
Temporal Logic Resilience for Cyber-Physical Systems

Adnane Saoud, Pushpak Jagtap, and Sadegh Soudjani

Abstract— We consider the notion of resilience for cyber-
physical systems, that is, the ability of the system to withstand
adverse events while maintaining acceptable functionality. We
use temporal logic to express the requirements on the acceptable
functionality and define the resilience metric as the maximum
disturbance under which the system satisfies the temporal
requirements. We fix a parameterized template for the set of
disturbances and form a robust optimization problem under
the system dynamics and the temporal specifications to find
the maximum value of the parameter. From the computational
point of view, we show how this optimization can be solved
for linear systems and provide under-approximations of the re-
silience metric for nonlinear systems using linear programs. The
computations are demonstrated on the temperature regulation
of buildings and adaptive cruise control.

I. INTRODUCTION

Resilience has been studied by many research communi-
ties and it is broadly defined as the ability of a system to
withstand adverse events while maintaining an acceptable
functionality. For critical infrastructures, resilience is the
main factor determining their reliability and is improved
by continuously enhancing the prevention and absorption of
disruptive events, and the recovery and adaptation for such
events [1]. For IT systems, resilience is considered mainly
against adverse cyber events, which are the cyber attacks that
negatively impact the availability, integrity, or confidentiality
of the system [2]. With the climate change increasing the
extreme flood events, resilience metrics that consider the
dynamical changes of the system have also received attention
in the water research community to define and assess the
resilience of water resource recovery facilities [3].

In this paper, we provide a notion of resilience for cyber-
physical systems that integrates the time-evolution of the
system with temporal logic to provide a quantitative measure
on how the system can cope with disturbances. The temporal
logic is used to encode formally the safety and other com-
pliance requirements on the operation of the system and also
express the expected behavior of the system to disturbances.
We define resilience as the largest disturbance within a given
(parameterized) set that can be applied to the system in
its time evolution while still satisfying the temporal logic
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specification. This can also be interpreted as the minimum
disturbance that needs to be applied to the system to falsify
the specification. We focus on a discrete-time dynamical
model of the system and express resilience requirements as
linear temporal logic specifications over finite traces [4].
We show how the optimization for computing resilience
can be solved exactly for linear systems and provide under
approximations of the resilience metric for nonlinear systems
using linear programs. We then provide numerical examples
showing the merits of the proposed approach.

Our definition of resilience is substantially different from
robustness for temporal specifications, which is defined as
follows. Robustness of a system Σ with respect to a temporal
specification ϕ is the largest value ε such that we still
satisfy ϕ if we expand the solutions of Σ with a uniform
ε over time and over trajectories [5], [6]. This definition
does not take into account the dynamics of the system Σ and
directly applies the expansion to the solution of Σ. In reality,
disturbances and extreme events affect the time evolution of
the system, and this needs to be integrated with any definition
of resilience for dynamical systems.

Related work. The literature on defining quantitative se-
mantics for different classes of temporal logic is relatively
mature. These quantitative semantics study how well the
system trajectories satisfy a given specification. The tech-
niques include using discounting modalities that give less
importance to distant events [7] and averaging modalities
[8] where the semantics of standard modalities are extended
using min, max, and a long-run average operator. The paper
[5] considers real-valued signals and presents variants of
robustness measures that indicate how far a given signal
stands, in space and time, from satisfying or violating
property and studies their sensitivity to the parameters of
the system. The paper [6] considers the robust interpretation
of Metric Temporal Logic to connect robust satisfaction
of properties on discrete-time signals to their continuous-
time counterparts. The authors in [9] present an efficient
algorithm for computing the robustness degree in which
a piecewise-continuous signal satisfies or violates a Signal
Temporal Logic (STL) formula. Application of robustness
metrics in specification-based monitoring of cyber-physical
systems (CPS) is provided in [10] with a survey of theory
and tools. The robustness metric is also used for temporal
logic falsification of CPS [11]. STL is also used in [12] to
study two important resilience properties of CPS, which are
recoverability and durability.

All the works mentioned above study the robust satisfac-
tion of properties for a given set of disturbances. In contrast,
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we are looking at characterizing resilience to compute the
largest disturbance within a given parameterized set. The
work closest in spirit to our approach is the paper [13] that is
limited to linear systems and safety specifications and studies
properties of invariant sets when the size of the disturbance
set changes with a scaling factor.

