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Abstract— Uncertainty caused by parameter randomness in a
system modeling the relationship between alcohol concentration
level in the blood (BAC) or breath (BrAC) and transdermal
alcohol concentration (TAC) measured on the surface of the
skin by a wearable, non-invasive, electro-chemical biosensor is
considered. The parameter-dependent impulse response func-
tion (IRF) and system output in the form of a convolution
are expressed in terms of an analytic semigroup of operators
with regularly dissipative generator set in a Gelfand triple of
Hilbert spaces. The Fréchet derivative of the analytic semigroup
in this setting is used to study the variation in the response
function resulting from the uncertainties in the parameters
described by probability distributions whose statistics depend
on regression models with covariates as predictor variables.
Finite dimensional approximation of the infinite dimensional
state space system and the multi-variate delta method for
nonlinear functions of random vectors with asymptotically
normal distributions are used to obtain approximating uniform
confidence bands for the IRF and the TAC output signal. Con-
vergence of the approximations and three different techniques
for obtaining the confidence bands are analyzed and compared.

I. INTRODUCTION.

We consider a SISO abstract parabolic population model
for the transdermal transport of ethanol from the blood-rich
dermal layer of the skin through the blood-poor epidermal
layer and its collection and measurement by an elecro-
chemical biosensor on the skin surface. The model takes
the form a hybrid ODE/PDE initial boundary value problem
with two unknown and directly unmeasurable parameters
which vary with covariates that include characteristics of
the study participant or patient wearing the sensor, environ-
mental conditions (e.g ambient temperature and humidity)
and the manufacturer and bench calibration of the senor
hardware. The input to the model is blood or breath alcohol
concentration (BAC/BrAC) and the output is transdermal
alcohol concentration or level (TAC). The ultimate goal is to
deconvolve a BAC/BrAC estimate from TAC observations.

Our model is a population model in that we consider the
unknown parameters to be the response variables of a sta-
tistical regression with the covariates as predictor variables.
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In our study here we focus on quantifying the propagation
of the uncertainty in the parameters through the model to
the impulse response function (IRF) and the convolved TAC
output signal. Our approach is based on a Taylor series-
based statistical technique known as the multi-variate delta
method [2], [3] and the Fréchet derivative of the analytic
semigroup [13] that describes the evolution of the system. In
an earlier effort [6] we derived conservative naive confidence
bands; here we construct tighter uniform confidence bands
via techniques specifically applicable to convolutions [8].

II. THE EVOLUTION SYSTEM AND ITS FINITE
DIMENSIONAL APPROXIMATION.

In this section We summarize the underlying model, its
finite dimensional approximation, and its input/output map
in the form of a convolution. Details can be found in [4],
[6], [7].

A. A First Principles Model for Transdermal Transport of
Ethanol

We consider a first principles, linear, hybrid, SISO system
for the transdermal transport of ethanol from the blood to
the sensor. For t > 0 and 0 < η < 1, we have

∂x

∂t
(t, η) = q1

∂2x

∂η2
(t, η), (1)

dw

dt
(t) = q1

∂x

∂η
(t, 0), y(t) = w(t),

with x(t, 0) = w(t), x(t, 1) = q2u(t), w(0) = w0, and
x(0, η) = φ0(η). The ODE describes the inflow/outflow
dynamics of the sensor itself, while the parabolic PDE is
intended to capture the diffusion of ethanol molecules within
the interstitial fluid between the cells in the epidermal layer
of the skin. The epidermal layer does not have an active
blood supply; its constituent components are made up of a
combination of living and dead cells that obtain nourishment
from the dermal layer of the skin via the interstitial fluid. In
(1), x(t, η) is the concentration of ethanol in the epidermal
layer at time t and dimensionless depth η ∈ [0, 1]. The
ethanol concentration in the biosensor collection chamber is
w(t). The output is the observed TAC signal, y(t), and it is
equal to w(t). The input, the BAC or BrAC signal, is u(t).
There are two unmeasurable, physiologically-, hardware-,
and environmentally-dependent parameters, q = [q1, q2]. The
dimensionless q1 is essentially the diffusivity of ethanol
in the epidermal interstitial fluid and the dimensionless q2

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 6205



models the product of the alcohol impedance between the
epidermal and dermal layers and the alcohol impedance
between the epidermal layer and the membrane covering the
collection chamber of the sensor where it contacts the skin.

