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Abstract— Robustly compensating network constraints such
as delays and packet dropouts in networked control systems is
crucial for remotely controlling dynamical systems. This work
proposes a novel prediction consistent method to cope with
delays and packet losses as encountered in UDP-type com-
munication systems. The augmented control system preserves
all properties of the original model predictive control method
under the network constraints. Furthermore, we propose to
use linear tube MPC with the novel method and show that the
system converges robustly to the origin under mild conditions.
We illustrate this with simulation examples of a cart pole and
a continuous stirred tank reactor.

I. INTRODUCTION

The advancement in data driven control requires solutions

for robust networked control systems (NCS) in order to

outsource heavy computation. This enables the usage of

complex, data hungry methods for small embedded sys-

tems, while providing high flexibility for system design and

scalability as well as easy maintenance. However, the use

of communication networks introduces additional challenges

for closed loop control, such as time delays and packet

losses. Extensive research has been conducted to develop

stability analysis and controller design tools to cope with

these flaws (cf. [1]), mostly in the setting of delays smaller

than a sampling step.

For applications with high sample rates, such as robotic

systems, networked communication results in much longer

delays of several sample time steps. Model Predictive Control

(MPC) is suited well for handling these network-related

challenges [2], as its predictive nature can be explicitly used

to compensate for delays and dropouts. One of the first to

suggest using MPC for delay compensation was [3] for a

teleoperation scenario. In [4] the authors introduced predic-
tion consistency, a core property for deterministic predictive

networked control methods under delays and packet losses.

When extending a nominal predictive control method to be

prediction consistent under delays and dropouts, properties

from the nominal closed loop system, such as stability, are

conserved. Several works have proposed prediction consis-

tent methods to apply MPC in NCS, such as [5] and [6].

Some extensions concern using packet-based communication

networks without acknowledgments (also known as User

Datagram Protocol(UDP)-like) [7], event-based methods [8],
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and input to state stability [9], [10]. In [11] the authors

address the difficulty of time synchronization between com-

ponents in a network. More recent works aim to simplify the

compensation schemes such as [12] and focus on realistic

scenarios, e.g. using a WiFi network [13]. So far, little

attention has been given to using robust MPC methods in

the networked setting, although delays limit networked meth-

ods to react immediately to disturbances. However, many

remotely controlled systems have some limited computing

power and access to the most recent state measurements,

which can be exploited efficiently. We address this idea in

the paper at hand.

Our contribution is twofold. Firstly, we propose a novel

method for ensuring prediction consistency when using a pre-

dictive control method over a communication network sub-

ject to bounded time-varying delays and packet dropouts. It

relies on UDP-like communication and does not require time

synchronization, thus making it suitable for general-purpose

communication networks, which were not originally intended

to be used for fast real-time control such as WiFi or 5G. Sec-

ondly, we investigate how tube MPC can be used in this set-

ting to robustify a process subject to bounded additive noise.

The work is structured as follows: at first, we state the

considered dynamics under constraints and our assumptions

on the communication network. Subsequently, we present our

method for ensuring prediction consistency. Then, we derive

our main results on the prediction consistency of our method

and bounds on the tube due to network influences. Two

simulation studies are presented to substantiate the efficacy

of the proposed method. At last, we discuss our results and

conclude our work.

II. PROBLEM STATEMENT

Consider the linear discrete-time system subject to additive

noise w

x[k+1] = Ax[k]+Bu[k]+w[k], x[0] = x0 (1)

where the states, inputs, and disturbances are in the sets

x[k] ∈ X, u[k] ∈ U, w[k] ∈W ∀k ∈ N0. (2)

The sets U ⊂ R
m and W ⊆ R

n are compact and convex

polytopes, while X⊂ R
n is a convex, bounded polyhedron.

We assume sensors and actuators to be collocated. The

control loop is closed with a remote controller over a

non-acknowledged UDP-like packet-based communication

network, which imposes communication constraints in the

form of time-varying delays and packet losses.

Additionally, we assume that the logic unit at the plant side,
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Fig. 1. Considered setup. The local controller forwards measurements to
the remote side and receives actuation signals from the remote controller
over a lossy network.

in the following denoted as a local controller, has enough

computational power to handle our proposed algorithm and

to execute a linear state feedback law.