In summary, the main contributions of this paper are
as follows. We provide a quantitative resilience metric by
integrating the underlying dynamics with temporal logic
specifications. We show how the related optimizations can
be solved for linear systems and various types of specifi-
cations. We show that resilience with respect to convex or
closed specifications enjoys some nice properties. Finally,
we provide under-approximations of the resilience metric
for nonlinear systems using linear programs. Due to space
constraints, the proofs are omitted and will be published in
an extended version.

II. PRELIMINARIES

Notation: The symbols R, R≥0, N, and N≥n denote the
set of real, nonnegative real numbers, nonnegative integer,
and integers greater than or equal to n ∈ N, respectively.
We use Rn×m to denote a vector space of real matrices
with n rows and m columns. For a matrix A ∈ Rn×m,
AT represent transpose of matrix A. For a vector x ∈ Rn,
we use ∥x∥ and ∥x∥∞ to denote the Euclidean and infinity
norm, respectively. We use I to denote the identity matrix.
For a set of p points C = {c1, c2, . . . , cp}, ci ∈ Rn, the
convex hull of C is represented by conv(c1, c2, . . . , cp) :=
{α1c1 + α2c2 + . . . + αpcp | ci ∈ C,αi ≥ 0, i ∈
{1, 2, . . . , p},

∑p
i=1 αi = 1}. An interval in Rn is a set

denoted by X = [x1, x1]× [x2, x2]× . . . [xn, xn] and defined
as X = {x ∈ Rn | xi ≤ x ≤ xi, i ∈ {1, 2, . . . , n}}. In par-
ticular, when xi = x and xi = x for all i ∈ {1, 2, . . . , n},
then the interval X can be written in a compact form as:
X = [x, x]n. Given x ∈ Rn and ε ≥ 0, Ωε(x) = {z ∈ Rn |
∥z − x∥∞ ≤ ε}.

A. Discrete-Time Dynamical Systems

A discrete-time system is a tuple Σ = (X,D, f), where
X ⊂ Rn is the state space and D ⊂ Rn is the disturbance
space which is assumed to be a compact set containing the
origin. The evolution of the state of Σ is given by

x(k + 1) = f(x(k)) + d(k), k ∈ N, (1)

where d(k) ∈ D represents the additive disturbance. The
trajectory of system Σ of length N + 1 is represented by
wx = (x0, x1, . . . , xN−1) ∈ XN , where xk represents the
value of trajectory starting from a state x(0) = x0 ∈ X at
kth instance (i.e., x(k)).

Linear temporal logic (LTL) provides a high-level lan-
guage for describing the desired behavior of a dynamical
system. Formulas in this logic are constructed inductively
using a set of atomic propositions and combining them via
Boolean operators [14]. Consider a finite set of atomic propo-
sitions AP that defines the alphabet Σa := 2AP. Each letter
of this alphabet evaluates a subset of the atomic propositions

as true. In this work, we consider LTL specifications over
finite words, referred to as LTLF , where the letters form
finite words defined as ω = (ω0, ω1, ω2, . . . , ωN−1) ∈ ΣNa
for some N ∈ N. These words are connected to trajectories
of the system Σ via a measurable labeling function L :
X → Σa that assigns letters α = L(x) to state x ∈ X .
That is, any finite trajectory wx = (x0, x1, . . . , xN−1) is
mapped to the set of finite words ΣNa , as ω = L(wx) :=
(L(x0),L(x1),L(x2), . . .L(xN−1)).

Definition 2.1: An LTLF formula over a set of atomic
propositions AP is constructed inductively as

ψ ::= true | p | ¬ψ |ψ1∧ψ2 |ψ1∨ψ2 |⃝ψ |ψ1Uψ2 |□ψ |♢ψ,

with p ∈ AP, and ψ1, ψ2, ψ being LTLF formulas.
Given a finite word ω of length N and an LTLF formula

ψ, we inductively define when an LTLF formula is true at
the nth step (n < N) and denoted by ωn |= ψ, as follows:

• ωn ⊨ true always hold and ωn ⊨ false does not hold.
• An atomic proposition, ωn ⊨ p for p ∈ AP holds if
p ∈ ωn.