Note that the input to (1) is on the boundary of the spatial
domain [0, 1]. However, the sensor has a sampling time
τ > 0 and the sampled time state space formulation has the
advantage that the input operator is bounded [4]. We assume
zero-order hold input, u(t) = uk, t ∈ [kτ, (k + 1)τ), k =
0, 1, 2, . . . ,K where T = Kτ . We set xk = xk(η) =
x(kτ, η), wk = w(kτ), and yk = y(kτ), k = 0, 1, . . . ,K.
Letting v(t, η) = x(t, η)− ξ(η)uk with ξ(η) = q2η, for 0 <
η < 1, and kτ ≤ t < (k + 1)τ , each k = 0, 1, 2, . . . ,K, (1)
becomes ∂v

∂t (t, η) = q1
∂2v
∂η2 (t, η), dw

dt (t) = q1
∂v
∂η (t, 0)+q2uk,

with v(t, 0) = w(t), v(t, 1) = 0, and v(kτ, ·) = xk − ξuk.

B. The State Space Formulation

Let Q be a compact subset of the positive orthant
of R2. Define H = R × L2(0, 1) with the inner prod-
uct ⟨(θ1, φ1), (θ2, φ2)⟩ = θ1θ2 +

∫ 1

0
φ1(η)φ2(η)dη. Fur-

ther, let V = {(θ, φ) ∈ H : φ ∈ H1(0, 1), θ =
φ(0), φ(1) = 0} be a Hilbert space with inner prod-
uct ⟨(φ1(0), φ1), (φ2(0), φ2)⟩V = ⟨φ′

1, φ
′
2⟩L2(0,1), where

⟨·, ·⟩L2(0,1) denotes the standard L2(0, 1) inner product. Let
| · | and || · || denote respectively the norms induced by
these two inner products on their respective spaces. In this
way, standard arguments yield the dense and continuous
embeddings V ↪→ H ↪→ V ∗ [14].

For each q ∈ Q, a(q; ·, ·) : V × V → R is
a(q; φ̂1, φ̂2) = q1

∫ 1

0
φ′
1(η)φ

′
2(η)dη, φ1, φ2 ∈ V where

φ̂1 = (φ1(0), φ1), φ̂2 = (φ2(0), φ2). It is easily shown that
this sesquilinear form is bounded and coercive uniformly
in q for q ∈ Q and that it is continuous and affine
with respect to q ∈ Q [4]. Define the operator A(q) :
Dom(A(q)) ⊂ H → H by letting ⟨A(q)φ̂, ψ̂⟩V ∗,V =
−a(q; φ̂, ψ̂) and setting Dom(A(q)) = {ϕ̂ = (φ(0), φ) ∈
V : φ ∈ H2(0, 1)}. Note that the domain Dom(A(q)) does
not depend on q, and for φ̂ ∈ Dom(A(q)), we have A(q)φ̂ =
A(q)(φ(0), φ) = (q1φ

′(0), q1φ
′′). Standard arguments yield

A(q) densely defined on H , regularly dissipative and self-
adjoint [1], [16]. Hence, A(q) is the infinitesimal generator
of a uniformly exponentially stable, self-adjoint, analytic
semigroup of bounded linear operators, {T (q; t) : t ≥ 0},
or {eA(q)t : t ≥ 0}, on H [1], [11], [16].

With these definitions, the model on kτ ≤ t < (k + 1)τ
can be rewritten as dv̂

dt (t) = A(q)v̂(t) + q1q2 (1, 0)uk, with
initial conditions v̂(kτ) = (wk, xk − ξuk). We set x̂k =
(wk, xk), and let Â(q) = T (q; τ) = eA(q)τ ∈ L(H,H),
B(q) = q1q2 (1, 0) ∈ L(R1, H), and B̂(q) ∈ L(R1, H)

by B̂(q) =
(
I − Â(q)

)
((0, ξ) −

∫ τ

0
eA(q)s)B(q)ds =

q2

(
I − Â(q)

) (
(0, η)− q1A(q)

−1(1, 0)
)

∈ L(R1, H).
Note that A(q) elliptic implies A(q)−1 ∈ L(H,H) exists.