We consider a remote controller in the network that

possesses close to unlimited computational resources, runs

the predictive control algorithm, and takes delays and

packet losses into account. Both sides have some memory

capabilities in the form of buffers. The system is depicted

in fig. 1.

Consider the following assumptions on the computing units

and network behavior:

A1) Every message sent from sensor to controller is time-

stamped with the time tp when the measurement was

taken at the plant side.

A2) The sensor-to-controller delay τsc as well as the

controller-to-actuator delay τca are upper bounded1:

0 ≤ τsc[k]≤ τ̄sc, 0 ≤ τca[k]≤ τ̄ca .

A3) The upper bound of the round trip time τ̄RT T = τ̄sc+ τ̄ca
for a successful transmission without dropouts from

sensor-to-controller-to-sensor is known, where τ̄ca in-

cludes computing time.

A4) The number of consecutive packet losses over the com-

plete loop (from sensor to actuator) is upper bounded

by n̄l ∈ N0.

A5) The local controller at the plant has enough computa-

tional power to execute a linear feedback policy.

Note that we do not require time synchronization. Our

scheme is designed to rely exclusively on timestamps from

the plant side.

In this work, we consider a robust MPC strategy for linear

systems, known as tube MPC, as described, e.g., in [14].

Consider the nominal system without disturbances as

z[k+1] = Az[k]+Bv[k]. (3)

The following optimal control problem (OCP) P(z) is solved

at the remote controller:

1We treat all delays longer than their respective upper bound as packet
losses.

min
VVV

(
z[N]T Pz[N]+

N−1

∑
j=0

z[ j]T Qz[ j]+ v[ j|k]T Rv[ j|k]) (4)

s.t. z[ j+1] = Az[ j]+Bv[ j|k]
z[ j] ∈ X,v[ j|k] ∈ U,z[N] ∈ X f ,

where VVV [k] = {v[0|k], · · · ,v[N − 1|k]} is the resulting input

sequence with the notation v[ j|k] denoting the input at time

j + k computed at time k based on a measurement x[k].
i ∈ [0,N −1], N is the considered horizon.

Additionally, P = PT � 0, Q = QT � 0, and R = RT � 0. The

matrices and the terminal set X f , must be chosen carefully

to provide recursive feasibility and stability (c.f. [15]).

The sets X = X	S, U = U	KS and X f = X f 	S are the

state and input constraints tightened with a robust positive

invariant tube S. A precalculated static feedback gain K
ensures that the system under disturbance converges to the

nominal trajectory. The considered feedback law at the real

system is

u[k] = v∗[0|k]+K(x[k]− z[k]), (5)

where v∗[0|k] is the first optimal input, computed from

P(z) with z0 = x[k], whereas the second term provides a

converging behavior towards the predicted state sequence.

Because we know the round trip time τ̄RT T as well as the

time of a measurement tp, we can use our system model to

predict the state for the next predicted time of arrival tp,d and

solve the OCP (4) to calculate inputs for that time. Through

this, we counteract communication delays. By sending the

complete computed input sequence, the local controller may

use the later values of the sequence as a backup in case no

new control values are delivered due to a packet dropout.

The main problem arises from predicting the future state

consistently without considering past predicted inputs that

did not arrive at the plant side. The following definition

formalizes this thought. ta denotes the time of application

at the actuator of a control input sequence VVV [ta], while ts is

the time of sensing of a measurement.

Definition 1. [4]
(i) We call a feedback control sequence VVV [ta] consistently

predicted if the control sequence [û[ts], . . . , û[ta−1]] used
for the prediction of x̂[ta] equals the control sequence
[u[ts], . . . ,u[ta −1]] applied at the actuator.

(ii) We call a networked control scheme prediction consis-
tent if at each time k the computation of u[k] according
to (5) in the actuator is well defined, i.e., k− ta ≤ N−1

and VVV [ta] is consistently predicted.