• A negation, ωn ⊨ ¬p, holds if ωn ⊭ p.
• A logical conjunction, ωn ⊨ ψ1 ∧ψ2, holds if ωn ⊨ ψ1

and ωn ⊨ ψ2.
• A logical disjunction, ωn ⊨ ψ1 ∨ ψ2, holds if ωn ⊨ ψ1

or ωn ⊨ ψ2.
• A temporal next operator, ωn ⊨ ⃝ψ, holds if ωn+1 ⊨
ψ. Similarly, for 0 ≤ j < N − n, ωn ⊨ ⃝jψ, holds if
ωn+j ⊨ ψ.

• A temporal until operator, ωn ⊨ ψ1 U ψ2, holds if for
some m such that n ≤ m < N , we have ωm ⊨ ψ2 and
for all n ≤ k < m, we have ωk ⊨ ψ1.

• A temporal always operator, ωn ⊨ □ψ, holds if for all
m such that n ≤ m < N , we have ωn ⊨ ψ. Similarly,
for 0 ≤ j < N − n, ωn ⊨ □jψ holds if for all n ≤
m ≤ n+ j, we have ωm ⊨ ψ.

• A temporal eventually operator, ωn ⊨ ♢ψ, holds if for
some m such that n ≤ m < N , we have ωn ⊨ ψ.
Similarly, for 0 ≤ j < N − n, ωn ⊨ ♢jψ, holds if for
some m such that n ≤ m < n+ j, we have ωn+j ⊨ ψ.

For trajectory wx = (x0, x1, . . . , xN−1) ∈ XN ,
we say that wx ⊨ ψ if for ω = L(wx) :=
(L(x0),L(x1), . . . ,L(xN−1)), we have ω ⊨ ψ. Similarly, for
a set of trajectories X ⊆ XN , we say that X ⊨ ψ, if wx ⊨ ψ
for all wx ∈ X .

Remark 1: Our notion of resilience is general, but for
computational purposes, we restrict ourselves to the follow-
ing specifications over words of length N : □p, ⃝p, ♢p, with
p ∈ AP, and conjunctions over them. Note that all LTLF can
be represented using Deterministic Finite Automata (DFA)
[15] and effectively, one can represent them using sequences
of reach and avoid specifications (i.e., ψ = ♢p∧□¬q, where
p, q ∈ Σa) [16, Section III.b]. Thus, one can easily use
the results provided in the paper for any LTLF specification
using the properties provided in Proposition 3.1.
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III. CHARACTERIZATIONS OF RESILIENCE

The goal of the paper is to provide characterizations and
algorithmic procedures for computing resilience with respect
to different classes of systems and specifications.

A. Resilience for LTLF Specifications

Consider the system Σ in (1), with a set of disturbances
given by ball with respect to infinity norm centered at zero:
D := Ωε(0). We denote by ξ(x, ε) the set of trajectories
starting from some x ∈ X with such a disturbance set:

ξ(x, ε):={(x0, x1, x2, . . .) |x0=x, xk+1∈f(xk)+D} . (2)

Note that ξ(x, 0) contains only the disturbance-free trajectory
of the system (nominal trajectory).

Definition 3.1: Consider the dynamical system Σ in (1),
an LTLF specification ψ and a point x ∈ X . We define
the resilience of the system Σ with respect to the initial
condition x and the specification ψ as a function gψ : X →
R≥0 ∪ {+∞} with:

gψ(x) =

{
sup {ε ≥ 0 | ξ(x, ε) ⊨ ψ} , if ξ(x, 0) ⊨ ψ
0 if ξ(x, 0) ⊭ ψ.

(3)

where ξ(x, ε) ⊨ ψ indicates that all trajectories in ξ(x, ε)
satisfies the specification.

B. Structural Properties of Resilience

In this subsection, we prove the structural properties of
the resilience metric in Definition. 3.1 utilizing the inductive
definition of temporal specifications.

Proposition 3.1: Consider the dynamical system Σ in (1),
an LTLf specification ψ, a set X ⊆ Rn and a point x ∈ X .
The following properties hold:
(i) When ψ is the true specification, gψ(x) = +∞ ∀x ∈

X .
(ii) When ψ is the false specification, gψ(x) = 0 ∀x ∈ X .