Recalling that v(t, η) = x(t, η)−ξ(η)uk, these definitions
together with the variation of constants formula yield the
state space form of the model as x̂k+1 = (wk+1, xk+1) =
(w((k + 1)τ), x((k + 1)τ, ·)) = v̂((k + 1)τ) + (0, ξ)uk =

eA(q)τ (wk, xk−ξuk)+q1q2
∫ τ

0
eA(q)s (1, 0) dsuk+(0, ξ)uk.

Setting the output operator Ĉ ∈ L(H,R) as Ĉ(θ, ϕ) = θ
for (θ, ϕ) ∈ H , the discrete time model now becomes
x̂k+1 = Â(q)x̂k + B̂(q)uk, yk = Ĉx̂k, k = 0, 1, 2, . . . ,K.
We assume that neither the epidermal layer nor the sensor
collection chamber contains any alcohol at time t = 0,
so x̂0 = (w0, x0) = (0, 0). Consequently, the output y of
the discrete time system can then be written as a discrete
time convolution of the input, u, with a filter, h(q), as
yk =

∑k−1
j=0 ĈÂ(q)

k−j−1B̂(q)uj =
∑k−1

j=0 hk−j−1(q)uj ,
k = 1, 2, ...,K. The convolution kernel or filter is given by
hi(q) = ĈÂ(q)iB̂(q), i = 0, 1, 2, ...,K − 1.

For N = 1, 2, ..., let {φN
j }Nj=0 ⊂ H1(0, 1) be the set

of linear splines on the interval [0, 1] corresponding to the
uniform mesh {0, 1

N ,
2
N , ..., 1} given by φN

0 (x) = 1 − Nx
if x ∈ [0, 1

N ], φN
0 (x) = 0 otherwise, φN

N (x) = Nx−N + 1
if x ∈ [N−1

N , 1], φN
N (x) = 0 otherwise, and for j =

1, 2, ..., N − 1, φN
j (x) = Nx − j + 1 if x ∈ [ j−1

N , j
N ],

φN
j (x) = j+1−Nx if x ∈ [ j

N ,
j+1
N ], φN

j (x) = 0 otherwise.
Let V N = span{φ̂N

j }N−1
j=0 = span{(φN

j (0), φN
j )}N−1

j=0 . Then
V N is a subspace of V , and the properties of splines [1],
[12] yield that for any v ∈ V , there exists a uN ∈ V N with
||uN − v||V → 0 as N → ∞.

Let PN : H → V N be the orthogonal projection of
H onto V N and let AN (q) ∈ L(V N , V N ) be given by
< AN (q)φ̂N , ψ̂N >= −a(q; φ̂N , ψ̂N ), for φ̂N , ψ̂N ∈ V N .
It follows that PN converges strongly to the identity on
H . We set ÂN (q) = eA

N (q)τ ∈ L(V N , V N ), B̂N (q) =
q2(I − ÂN (q))

(
PN (0, η)− q1A

N (q)−1PN (1, 0)
)

∈
L(Rm, V N ), and ĈN = Ĉ ∈ L(V N ,R). The definition of
AN (q), the compactness of Q, and the uniform coercivity
of a(q; ·, ·) yield the uniform exponential bound on eA

N (q)t

and that Rλ(A
N (q))PN φ̂→ Rλ(A(q))φ̂ as N → ∞ in H ,

V and V ∗ for every φ̂ ∈ H (or V or V ∗, as the case may
be). It follows that ÂN (q) = eA

N (q)τPN converges strongly
to Â(q) = T (q; τ) on H uniformly in q for q ∈ Q.

The approximating model is then given by yNk =∑k−1
j=0 h

N
k−j−1(q)uj , k = 1, 2, ...K, where hNi (q) =

CN ÂN (q)iB̂N (q), i = 0, 1, 2, ...K − 1, with hNi (q) con-
verging to hi(q) in R, uniformly in q for q ∈ Q and i in
{0, 1, 2, ...,K−1} and yNk converging to yk in R, uniformly
in q for q ∈ Q and k in {1, 2, ...,K}.