III. A SIMPLE CONSISTENT PREDICTION METHOD

In this section, we define the behaviors of the local

controller at the plant side and of the remote controller in

the network, such that they result in a prediction consistent

control scheme. We use unique identification numbers for

this purpose as well as a nominal and an error mode at the

remote controller side.
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In the following, we will denote the time at the plant and at

the remote controller as tp and tc, respectively. All considered

time stamps, delays, and dropout are a multiple of the

sampling time T and thus t j,τ j,n j ∈N0∀ j. Furthermore, all

input trajectories are tagged with an ID i ∈N. We denote the

buffer at the plant side as Bp and at the remote controller as

Bc. The packets sent over the network are labeled similarly as

Pp and Pc. The buffers are used to temporarily save multiple

of the corresponding packets.

Initially, the system needs to be in a safe state, e.g., an equi-

librium. Our method is initiated with the first input sequence

that reaches the plant side, based on the measurement x0 at

time tp = 0.

A. Local Controller

First, we develop the behavior of the local control unit at

the plant side. It is sample-based and executes its algorithm

with a sample rate Ts. At the beginning of each cycle, the sys-

tem needs to check for a new control packet from the remote

controller. Let us denote this operation with the Boolean vari-

able m ∈ {0,1}. Each control packet Pc includes an ID i, the

corresponding desired time of application at the local con-

troller tp,d(i), the current predicted trajectory of states XXX(i) =
{x[0|tp,d(i)],x[1|tp,d(i)], · · · ,x[N|tp,d(i)]} and the associated

trajectory of inputs VVV (i) = {v[0|tp,d(i)],v[1|tp,d(i)], · · · ,v[N−
1|tp,d(i)]}. Additionally, it contains the ID ic,last(i) of the

last input trajectory, which was used to predict x̂[τ̄RT T |tp(i)].
The local controller needs the latter to determine a con-

sistently predicted input. A control packet can be denoted

as Pc = [i, tp,d(i),XXX(i),VVV (i), ic,last(i)]. The local controller

checks, whether the time of execution is smaller or equal to

the current time at the plant side: tp,d ≤ tp. If so, the contents

of the new control packet are put into the buffer Bp. If not,

the new packet is discarded.

Then, the controller checks the buffer for an input expected

for the current time step: ∃i ∈ Bp for which tp,d(i) = tp. If

such an input exists, we need to check if it is prediction

consistent by comparing

ic,last(i) = ip,last [tp −1]. (6)

The trajectory is used, if this holds true. We update the

predicted input v∗[tp] = v[0|tp,d(i)], the predicted state x̂[tp] =
x[0|tp,d(i)] and the ID of the last applied input ip,last [tp] = i.
The internal counter of successively used inputs of a single

input trajectory is (re)set to cp = 1. Older control packets

with tp,d(i)< tp can be pruned from the buffer.

In case the input was not prediction consistent, we delete it

and all trajectories for later times

tp,d(i)> tp ∀i ∈ Bp (7)

from the plant buffer. Now, we reuse the last consistent tra-

jectory with ID ip,last [tp] = ip,last [tp −1] and choose v∗[tp] =
v[cp|tp,d(ip,last [tp])] as well as the corresponding predicted

state x̂[tp] = x[cp|tp,d(ip,last [tp])]. Then we increment the

counter of used inputs cp by one.

If no new control packet arrives at the plant, the procedure is

the same as for the situation without prediction consistency,

only that the buffer is not pruned.

In any case, we measure our system state x[tp], use it to

compute the input for the plant

u[tp] = v∗[tp]+K(x[tp]− x̂[tp]) (8)

and apply it. Next, the plant side sends a packet Pp to the

controller, which contains the current measurement x[tp],
the associated time of measurement tp and the ID of the

last considered input trajectory ip,last [tp] resulting in Pp =
[x[tp], tp, ip,last [tp]]. A state flow diagram of the plant side

algorithm is given in Fig. 2.

no yes

no

no

yes
Discard Save  in

Buffer 

yes

no

Increment 

Prune Buffer 

Set 
Set 

yes

Update values: ,
      

Measure current state: 
Compute and apply input: 
Send packet to controller:  

Fig. 2. Plant side algorithm. The top part handles incoming control packets,
the middle part checks on prediction consistency, the bottom task computes
and executes the control input.

B. Remote Controller

Next, we turn our attention towards the remote controller.