(iii) For any specification ψ = ψ1 ∧ ψ2, we have that
gψ(x) = min{gψ1

(x), gψ2
(x)} ∀x ∈ X .

(iv) For any specification ψ = ψ1 ∨ ψ2, we have that
gψ(x) ≥ max{gψ1

(x), gψ2
(x)} ∀x ∈ X .

(v) For any specification ψ = ¬ϕ, we have that
gψ(x)gϕ(x) = 0 ∀x ∈ X .

(vi) For X ⊂ Rn, gψ(X) = infx∈X gψ(x).
Now, we provide sufficient conditions on the dynamics of

the system Σ and the specification ψ allowing us to replace
the sup operator with the max operator in the definition of gψ
in (3), which makes the computation of the resilience metric
computationally tractable. To do this, we introduce the class
of closed specifications defined below. Given a sequence
of trajectories wx,i, i ∈ N, with wx,i = x0,i, x1,i, x2,i . . .,
the limit of wx,i is defined by wx = limi→∞ wx,i =
x0, x1, x2 . . ., where for all j ∈ N, xj = limi→∞ xj,i.
The sequence wx,i is called converging whenever wx exists.
Hence, the limit of a sequence of trajectories can be seen as
an element-wise limit of its components.

Definition 3.2 (Closed specification): Consider a metric
space X , an LTLF formula ψ is said to be closed if the

following holds: for any converging sequence of trajectories
wx,i, i ∈ N, if for all i ∈ N, wx,i ⊨ ψ, then wx =
limi→∞ wx,i ⊨ ψ.

Intuitively, the closedness property states that a specifica-
tion is preserved when going from a sequence of trajectories
to its element-wise limit. The complete characterization of
the fragment of LTLF specifications that are closed is out
of the scope of this paper and will be explored in future
research. An example of closed specifications is reported
below.

Example 3.1: Consider a set A ⊆ Rn and N ∈ N>0. If
the set A is a closed subset of Rn, then the LTLF formulas
ψ1 = □NA, ψ2 = ⃝NA and ψ3 = ♢NA are closed.

Proposition 3.2: Consider the discrete-time system Σ in
(1) defined on a metric space X . Consider x ∈ X and an
LTLF specification ψ. If the map f : Rn → Rn is continuous
and if the specification ψ is closed, then:

gψ(x) =

{
max {ε ≥ 0 | ξ(x, ε) ⊨ ψ} , if ξ(x, 0) ⊨ ψ,
0, if ξ(x, 0) ⊭ ψ.

We also provide sufficient conditions under which the map
gψ(x) remains bounded for an x ∈ X .

Proposition 3.3: Consider the dynamical system Σ in (1),
an LTLF specification ψ and a point x ∈ X . If the set
L−1(ψ) ⊆ {Rn}N is a bounded1 subset of {Rn}N , then
gψ(x) is bounded, where N represents the length of the
trajectories corresponding to the LTLF specification ψ.

C. Resilience Properties for Linear Systems

In this part, we introduce the concept of convex specifica-
tions and present an efficient approach for the computation
of the resilience metric for the class of linear systems and
convex specifications.

Definition 3.3 (Convex specification): Consider a vector
space C, an LTLF formula ψ is said to be convex if the
following holds: for trajectories wx,i, i ∈ {1, 2}, if wx,i ⊨ ψ,
then for any trajectory wx = λwx,1+(1−λ)wx,2, λ ∈ [0, 1],
we have that wx ⊨ ψ.
Intuitively, the convexity property states that the specification
is preserved under a convex hull operator. The complete char-
acterization of the fragment of LTLF specifications that are
convex is out of the scope of this paper and will be explored
in future research. An example of convex specifications is
reported next.

Example 3.2: Consider a set A ⊆ Rn and N ∈ N>0. If
the set A is convex, then the specifications ψ1 = □NA,
ψ2 = ⃝NA are convex.