C. The Fréchet Derivative of the Analytic Semigroup.

The delta method requires the differentiation of the IRF
which in turn requires the Fréchet derivative of the analytic
semigroup, DT (q0; t), at q0 ∈ Q. We consider the sector in
C contained in the resolvent set ρ(A(q)) for all q ∈ Q given
by

Σγ =

{
λ ∈ C| arg(λ− λ0)| ≤

π

2
+ θγ

}
where γ ∈ (0, 1) is a constant, and α1 = 1+α0/µ0 and θγ =
tan−1

(
α1/(1− γ)

)
where α0, µ0, and λ0 are the (uniform

in q ∈ Q) boundedness and coercivity constants (see [6])
for the form a(q; ·, ·) : V × V → R. It can then be shown
[11], [16] that the resolvent of the infinitesimal generator
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A(q), R (λ; q) =
(
λI −A(q)

)−1
, is uniformly bounded for

all λ ∈ Σγ in the sense that ∥R(λ, q)∥V ∗,V ≤ 1/(α2γ) [13].
It then follows that the map q → R(λ, q) has a uniformly (in
Σγ) norm-convergent power series representation in terms of
A(δq) and thus has Fréchet derivative D

DqR(λ, q) acting on
δq as a linear map from Q to L(V ∗, V ). Moreover, for fixed
γ ∈ (0, 1) and q ∈ Q, D

DqR(λ, q)δq = R(λ, q)A(δq)R(λ, q)
[13].

In addition, the operator T (q; t) can be expressed as
an operator contour integral of the form T (q; t) =
1

2πi

∫
∂Σγ

eλtR(λ, q) dλ for t > 0 and q ∈ Q [11]. Com-
bining this with the uniform boundedness and analyticity of
R(λ, q), and the dominated convergence theorem, one can
conclude [13] that the Fréchet derivative of operator T (q; t)
acting on δq exists and is given by

DT (q; t)δq = (2)
1

2πi

∫
∂Σγ

eλtR(λ, q)A(δq)R(λ, q)dλ.

Analogously, from the definition of the approximating
semigroup, particularly the definition of its infinitesimal
generator, the coercivity and boundedness conditions must
be satisfied for all N . Thus we have that Σγ , which depends
only on the coercivity and boundedness constants, is con-
tained in the resolvent set ρ(AN (q)) and that for q ∈ Q, the
resolvent operator RN (λ, q) is uniformly bounded for all λ ∈
Σγ . The operators TN (q; t) can be expressed as a contour
integral of the form TN (q; t) = 1

2πi

∫
∂Σγ

eλtRN (λ, q) dλ for
t > 0 and q ∈ Q [11]. We conclude that D

DqR
N (λ, q)δq =

RN (λ, q)AN (δq)RN (λ, q). The dominated convergence the-
orem and uniform boundedness of the resolvent operators
then yield

D

Dq
TN (q; t)δq = (3)

1

2πi

∫
∂Σγ

eλtRN (λ, q)AN (δq)RN (λ, q) dλ.

Under these same assumptions, it can be argued that
D
DqT

N (q; t)PNφ → D
DqT (q; t)φ in the V ∗-norm as N →

∞, uniformly in t for t > 0 for every φ ∈ H [6]. The
argument is based on the bounds for the resolvent given
in Lemma 3.6.1 in [16], and, considering the fact that
A(δq) ∈ L(V, V ∗), we have that R(λ, q)A(δq)R(λ, q) ∈
L(H,V ∗), with ∥R(λ, q)A(δq)R(λ, q)∥L(H,V ∗) ≤ L1

|λ|
3
2

,

for some L1 > 0. Analogously we also have that
∥RN (λ, q)AN (δq)RN (λ, q)PN∥L(H,V ∗) ≤ L1

|λ|
3
2

. Using

the strong convergence of the resolvents, RN (λ, t)PN →
R(λ, t) in V and H and density arguments in V ∗, the
dominated convergence theorem yields the desired result.
Finally, the fact that the parameter space, Q ⊂ R2 is finite
dimensional, we get that D

DqT
N (q; t)PNφ→ D

DqT (q; t)φ in
L(R2, V ∗) as N → ∞ uniformly in t for t > 0.