It runs in two different states, which are differentiated with

the Boolean variable s ∈ {0,1}. The first is the nominal

operation for which s = 0. The other is the recovery mode,

which is for situations where prediction consistency does not

hold. Similar to the plant side, we use a Boolean variable

m ∈ {0,1} to determine the situations when a new message

from the plant has arrived. This leaves us with four distinct

situations at the remote controller.

We start with the cases, when a new measurement arrives:

m = 1. A new ID i is computed by increasing a counter. We

use it to mark the next computed control trajectory, which is

supposed to be executed at the plant at tp,d = tp+ τ̄RT T . Thus,

the newly arrived measurement packet is denoted as Pp(i), its

time stamp as tp(i) and the newest measurement as x(i) =
x[tp(i)]. Furthermore, the measurement packet contains the

ID of the last applied input at the plant ip,last(i). Regardless
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of the controller state s, we first need to check whether the

applied input at the time of the measurement tp matches the

expected input for that point in time:

i[tp] = ip,last [tp], (9)

where i[tp] describes the ID of the input trajectory in

Bc with the smallest difference of the desired applica-

tion time to the measurement time as i[tp] = mini∈Bc(tp −
tp,d(i)) s.t. tp,d(i)≤ tp.

If this condition holds, the last used trajectory was predicted

consistently. Assume that we are in nominal mode. Then, the

controller uses the new measurement x[tp] to predict the next

state at tp,d by a simple forward rollout of the dynamics with

the known model and the expected last inputs for the time

steps between tp and tp,d . In nominal mode, the controller

is optimistic and assumes that all sent packets since tp have

arrived. From the state prediction x̂[tp,d ] it solves the OCP

(4). The ID i is packaged alongside the calculated inputs,

states, time of application at the plant side, and the ID of the

last used input trajectory ic,last(i) = i−1 as control packet Pc
and simultaneously saved in the buffer Bc as well as sent to

the plant.

If (9) is not true, an error occurs, and the remote controller

switches to or stays in recovery mode s = 1. We know

now that all input predictions for times later than the last

applied input at tp are inconsistent. Therefore, the plant will

reject them. Thus, the controller can prune its buffer Bc and

delete all predictions i with tp,d(i) > tp ∀i ∈ Bc. Now, the

buffers at the controller and plant side are equal. Next, a

new input sequence, which we call a correction trajectory,

needs to be computed. When in recovery mode, the controller

is pessimistic. It assumes no inputs have arrived since the

last confirmed input with ID ip,last [tp]. It uses the input

trajectory of that old prediction together with the known

nominal system model to calculate the new state at the time

tp,d . As before, all necessary values are saved in the local

buffer and put into a packet to be sent to the plant. What

is important is that the ID of the last used input is set

correctly as ic,last(i) = ip,last [tp]. This ensures that if some

recovery packets from the controller to the plant are lost due

to the network, the next packet that arrives will certainly be

prediction consistent. Additionally, we mark this trajectory

by assigning e(i) = tp(i) and save the error time as te = tp(i).
These values are saved locally at the controller buffer Bc.

Finally, we have the situation, where a new measurement

arrives and (9) is true, but the system is in recovery mode

s = 1. Now it is necessary to check, whether the newly

arrived trajectory was a correction trajectory for the existing

error by comparing e(ip,last) = te. If the error correction

check holds, the error is now assumed to be resolved, and

hence we set s = 0 to return to the nominal mode. In this

case, we need to prune our buffer Bc, as there might be

some correction trajectories saved, which were not used at

the plant. Thus, we prune all packets in the controller buffer,

for whose IDs the condition
(
e(i) = e(ip,last [tp])

)∧ (
i = ip,last [tp]

) ∀i ∈ Bc (10)

holds. After this, Bc and Bp are consistent again and we can

continue with the state prediction as in the nominal case. If

the error check does not hold, we stay in the recovery mode.

Now, let’s consider cases where no new measurement arrives.

If the controller is in recovery mode, i.e., (m,s) = (0,1), it

computes a new input value regardless. To do so, it takes

the last available measurement Pp(i) = Pp(i− 1) and uses

the pessimistic recovery mode strategy to predict a new

state at tp,d = tp,d(i− 1)+ 1. Then, the same OCP as usual

is solved, and corresponding control values are sent, as

explained above.