Now, consider the case where the objective is to compute
gψ(X) for a set X ⊂ Rn. A straightforward approach that
was mentioned earlier in the property (vi) of Proposition
3.1 is to use the fact that gψ(X) = infx∈X gψ(x), which
requires computing gψ(x) for all x ∈ X and that can
be computationally infeasible for continuous sets. In this
part, we present an efficient approach to compute gψ(X)

1A set Z ⊆ {Rn}N is said to be bounded if there exists γ ≥ 0 such
that for any finite trajectory z0z1z2 . . . zN−1 ∈ Z, we have ∥zi∥ ≤ γ for
all 0 ≤ i < N .
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for the case where the set X can be written as a convex
closure of a finite number of points. Our result relies on the
superposition principle for linear systems and the introduced
class of convex specifications.

Theorem 3.4: Consider the discrete-time linear system in
(1). Consider X = conv(c1, c2, . . . , cp) ⊂ Rn and a convex
specification ψ. We have gψ(X) = min

i=1,2,...,p
gψ(ci).

In Sections IV-V, we provide results on the computation
of the resilience metric for linear and a class of nonlinear
systems for various specifications.

IV. COMPUTATION OF RESILIENCE FOR LINEAR
SYSTEMS

In this section, we show how the resilience metric can
be computed exactly for some classes of specifications,
such as the exact time reachability and finite-horizon safety.
Moreover, we show how it can be approximated arbitrarily
closed for finite-horizon reachability properties.

A. Exact-Time Reachability

Consider the linear discrete-time system Σ defined by:

xk+1 = Axk + dk, (4)

with xk, dk ∈ Rn, k ∈ N and reachability at a specific
time N ∈ N as ψ = ⃝NΓ, for some polytopic set Γ.
We have the following result showing that the computation
of the resilience metric for linear systems and reachability
at a specific time point specification boils down to a linear
optimization problem.

Theorem 4.1: Consider the linear system Σ in (4) and the
specification ψ = ⃝NΓ, for N ∈ N, where Γ is a polytope
Γ = {x ∈ X |Gx ≤ H} with G ∈ Rq×n and H ∈ Rq ,
q ∈ N. We have

gψ(x)=min{ε ≥ 0 |P ≥ 0, PAb=E,PBb ≤ εF (x)} (5)

with

• Ab :=

[
I
−I

]
∈ R2nN×nN and Bb :=

[
1
1

]
∈ R2nN

• E = [GAN−1, GAN−2, . . . , GA,G] ∈ Rq×nN
• F (x) = H −GANx ∈ Rq .

B. Finite-Horizon Safety Specifications

In this section, we provide a closed-form expression of the
resilience metric for the case of linear systems and finite-
horizon safety specifications.

Theorem 4.2: Consider the linear system Σ in (4) with
finite-horizon safety specification ψ = □NΓ, where Γ =
{x ∈ X |Gx ≤ H}, for some N ∈ N. We have

gψ(x) = max{ε ≥ 0 | P ≥ 0, PAb = E,PBb ≤ εF (x)},

E =


G 0 0 . . . 0 0
GA G 0 . . . 0 0
GA2 GA G . . . 0 0

...
...

...
...

...
...

GAN−1 GAN−2 GAN−3 . . . GA G

 ,
F (x) = [H −GAx H −GA2x . . . H −GANx].

Let us remark that by defining ψi = ⃝iΓ, one gets ψ =
∧Ni=0ψi. Therefore, it follows from (iii) in Proposition 3.1
that gψ(x) = mini gψi(x). Hence, one can state the previous
result in terms of reachability with exact time, with gψi

computed previously in Theorem 4.1.

C. Finite-Horizon Reachability

In this section, we provide an approach to compute
the resilience metric for linear systems and finite-horizon
reachability specifications, by resorting to the the exact time
reachability approach in Section IV-A.

Consider the linear system Σ in (4) with finite-horizon
reachability specification ψ = ♢NΓ for some set Γ as a
polytope Γ := {x ∈ X |Gx ≤ H}. Then, we have

gψ(x) = max ε ≥ 0, s.t. for all d0, . . . , dN−1 ∈ Ωε(0)

Gx ≤ H or
G(Ax+ d0) ≤ H or
G(A2x+Ad0 + d1) ≤ H or
...
G(ANx+AN−1d0 + . . .+ dN−1) ≤ H.