III. THE DELTA METHOD.

A. The Multivariate Delta Method

The delta method is based on the following result [2], [3].
If g : Rr 7→ Rd is such that Dg(x) is continuous in a neigh-
borhood of µ ∈ Rd, and Xn is a sequence of r-dimensional
random variables such that

√
n (Xn − µ) → X in dis-

tribution for some r-dimensional random variable X, then√
n
(
g(Xn)− g(µ)

)
→ Dg(µ)X in distribution as n→ ∞

Let q0 ∈ Q ⊆ Rr be fixed and Γ ∈ Rr×r be a
positive definite matrix. We assume there exists a sequence
of random variables {qn} with support in Q with constant
order expectation E[qi] = q0+ o

(
1/
√
n
)

for i = 1, 2... such
that

√
n (qn − q0) → N(0,Γ) in distribution as n → ∞

where N(0,Γ) denotes the r-dimensional multivariate normal
random variable with mean 0 and covariance matrix Γ. For
our study, since the random sequence qn usually originates
from estimations based on standard regression approaches,
the asymptotic normality assumption can be realized with
minor conditions on the data.

Now for a multivariate scalar-valued delta method, con-
sider a given function g : Rr 7→ R with continuous first-
degree partial derivatives ∂g

qj
, j = 1, ..., r. The gradient of

g as Dg(q) :=
[
∂g
qj

]
j
∈ Rr. If Dg(q0) is non-zero and∑

i,j Γi,j
∂g(q0)

qi

∂g(q0)
qj

> 0, then
√
n
(
g(qn)− g(q0)

)
→

N
(
0, (Dg(q0))Γ(Dg(q0))

⊺
)

in distribution as n→ ∞.
The purpose of the additional condition on the

sum is to ensure that the resulting variance Γg :=

(Dg(q0))Γ(Dg(q0))
⊺ =

∑
i,j Γi,j

∂g(q0)
qi

∂g(q0)
qj

is positive,
corresponding to the positive definite case for the multivari-
ate normal distribution. In the particular example of interest
to us here, the dimension of the parameter space Rr is
typically r = 1 or r = 2, and the model is SISO and
consequently d = 1.

B. Delta Method Based Confidence Bands.

It is clear that the operators B̂(q) and Ĉ(q) are Fréchet
differentiable with respect to q. Recalling that hk(q) =
Ĉ(q)Â(q)kB̂(q) ∈ R, k = 0, 1, ...K − 1, we consider
the response to a unit impulse at a specific discrete time
k which corresponds to hk(q). Note that hk(q) : Q 7→
R can be viewed as a multivariate scalar-valued function
with directional derivatives in the classical sense. In [6]
we have shown that hk(q) =

〈
Ĉ(q), Âk(q)B̂(q)

〉
H

=〈
Ĉ(q), T (q; kτ)B̂(q)

〉
H

, where B̂(q), Ĉ(q) ∈ H and we

can recover the partial derivatives ∂hk(q)
∂qs

.
It then follows from the delta method that the asymp-

totic distribution of hk(q) can be obtained. Indeed, as-
suming that the partial derivatives of hk(q) are non-
zero at q0 and denoting ∇hk(q) ∈ R2 as the gradient,
then

√
n
(
hk(qn)− hk(q0)

)
converges in distribution to

N
(
0,
(
∇hk(q0))⊺Γ(∇hk(q0)

))
as n→ ∞

Denoting Γk = ∇hk(q0))⊺Γ(∇hk(q0) ∈ R, the (1− α)%
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confidence interval of the response is given by(
hk(q0)− zα/2

1
√
nk

(Γk)
1
2 , hk(q0) + zα/2

1
√
nk

(Γk)
1
2

)

where zα/2 denotes the α
2 -th quantile of the standard normal.

Similarly, the asymptotic distribution of the finite-
dimensional approximating convolution is analogous and if
Ĉ(q) ∈ V , then (Dhk)

N (q) converges to Dhk(q) uniformly
in q for q ∈ Q [6]. In particular, the convergence holds for
q0. Hence we conclude that (Γk)

N converges to Γk in R,
and so does the confidence band.