In case of no new measurement in nominal mode, the

controller simply stays idle. The state flow diagram for the

logic used at the remote controller side is given in Fig. 3.

no yes

no

yes

no

yes

Prune Buffer 
Set 

Prune Buffer 
Set 

yes

no yes

Predict :
nominal mode

Predict :
recovery mode

no

Solve OCP 
Update Buffer 
Send package 

Fig. 3. Remote controller algorithm. The top part describes checks for
measurement and prediction consistency, the middle part determines the
state prediction, and the bottom part solves the OCP.

IV. PROPERTIES OF THE METHOD

In [4, Theorem 2.2] it is stated that a system remains

practically asymptotic stable for a predictive controller,

given that the nominal closed loop system is practically

asymptotic stable and the used prediction method is

prediction consistent. Along these lines it is noted that the

prediction behavior can be separated from the robustness of

the scheme.

Therefore, the analysis of our method is twofold: first, we

examine all cases of occurring delays and packet losses to

show the prediction consistency of our method. Secondly,

we analyze the error propagation in the worst-case scenario

and derive a bound for the robustly invariant tube S. Then,

when applying the findings jointly, we can extend the result
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to a robustly asymptotic stable system.

Lemma 4.1. If assumptions (A1-A4) hold and the chosen
time horizon for the MPC fulfills

N ≥ n̄l +2τ̄RT T , (11)

then the proposed method for delay and packet loss com-
pensation using model predictive control methodologies in
networked control systems under the influence of delays
and packet dropouts is prediction consistent in the sense of
Definition 1.

Proof. The proof can be found in the appendix. �

In the following we show that the system is robustly

asymptotically stable with the proposed method as well as

the resulting lower bound for the disturbance invariant set.

Theorem 4.2. Given a linear system with additive bounded
disturbance as in (1) with constraints (2) and a robustly
asymptotically stabilizing tube MPC law as in (5) based
on the OCP (4) and a precomputed, stabilizing Feedback
gain K. Assume that assumptions (A1-A5) hold and the
initial state x0 lies in the feasible set. Assume that the
chosen time horizon fulfills (11). Then the system is robustly
asymptotically stable and its robust invariant set is lower
bounded by

L⊕
j=0

(A+BK) j−1
W⊆ S (12)

where L = max[N,2n̄l +3τ̄RT T −1].

Proof. From Lemma 4.1 the prediction consistency of our

scheme follows. By making use of [4, Theorem 2.2] we can

assume that an already nominally asymptotically stable MPC

method preserves this property if a prediction consistent

method is used.

Robust asymptotically stable behavior for the nominal closed

loop system is provided by linear tube MPC as long as our

system operates within disturbance invariant sets. To derive

a bound on the tube in our scenario, we need to consider the

worst possible error from the considered disturbances at the

maximum prediction step N for a given input sequence.

Given a state measurement x[0] at time k = 0, and the current

error due to disturbance e[0] = 0, the error develops as

follows

e[k] =
k

∑
j=1

(A+BK) j−1w(k− j). (13)

Let’s consider a drop from the controller to the actuator. As

a result, no new input trajectory arrives at the plant, and

it has to reuse the previous one. Let’s assume the remote

controller is notified about the prediction inconsistency with

the measurement tp = k. It starts to compute and send

correction trajectories based on this measurement in every

time step, until the error is resolved. In the worst case for

disturbance, all measurements are dropped for the maximum

Plant

Remote Controller
Arrived
Discarded
Dropped

Fig. 4. Worst case delay and dropout scenario of the presented method.
Arrows represent packets. τ̄RT T = n̄l = 2.

amount of steps n̄l , but right before a new measurement

is received, the first successful transmission of a correction

trajectory based on the measurement at k takes place after

n̄l −1 steps. It is applied at tp,cor = k+ n̄l + τ̄RT T −1. At this

point in time, the predicted state and the actual state differ

by e[tp,cor] = x[tp,corr]− x̂[n̄l + τ̄RT T −1|k]. Now, in the worst-

case situation for the switch from recovery mode to nominal

mode, the input trajectory, which is computed from the first

measurement after the arrival of the correction trajectory,

drops out. Again, recovery mode needs to be triggered, and a

correction trajectory needs to be sent. Assuming a complete

blackout for n̄l steps followed by the maximum round trip

time to deliver the correction trajectory, the time between the

two correction trajectories arriving at the plant is 2τ̄RT T + n̄l .