(6)

in view of (v) in Proposition 3.1, one can select ψi = ⃝iΓ,
to get ψ = ∨Ni=0ψi. Therefore, we can use the results of
reachability in an exact time presented in Section IV-A to
obtain a lower bound on the resilience metric given by
gψ(x) ≥ maxi gψi(x).

V. COMPUTATION OF RESILIENCE FOR NONLINEAR
SYSTEMS

In this section, we extend the approaches to compute the
resilience metric to the case of nonlinear systems. Since the
computation of resilience for different types of specifications
relies on reachability with the exact time as a building block,
in this section, we focus on reachability with an exact time
specification. The extension to other specifications can be
done following the approaches presented in the previous
section.

Consider the reachability at a specific time point: ψ =
⃝NΓ, for some set Γ defined as a polytope Γ = {x ∈
X |Gx ≤ H}. We provide a linear optimization-based
solution for computing gψ(x) for nonlinear systems.

Theorem 5.1: Consider the nonlinear system Σ given by

x(k + 1) = f(x(k)) + d(k), x(k) ∈ X ⊆ Rn, k ∈ N (7)

and the specification ψ = ⃝NΓ, where Γ is the polytope
Γ = {x ∈ X |Gx ≤ H}. Assume the existence of αi,j , αij ,
i, j ∈ {1, 2, . . . , n}, such that for all x ∈ X:

αij ≤
∂fi
∂xj

≤ αij , i, j ∈ {1, 2, . . . , n}, (8)

Consider the matrices B1, B2, . . . , BN ∈ Rn×n defined as

Bk,ij = max

(
n∑
h=1

GihDk,hj ,

c∑
h=1

GihDk,hj

)
,
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where Bk,ij represents the coefficient corresponding to the
position (i, j) of the matrix Bk, k ∈ {1, 2, . . . , N}, and the
matrices Dk, Dk are given with Dk = Ak and Dk = A

k
,

with A,A defined for i, j ∈ {1, 2, . . . , n} by Aij = αij and
Aij = αij . Then, we have

gψ(x) ≥ max{ε ≥ 0 |BNx+BN−1d0 + . . .+ dN−1 ≤ H

for all d(0), . . . , d(N − 1) ∈ Ωε(0)}, (9)
Theorem 5.1 shows how to transform the problem of com-

puting the resilience metric for nonlinear systems and exact-
time reachability, into a problem for a linear system that can
be resolved using the approach proposed in Section IV-A.

VI. CASE STUDIES

Temperature Regulation. We consider the problem of regu-
lating the temperature in a circular building of 9 rooms. The
dynamics of the room temperatures are given by

Ti(k + 1) = Ti(k) + α(Ti+1(k) + Ti−1(k)− 2Ti(k))

+ β(Te + δTe − Ti(k)), i ∈ {1, 2, . . . , 9},

where Ti+1 and Ti−1 are the temperatures of the neighbor
rooms (here T0 = T9 and T9+1 = T1), Te = 0◦C is the
outside temperature, considered as a disturbance and α and
β are the conduction factors. The numerical parameters are
taken from [17] and given by α = 0.45 and β = 0.045.

The desired behavior of the system is as follows: The tem-
peratures of the 9 rooms initiated in the set X0 = [24, 25]9

should reach the target set XT = [21, 22]9 exactly at N = 3
steps while remaining in the safe set XS = [20.5, 25]9. This
behavior can be described by the LTLF formula:

ψ = ψ1 ∧ ψ2, with ψ1 = □3XS and ψ2 = ⃝3XT . (10)

The objective is to compute the range of admissible
external disturbances δTe under which any trajectory of the
system initiated in the set X0 satisfies ψ. Since the system
is linear and the set of initial states X0 is convex, we rely on
Theorems 4.1, 4.2 and 3.4 to compute the resilience metric.
The numerical implementations show that the resilience
metric is given by the set ∆Te

= [−2.23, 2.23]◦C.
Figure 1 (top) shows the nominal trajectories (with δTe =

0) of the system for the 9 rooms. Figure 1 (bottom) shows the
trajectories of the system for the 9 rooms with a disturbance
δTe randomly chosen in the set ∆Te

= [−2.23, 2.23]◦C. In
order to show the satisfaction of ψ by the nine rooms, we
also represent in green the boundaries of the target set XT

and in red the boundaries of the safe set XS .

