and collaborative course projects.

When costs are equal, agents with higher endowments
are preferred; when endowments are the same, agents with
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lower costs are preferred. Intuitively, in both cases, the top
indexed agents can generate weakly larger positive external-
ities to their collaborators, so everyone will weakly prefer
to collaborate with top indexed agents. This is also true for
the top indexed agents themselves and thus the circle effect.
We observe that in the real world, it is often the case that
scholars of similar traits (by whatever definition) collaborate
more frequently with other similar scholars (by the same
definition).

D. Maximum Collaboration from a Centrality Perspective

If all agents’ endowments satisfy xi ≤ (1−αD)τ , then the
best-response relationship in Eq. (14) can be written in a
compact form as

x+a = τ(I +G)−11. (19)

For any given graph G, we can then obtain the following
intermediate result that may be of independent interest.

Theorem 3.4: For a symmetric matrix G, such that gi j =
g ji ∈ {0,α} for all i 6= j and gii = 0 for all i, define a score
vector

r := (I +G)−11. (20)

Furthermore, define the companion matrix G̃ :=G+α(eieT
j +

e jeT
i ), where ek denotes the kth standard Euclidean basis,

which adds a pair of edges (i, j),( j, i) to G. Define a new
score vector

s := (I + G̃)−11. (21)

Define D := ‖G̃‖∞/α . Notice that D is fixed regardless of the
value of α . If α ∈

(
0, 1

1+D

)
, then ri > si > 0 and r j > s j > 0.

Comparing Eqn (19) with (20), we note that the scores,
i.e., entries of the score vectors r,s, measure agents’ action
costs, and thus agent i’s utility decreases in its corresponding
score. The game-theoretic interpretation of Thm. 3.4 is that
for two disconnected participants in a graph G, if adding
an edge between them yields an (α,D) graph G̃, then
they will both strictly prefer the new graph G̃ since their
equilibrium utilities will both improve by choosing smaller
actions for the same positive decision outcome. However,
this theorem only holds when α is less than 1

D+1 , slightly
stronger than the α < 1

D condition in Assumption 3, although
they are asymptotically similar when D becomes large. We
also note that this result does not require the tie-breaking
rule (Assumption 5).

We can also think of Thm. 3.4 as the score monotonicity of
the generalized Katz centrality measure on negative graphs
with bounded node degrees (less than D) and uniform but
limited edge weights (less than 1

D+1 ). The Katz centrality
measure for the binary matrix G with parameter α > 0 is
defined as s′ :=(I−GT )−11−1. Suppose gi j = g ji = 0, define
G̃ the same as above, and let r′ := (I− G̃T )−11−1. Then if
α ∈

(
0, 1

1+D

)
, the Katz centrality is score monotone, i.e.,

r′i > s′i > 0 and r′j > s′j > 0 [20], meaning that both nodes
will have increased centrality after adding the edge. In Thm.
3.4, we have negative edge weights and show that adding a
pair of edges will decrease the generalized Katz centrality
of both nodes. We note that this result itself is a non-trivial

finding of the generalized Katz centrality and its derivation
is not straightforward compared to the original measure.

IV. ACKNOWLEDGMENTS

This work has been supported by the ARO under contract
W911NF1810208.

REFERENCES

[1] M. Hardt, N. Megiddo, C. Papadimitriou, and M. Wootters, “Strategic
classification,” 01 2016, pp. 111–122.

[2] S. Milli, J. Miller, A. Dragan, and M. Hardt, “The social cost of
strategic classification,” 01 2019, pp. 230–239.

[3] M. Brückner and T. Scheffer, “Stackelberg games for adversarial
prediction problems,” 08 2011, pp. 547–555.

[4] M. Brückner, C. Kanzow, and T. Scheffer, “Static prediction games
for adversarial learning problems,” The Journal of Machine Learning
Research, vol. 13, pp. 2617–2654, 09 2012.

[5] J. Dong, A. Roth, Z. Schutzman, B. Waggoner, and Z. S. Wu,
“Strategic classification from revealed preferences,” in Proceedings
of the 2018 ACM Conference on Economics and Computation, 2018,
pp. 55–70.

[6] M. Braverman and S. Garg, “The role of randomness and noise in
strategic classification,” in 1st Symposium on Foundations of Respon-
sible Computing, 2020.

[7] J. Miller, S. Milli, and M. Hardt, “Strategic classification is causal
modeling in disguise,” in Proceedings of the 37th International Con-
ference on Machine Learning, ser. Proceedings of Machine Learning
Research, H. D. III and A. Singh, Eds., vol. 119. PMLR, 13–18 Jul
2020, pp. 6917–6926.

[8] Y. Chen, J. Wang, and Y. Liu, “Strategic recourse in linear classifica-
tion,” arXiv preprint arXiv:2011.00355, 2020.

[9] N. Haghtalab, N. Immorlica, B. Lucier, and J. Wang, “Maximizing
welfare with incentive-aware evaluation mechanisms,” 07 2020, pp.
160–166.

[10] J. Kleinberg and M. Raghavan, “How do classifiers induce agents
to invest effort strategically?” ACM Transactions on Economics and
Computation, vol. 8, pp. 1–23, 11 2020.

[11] Y. Shavit, B. Edelman, and B. Axelrod, “Causal strategic linear
regression,” 2020.

[12] L. Hu, N. Immorlica, and J. Vaughan, “The disparate effects of
strategic manipulation,” 01 2019, pp. 259–268.

[13] K. Jin, T. Yin, C. A. Kamhoua, and M. Liu, “Network games
with strategic machine learning,” in Decision and Game Theory for
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