At this point in time, the error originating from the first error

at time k has progressed to its maximum value e[3τ̄RT T +
2n̄l − 1]. Thus, the maximum of either 3τ̄RT T + 2n̄l − 1 or

the freely chosen prediction horizon N gives us the number

of steps to consider for error development and, therefore, a

bound on the minimum disturbance invariant set. �
Fig. 4 illustrates the described worst-case situation with

n̄l = τ̄RT T = 2.

V. SIMULATION EXAMPLES

In the following, we present two simulation examples. For

both, we use a simulated network composed of two Markov

chains, one for a delay state and the other for dropouts.

While the latter uses two states (dropout or successful trans-

mission), the former has three states, representing the load

of the network. Each state operates on a different Weibull

distribution to represent situations of low, medium, and high

network traffic.

In both simulations we compare three approaches. We call

the first naive MPC, as it does not apply our prediction

consistent scheme for delay and dropout compensation. In-

stead, it uses any received measurement as the initial state

to compute a new control trajectory using OCP (4). On the

plant side, it applies the most recent trajectory it gets and

iterates it, should there not be a new input. Additionally,

it also considers a linear feedback law locally to counter

disturbances. The other two approaches both consider our

method, one without the tube and the other with it.

A. Cart Pole

The first use case is a cart pole system. We use the

linearized version of a real system introduced in [16] and

used in [13] amongst others. The state vector x = [s,α, ẋ, α̇]T
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Fig. 5. Position and tilt angle of the balance robot. We compare a nominal
MPC with the tube-based MPC method.

contains the position s of the device on a straight line as well

as its tilt angle α . We use a sampling time of Ts = 0.01s.

The corresponding discretized dynamic matrices are

A =

⎡
⎢⎢⎣

1 0.002 0.010 0

0 1.003 0 0.010

0 0.437 0.963 0.0353

0 0.551 0.019 0.981

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0

0

0.048

0.032

⎤
⎥⎥⎦ . (14)

For the sake of simplicity we assume full state measure-

ments. We set N = 50, R = 1, and Q = diag(10,1000,1,1).
Furthermore, we obtain KLQR as well as QN = P from

solving the discrete algebraic Riccati equation with the

proposed matrices. Finally, for our network, we set

τ̄RT T = 7 and n̄l = 3. The considered delays are w[k] =[
0 0 10 1

]T d[k] with d[k] ∈ [−1,1]. Two constraints

are imposed on the system. Firstly, the tilting angle needs to

be in [−0.2,0.2]rad to ensure that the linearization holds.

Additionally, the input needs to be between [−20,20]V,

which is a physical limitation of the real system.

Fig. 5 shows position x and tilt angle α over time. As our

horizon is much larger than the assumed delays and dropouts,

the MPC is able to stabilize the system in all three scenarios

despite the imposed communication constraints. Notably, the

naive MPC does not stay within the angle constraints and

shows oscillatory behavior, although it has a stabilizing linear

feedback locally. Furthermore, as any reaction to disturbance

may be delayed up to 70ms, our approach without the

tube also fails to stay within the tilt angle constraints. The

combined approach, on the other hand, fulfills all constraints,

although the considered tightening of the bounds seems to be

overly conservative. In Fig 6 the round trip time is depicted.

Despite the frequent packet losses the method manages to

safely guide the system to its desired location, even under

substantial disturbances.