Adaptive Cruise Control. Consider a vehicle moving along
a straight road. The dynamics of the vehicle is adapted
from [17] and given by the following difference equation:

v(k + 1) = v(k) +
τ

m
(f0 − f1v − f2v

2), (11)

where m > 0 is the mass of the vehicle, v ≥ 0 represents the
velocity of the vehicle and the term f0 − f1 − f2v

2 includes
the rolling resistance and aerodynamics and τ represents a

0 0.5 1 1.5 2 2.5 3

Time step

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

25.5

T
e

m
p

e
ra

tu
re

s

0 0.5 1 1.5 2 2.5 3

Time step

20

20.5

21

21.5

22

22.5

23

23.5

24

24.5

25

25.5

T
e

m
p

e
ra

tu
re

s

Fig. 1. Evolution of the temperatures in the nine rooms with a disturbance
δTe = 0 (top) and with a disturbance δTe randomly chosen in the set
∆Te = [−2.23, 2.23]◦C (bottom). The green and red boundaries represent
target set XT and safe set Xs, respectively.

sampling period. Moreover, we include a lead vehicle whose
velocity v0 ≥ 0 is constant. The dynamics of the system are{
h(k + 1) = h(k) + τ(v0 + δv0 − v(k))
v(k + 1) = v(k) + τ

m (f0 + δf0 − f1v(k)− f2v(k)
2),

where δv0 is the uncertainty on the velocity v0 of the lead
vehicle and δf0 is the uncertainty on the parameter f0.
The desired behavior can be described by the following
LTLF formula: ψ := ψ1 ∧ ψ2 ∧ ψ3 with ψ1 := □15XS ,
ψ2 := X1 → ⃝3XT1

, and ψ3 := X2 → ⃝11XT2
. This

behavior can be interpreted as follows: the relative position
should remain in the safe set XS = [hS,min, hS,max] ×
[vS,min, vS,max], whenever the state of the vehicle belongs
to the set X1 = [h1,min, h1,max]× [0,+∞), i.e, the relative
distance is between h1,min and h1,max, the relative position
and velocity should reach the set XT1

= [hT1,min, hT1,max]×
[vT1,min, vT1,max] in 3 steps, and whenever the state of the
vehicle belongs to the set X2 = [h1,min, h1,max]× [0,+∞),
i.e, the relative distance is between h2,min and h2,max, the
relative position and velocity should reach the set XT2 =
[hT2,min, hT2,max]× [vT2,min, vT2,max] in 11 steps.

The objective is to compute the resilience metric under
which the trajectory of the system initiated from x0 = (60, 2)
satisfies ψ. The numerical values of the vehicle parameters
and the considered specifications are given in Table I.

To deal with this nonlinear system, we use the approach
developed in Section V. First, one can easily check that
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TABLE I
VEHICLE AND SAFETY PARAMETERS

Parameter Value Unit
M 1370 Kg
f0 51.0709 N
f1 5 Ns/m
f2 0.4161 Ns2/m2

h1,min 61 m
h1,max 61.5 m
h2,min 62.75 m
h2,max 63 m
hT1,min 62.75 m
hT1,max 63.5 m
vT1,min 13 m/s
vT1,max 14 m/s
hT2,min 61.75 m
hT2,max 62.5 m
vT2,min 16.5 m/s
vT2,max 17.5 m/s
hS,min 59.5 m
hS,max 64.5 m
vS,min 1 m/s
vS,max 18 m/s

the values of the parameters αi,j , i, j ∈ {1, 2}, given by
α11 = α11 = 1, α12 = α12 = −1, α21 = α21 = 0,
α22 = 1 − τ

m − 2f2vS,max and α22 = 1 − τ
m − 2f2vS,min

satisfy the inequalities in (8), where the bounds on α22 and
α22 follows from the fact that we are interested in dealing
with velocities of the following vehicle within the interval
[vS,min, vS,max]. Hence, in view of Theorem 5.1, one can
use the linear program in (9) to compute an approximation
of the resilience metric gψ . The numerical implementations
show that the value of the resilience metric is given by
∆v0 = [−0.8, 0.8] and ∆f0 = [−1096, 1096].