Recall that hk(q) =
(∑k

j=0 hk−j(q)uj

)
= yk+1 is the

response of the evolution system to a unit impulse input at
time k = 0, with u0 = 1 ∈ R and uk = 0 for all k > 0.
We generalize this result and consider yk = yk(q) for some
fixed k = 0, 1, ...,K − 1 with any constant input {uj}k−1

j=0 .
Since hk(q) is differentiable for all k = 0, 1, ...,K − 1, by
linearity, it follows that the response function at time k, yk =
yk(q), can be viewed as a function from R2 to R and is
continuously differentiable with derivative Dyk(q) ∈ R2 and
whose closed-form can be computed explicitly [6]. Applying
the delta-method to yk(q), we find that if Dyk(q0) is non-
zero, then

√
n
(
yk(qn)− yk(q0)

)
→ N

(
0, (Dyk(q0))Γ(Dyk(q0))

⊺
)

in distribution as n→ ∞.
Denoting (Dyk(q0))Γ(Dyk(q0))

⊺ > 0 as Γk ∈ R, then
for large nk, yk = yk(qnk

) is approximately normally
distributed with mean yk(q0) and variance 1

nk
Γk. Since

yk ∈ R, we construct the (1− α)% confidence interval in a
similar manner.(

yk(q0)− zα/2
1

√
nk

(Γk)
1
2 , yk(q0) + zα/2

1
√
nk

(Γk)
1
2

)

Observe that yk(q) can be viewed as a linear combination
of hl for l = 0, 1, ...,K − 1. Consequently, the finite-
dimensional response function DyNk (q) converges to Dyk(q)
uniformly in q for all q ∈ Q. In particular DyNk (q0)
converges element-wise to Dyk(q0) in R2 and ΓN

k converges
to Γk in R. It follows that for fixed large nk, yNk (qnk

)
converges in distribution to yk(qnk

) as N → ∞. Hence
the confidence band for the finite-dimensional approximation
converges to that for the infinite-dimensional system.

IV. UNIFORM CONFIDENCE BANDS

We will construct in general three different types of
confidence bands for the response y(q) = (y1, ..., yK) based
on the asymptotic distribution for yk(q) we presented in
the previous section. For each method, we also investigate
the convergence of the finite-dimensional approximation.
The implementation of the methods will be demonstrated
in Section V with an example.

A. Joint Confidence Band Based on Individual Elements

Let [y−k , y
+
k ] be the corresponding (1−α)% confidence set

for yk. In a naı̈ve attempt, one can construct the uniform/joint
confidence band by connecting all individual confidence
bands as

⊗K
k=1[y

−α
k , y+α

k ]. However, the coverage of the
resulting band will be substantially lower than the desired
level. If we assume that yk’s are independent, then the
confidence level of the naive band is (1−α)K . The method
we introduce in this section builds on the same idea of
combining individual confidence sets of yk, but instead,
adjusts the levels of confidence at each yk to account for
the loss of coverage in the joint confidence band.

The Bonferroni band is a common variation of the naı̈ve
band. For k = 1, ...,K, consider the

(
1− α/(K)

)
confi-

dence level. Denote Ak as the event that the confidence set
of yk contains the true curve, then we can find a lower bound
for the confidence coverage of the Bonferroni bound by

P

 K⋂
k=1

Ak

 = P


 K⋃

k=1

Ac
i

c
 = 1− P

 K⋃
k=1

Ac
i


≥ 1−

K∑
k=1

P (Ac
i ) = 1−K ∗ (α/K) = 1− α.

In other words, the coverage is at least (1 − α), giving
a conservative estimate for the true curve. It has been
noted that if the correlation between individual points is
significant, the bandwidth might be substantially larger than
the desired level [8]. The joint confidence band is given by⊗K

k=1[y
−α/K
k , y

+α/K
k ].

An alternative adjustment for the individual confidence
level is suggested by Zbyněk ŠidáK in [15]. The proposed
marginal coverage level is (1 − α)1/K , and the corre-
sponding quantile under normal distribution is given by
1 − 1−(1−α)1/K

2 . The coverage level was derived under
the assumption that yk’s are independent normal random
variables, which agrees with our assumption in III-B. In
practice, it is noted in [9] that (1−α)1/K and

(
1− α/(K)

)
are fairly similar with small α and large K, and the resulting
confidence bands will have very little difference in the width.

Since the confidence bands described in this section are all
computed as deterministic functions of Γk, it follows directly
that the convergence result in III-B implies the convergence
of the confidence bands as well.