B. Continuous Stirred Tank Reactor

Our second use case is from the process industry. It is

interesting, as it is nonlinear as well as operates on a much

different time scale than the cart pole example. We consider
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Fig. 6. Round trip time of the balance robot example. Everything above
τ̄RT T as well as all steps where the line is broken is considered as a dropout.

an adiabatic continuous stirred tank reactor (CSTR) with the

following dynamics

dT
dt

=
F
V
(TA0 −T )+

3

∑
i=1

−ΔHi

ρcp
ki0e

(−Ei
RT

)
CA +

Q
σcpVr

(15)

dCA

dt
=

F
Vr

(CA0 +ΔCA0 −CA)−
3

∑
i=1

ki0e
(−Ei

RT

)
CA (16)

with states x = [T,CA]
T , which denote the substance temper-

ature as well as the molar concentration of the considered

reactant. As input we apply or remove heat through u = Q,

which is bounded by |Q| ≤ 105 kJ/h. Furthermore, we con-

sider an unknown, bounded time-varying uncertainty ΔCA0 ∈
[−0.25,0.25] mol/l. All parameters of the system can be

found in [17]. For our simulation we consider Ts = 0.025 h,

Tend = 0.6 h, N = 10, Q = diag(1,1000), R = 10−6. The cost

function is quadratic, as shown in the OCP (4). However, we

do not consider terminal costs but imply the final state xN to

lie within an ellipse specified by X f = {x ∈R
2|(x1−x1,d)

2+
(x2−x2,d)

2

0.22 ≤ 1}, meaning that the final state shall not deviate

more than 1K and 0.2mol/l from the desired state, which is

xd = [388K,3.59mol/l]. For the network we choose τ̄RT T = 4

and n̄l = 2 with a prediction horizon N = 10 = 2τ̄RT T + n̄l .

As our system is nonlinear, we compute a linear feedback

gain for each newly computed MPC input trajectory using

a linearization around the final predicted state. This gain is

then forwarded alongside the inputs and state trajectories to

the local controller and iterated like the predicted input. The

states over time are plotted in fig. 7, whereas fig. 9 shows

the phase portrait of the system. As can be seen, the naive

approach shows a heavy overshoot of the desired states. Our

approaches are similar in their transient response. Differences

can be seen during the settling of the temperature, where the

version without the linear gain leaves the terminal set X f ,

while the one with the tube, on the other hand, manages to

keep the system in the desired terminal set, even though the

disturbance on the molar concentration influences the system

heavily. This example shows that combining delay and

dropout compensation with the tube approach for disturbance

rejection yields performance advantages when compared to

schemes only applying one of the methods.

It must be noted that we don’t use the proposed constraint

tightening in this scenario and thus don’t guarantee save

constraint fulfillment anymore. Nonetheless, this approach

seems to be an effective strategy, especially for systems like

the CSTR, where time and input constraints are not of too

much concern.
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Fig. 7. State development over time for the CSTR simulation. The top
depicts the temperature T , concentration CA is shown on the bottom.

Due to its long sampling time, this simulation example is also

suitable to investigate the timing of our proposed delay and

dropout compensation method. In fig. 8 the network behavior

under the proposed method is visualized.

VI. DISCUSSION

Our prediction consistent method stands out in two ways.

First of all, it is suitable for a broad variety of communication

networks as it does not rely on any form of acknowledged

messaging as in [4], [5] or time synchronization [6]. Ad-

ditionally, our method performs consistently in networks,

where average delays from controller to actuator are above

the actual sample rate. As we do not consider a changing

time horizon depending on the current delay, our method is

also simpler to implement and less conservative than, e.g.,

[12] while showing comparable performance, as can be seen

from the similar simulations on the CSTR. Secondly, it adds

robustness to the networked control system using tubes, as

was demonstrated in the simulations. Using a linear feedback

controller on the local side allows to react to disturbances

fast while staying true to the specified constraints. The main

drawback of our approach is its rigidity due to buffering

up to a bounded delay. This introduces artificial delays in

situations, where the round trip was actually shorter, and

thus it may decrease performance. Adapting online to a

current best guess of the round trip delay or introducing time

Fig. 8. Network behavior of the CSTR simulation. Dashed lines show
dropped (red) and discarded (blue) packets. The geometric symbols (circles,
triangles, diamonds) denote, which packet was used for the corresponding
actuation. As expected, the distance from the appearance of the symbol on
the plant line to its time of application on the actuation line is τ̄RT T = 4.Red
crosses on the bottom indicate the recovery mode at the remote controller.
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Fig. 9. Phase portrait of the CSTR simulation.

synchronization may leverage this disadvantage.
The result from theorem 4.2 on the minimum invariant

disturbance set states the expected. If N < L we have to

tighten the constraints more than for the nominal system

due to delays and packet dropouts. However, the classical

approach of approximating the tube with the maximum

invariant disturbance set S∞ still holds. Additionally, if the

horizon is long enough, it dominates the influences of delays

and dropouts and thus provides the same bounds as in the

nominal scenario. Therefore, the condition seems rather mild,

while the method ensures robust stability.