Figure 2 shows examples of 4 trajectories under distur-
bances chosen randomly within the admissible resilience
metric set, i.e., with δv0 ∈ [−0.8, 0.8] and δf0 ∈
[−1096, 1096], together with the nominal trajectory (in blue).
In order to show the satisfaction of ψ by the vehicle, we also
represent in blue the boundaries of the first target set XT1

,
in green the boundary of the second target set XT2

and in
red the boundaries of the safe set XS .

VII. CONCLUSIONS AND DISCUSSION

We provided a new resilience metric for cyber-physical
systems that integrates the dynamical evolution of the system
with temporal logic requirements. We showed how this
resilience metric can be computed for discrete-time mod-
els of the system and instances of linear temporal logic
specifications. In the future, we plan to develop techniques
for enhancing resilience (i.e., maximizing resilience over
decision variables) and extending the ideas to continuous-
time dynamical systems. We also plan to use the proposed
resilience metric for the design of contracts for large-scale
networked systems [18] by specifying the largest class of
disturbances that a subsystem in the network can tolerate.

REFERENCES

[1] D. Rehak, P. Senovsky, M. Hromada, and T. Lovecek, “Complex
approach to assessing resilience of critical infrastructure elements,”

59 60 61 62 63 64 65

Relative position

2

4

6

8

10

12

14

16

18

V
e
lo

c
it
y

Fig. 2. Evolution of the nominal (blue) and perturbed trajectories of the
system. The green, blue and red boundaries represent the first target set
XT1

, the second target set XT2
and the safe set XS , respectively.

International journal of critical infrastructure protection, vol. 25,
pp. 125–138, 2019.

[2] V. Y. Pillitteri, “Developing cyber resilient systems: A systems security
engineering approach,” National Institute of Standards and Technol-
ogy, vol. 2, pp. 800–160, 2019.

[3] T. G. Holloway, J. B. Williams, D. Ouelhadj, and G. Yang, “Exploring
the use of water resource recovery facility instrument data to visu-
alise dynamic resilience to environmental stressors,” Water Research,
p. 118711, 2022.

[4] S. Zhu, L. M. Tabajara, J. Li, G. Pu, and M. Y. Vardi, “Symbolic LTLf
synthesis,” in IJCAI’17, pp. 1362–1369, 2017.
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D. Ničković, and S. Sankaranarayanan, “Specification-based mon-
itoring of cyber-physical systems: a survey on theory, tools and
applications,” in Lectures on Runtime Verification, pp. 135–175, 2018.

[11] A. Aerts, B. Tong Minh, M. R. Mousavi, and M. A. Reniers, “Temporal
logic falsification of cyber-physical systems: An input-signal-space
optimization approach,” in ICSTW, pp. 214–223, IEEE, 2018.

[12] H. Chen, S. A. Smolka, N. Paoletti, and S. Lin, “An STL-based
approach to resilient control for cyber-physical systems,” in Hybrid
Systems: Computation and Control (HSCC), pp. 1–12, 2023.

[13] M. Schulze Darup, R. Schaich, and M. Cannon, “How scaling of
the disturbance set affects robust positively invariant sets for linear
systems,” International Journal of Robust and Nonlinear Control,
vol. 27, no. 16, pp. 3236–3258, 2017.

[14] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[15] S. Zhu, G. Pu, and M. Y. Vardi, “First-order vs. second-order en-
codings for-to-automata translation,” in Theory and Applications of
Models of Computation (TAMC’19), pp. 684–705, Springer, 2019.

[16] J. Wang, S. Kalluraya, and Y. Kantaros, “Verified compositions of
neural network controllers for temporal logic control objectives,” in
CDC’22, pp. 4004–4009, IEEE, 2022.

[17] A. Saoud, A. Girard, and L. Fribourg, “Contract-based design of
symbolic controllers for safety in distributed multiperiodic sampled-
data systems,” IEEE TAC, vol. 66, no. 3, pp. 1055–1070, 2020.

[18] A. Saoud, A. Girard, and L. Fribourg, “Assume-guarantee contracts
for continuous-time systems,” Automatica, vol. 134, p. 109910, 2021.

2071