B. Uniform Elliptical Confidence Band

So far, the confidence bands we have considered did not
account for the correlation between individual time points
yk. In the previous section, we indicated that the adjusted
marginal confidence levels do not depend on the distribution
of yk’s but rather relied on probability inequalities to achieve
a desired overall confidence level. In this section we present
the method referred to as the Wald’s Band in [5] and [8].

Suppose we have obtained that
√
n(y − y0) → N(0,Γ) in distribution
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for y, y0 ∈ RK and Γ ∈ RK×K positive definite. Then the
confidence set, Wald’s Ellipse, can be defined as

W(1− α) :=
{
y ∈ R

K |(y − y0)
⊺Γ−1(y − y0) ≤ χ2

K,1−α

}
where χ2

K,1−α gives the (1 − α) quantitle of the χ2 dis-
tribution with K degrees of freedom. The advantage of this
construction is that we obtain a set that gives the exact confi-
dence level we want and the joint distribution incorporates all
the possible correlation structures between individual points.
However, there are several challenges associated with this
approach. First, the confidence set in RK is not directly
visualizable for higher dimensions. To obtain a confidence
band in the form of

⊗K
k=1[y

−α
k , y+α

k ], we will study the
projection of W(1− α) onto the coordinates of y as

WCI(1− α) =

K⊗
k=1

[ min
y∈W(1−α)

yk, max
y∈W(1−α)

yk]

which adds an additional layer of complexity to our com-
putation and convergence argument. Moreover, the method
requires that Γ is non-degenerating or invertible, which is, in
general, not the case in applications where the dimension of
the parameter space r (in our case, r = 2) is much less than
the size of discretization K. Even though the existence of an
asymptotically valid joint confidence set with degenerating
covariance matrix has been established in [5], construction of
such a confidence set relies on approximation methods such
as bootstrapping and the power of the confidence set suffer
from significant loss during the projection. Recent studies
have further demonstrated that the projection set, which
includes the Wald ellipse W(1 − α), is overly conservative
even compared to the Bonferroni set discussed above [10].

Convergence of the approximating confidence bands fol-
lows from the fact that ΓN converges to Γ element-wise as
in III-B. With the additional assumption that ΓN and Γ are
both positve-definite, we conclude that (ΓN )−1 converges to
Γ−1 element-wise, and thus the confidence set WN (1− α)
converges to W(1 − α) in the sense that ∀y ∈ W(1 − α),
∃ a sequence {yN} such that yN ∈ WN (1 − α) and
yN → y element-wise in RK . The convergence implies the
corresponding convergence in min/max of yk and hence in
the projection set WCI(1− α).

C. Uniform Supremum Bands for the Convolution System

Consider the (1 − α)% confidence band of the form
B(c) :=

⊗K
k=1[y

−α
k , y+α

k ] =
⊗K

k=1[yk−cα∗σk, yk+cα∗σk]
for some cα > 0 depending on α. It can be shown that
the confidence bands in previous sections all fall into this
single-parameter family [9] with different critical values cα.
In this section, we present the asymptotically optimal single-
parameter confidence band in this setting.

Assuming that
√
n(y− ỹ) → N(0,Γ) in distribution, then

according to [10], the asymptotic coverage of any single-
parameter confidence band can be realized as

P
(
y ∈ B(c)

)
→ P

(
max

k∈1,...,K

|yk − ỹk|√
Γkk

≤ c

)

where Γkk = σk denotes the k-th diagonal element of Γ.
We look for critical values of c such that the probability on
the right-hand side of the convergence is exactly (1 − α).
Note that since the yk’s are jointly normal, the cumulative
distribution of maxk∈1,...,K

|yk−ỹk|√
Γkk

can be computed as the
joint maximum of correlated normal random variables, which
is a function of the covariance matrix Γ as

P

(
max

k∈1,...,K

|yk − ỹk|√
Γkk

≤ c

)
= P

 K⋂
k=1

|yk − ỹk| ≤ c ∗ σk


= F (c; Γ).

The critical value ccritα is determined by the (1−α)% quantile
of the random variable with cdf F (c; Γ), with the confidence
band known as the Sup-t band then given by

⊗K
k=1[yk −

ccritα ∗σk, yk+ccritα ∗σk]. By construction, the confidence band
has asymptotic coverage of exactly (1− α), and provides a
smaller critical value, or equivalently narrower bandwidth,
compared to the other types of single-parameter confidence
discussed earlier [10].