VII. CONCLUSION

In the presented work we have introduced a novel pre-

dictive method for NCS that deals efficiently with commu-

nication constraints such as delays and packet losses. The

technique relies on few, mild assumptions and is therefore

applicable in a general setting. Thanks to the property of

prediction consistency, it can be used with any type of

provably stabilizing predictive control, linear or nonlinear.

Additionally, we have introduced tube MPC to the problem

of Networked Predictive Control. We derived a bound on

the minimum robust invariant disturbance set. This bound

arises due to additional delays and longer error developments

compared to the nominal setting due to the communication

constraints. However, it does not restrict the method much,

as in practice often a maximum positive invariant disturbance

set is approximated, which contains the bounded set.

Further research may include investigations of adaptive tech-

niques to the changing quality-of-service parameters of net-

works. Other areas of interest surround using online updated

versions of tube MPC or learning MPC with the networked

approach. Finally, further investigations on the scalability

and the robustness sensitivity of the proposed method are

of interest.
APPENDIX

A. Proof of Lemma 4.1
Proof. To fulfill prediction consistency in the sense of defi-

nition 1, we need to ensure two things:

1) Buffer Bc is consistent with Bp before each state pre-

diction at the remote controller
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2) The local controller at the plant side distinguishes

wrongly predicted inputs and discards them

The second condition is ensured through the prediction

consistency check (6) (and subsequent pruning if applicable),

which relies on the IDs of the input sequences. Alas, we

need to look at the ID assignment at the remote controller

to guarantee the first condition.

The proof consists of analyzing the situations of packet losses

and maximum delays in the backward (sensor-to-controller)

and forward (controller-to-actuator) channels, both separately

and together. Additionally, we need to differentiate between

nominal and recovery mode.

Delays and dropouts in the backward channel do not cause

prediction inconsistencies. As long as a measurement arrives

in time, the remote controller uses it to predict the next input

series and sends the result to the plant. If a measurement

packet Pp is lost, the remote controller does not change

behavior, as it will either do nothing when the controller is

in nominal mode or it will rely on the previous measurement

in recovery mode. On both occasions, the buffer contents of

controller Bc and plant Bp stay consistent, and thus, the future

state predictions are also consistent. The critical behavior

occurs in the forward channel. Input delays with a total round

trip time stays below τ̄RT T are not problematic. Under these

circumstances, the computed inputs arrive before or just at

their application time, and the plant holds them in its buffer

Bp until they become valid. If a drop occurs in the forward

channel, the buffers on the plant and controller side differ

from each other. As soon as the next measurement reaches

the remote controller, the prediction inconsistency is detected

as the test (9) fails, and the recovery mode is activated.

Through the pruning strategy (7) buffer Bc is made consistent

with Bp again. By design, all predictions in recovery mode

are solely based on ip,last of the last arrived measurement,

which is the ID of the last consistently applied input at the

plant. This guarantees that the next input trajectory, which

arrives at the plant, is consistently predicted. In recovery

mode, a new sequence is sent at every time step, regardless

of a new measurement. The maximum number of time steps

from the point of detection of an error at the plant until a

new consistently predicted correction trajectory arrives is

M = n̄l + τ̄RT T . (17)

This safety procedure is executed until a new measurement

arrives at the remote controller, which carries the ID of a

correction trajectory. As a result, the remote controller needs

to correct its buffer Bc using condition (10). This ensures,

that Buffers Bc and Bp are consistent again. Now the remote

controller can resume its nominal operation. In the worst

case, the system must endure the maximum amount of steps

as in (17). Additionally, if the system just recovered from a

previous error, but the first value in nominal mode is dropped,

it takes a full round trip time until the new error is detected

by the remote controller. Therefore, we need (11) to hold to

cope with the worst-case situation. This poses a lower bound

on the prediction horizon for MPC. �
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