For fixed values of c, the function F (c; Γ) = F (Γ) is
continuous with respect to Γ, or to all entries of Γ. Thus
our convergence results for ΓN in the finite-dimensional
approximation of the system extend naturally to F (ΓN ) →
F (Γ) and to the convergence of the critical values.

V. AN EXAMPLE AND NUMERICAL STUDIES

We have r = 2 and A(q)φ̂ = A(q)(φ(0), φ) =
q1(φ

′(0), φ′′) = q1Aφ̂, where A : Dom(A) ⊂ H → H
is given by A(φ(0), φ) = (φ′(0), φ′′) with Dom(A) =
{φ̂ = (φ(0), φ) ∈ V : φ ∈ H2(0, 1)}. It follows that
hk(q) =

〈
Ĉ, Âk(q)B̂(q)

〉
H

=
〈
(1, 0), eq1Akτ B̂(q)

〉
H

,

where B̂(q) = q2(I−eq1Aτ )
(
(0, η)− q1A

−1 (1, 0)
)
. Letting

MN and q1K
N be the N × N Mass (Gram) and stiffness

matrices corresponding to the V N basis {φN
j }N−1

j=0 and the
operator A(q), AN (q) = −q1(MN )−1KN and hNk (q) =〈
[1,0T ]T , e−q1(M

N )−1KNkτ B̂N (q)
〉
RN

, where B̂N (q) =

q2(I − e−q1(M
N )−1KNτ )

(
(MN )−1η + (KN )−1[1,0T ]T

)
,

with 0 being the zero vector in RN−1 and η the vector of
inner products of (0, η) ∈ H and the basis {φ̂N

j }N−1
j=0 .

Denote ÂN (q) = ÂN (q1) = e−q1(M
N )−1KNτ , then

hNk (q) =
〈
[1,0T ]T , ÂN (q)kB̂N (q)

〉
RN

and B̂N (q) =

q2(I − ÂN (q)) ·
(
(MN )−1η + (KN )−1[1,0T ]T

)
. We

note that ∂ÂN (q)
∂q1

= −(MN )−1KNτÂN (q), ∂ÂN (q)
∂q2

= 0,
∂B̂N (q)

∂q1
= q2(−∂ÂN (q)

∂q1
)
(
(MN )−1η + (KN )−1[1,0T ]T

)
,

∂B̂N (q)
∂q2

= (I − ÂN (q))
(
(MN )−1η + (KN )−1[1,0T ]T

)
,

∂hN
k (q)
∂q1

= E1 + E2, and ∂hN
k (q)
∂q2

=〈
[1,0T ]T , ÂN (q)kB̂N (q)/q2

〉
RN

, where E1 =〈
[1,0T ]T , ÂN (q)k ∂B̂N (q)

∂q1

〉
RN

and E2 =〈
[1,0T ]T , kÂN (q)k−1

(
∂ÂN (q)

∂q1

)
B̂N (q)

〉
RN

.

We assumed q1 and q2 are independent with qi ∼
N(µi, σ

2
i ), i = 1, 2, where µ1 = 1.25, µ2 = 1.56, and
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σ2
1 = σ2

2 = 0.052. We set T = 5 and τ = 1/60 hours
(one minute or 1/60 Hz). To emphasize different types of
confidence bands, we choose a unit impulse as our input
(more complicated examples can be found in [7]). Applying
the delta method, we generated the naive 95% confidence
band plotted in Figure 1. We consider the single-parameter
confidence band family mentioned in Section IV, and com-
pute the marginal critical values for individual confidence
intervals. For the Wald’s band in Section IV-B, we apply the
result in [10] that the critical value of the projected Wald’s
confidence band is given by the corresponding

√
χ2
K,1−α

statistic. For the sup-t band in Section IV-C, we apply an
empirical method to determine the critical value for the
maximum of the jointly normal distribution. Note that the
relationship between different bands stated in IV holds for
our example, where the coverage width of each band in
increasing order is given as: Naı̈ve, Sup-t, Bonferroni/ŠidáK,
Wald’s Projection.

In addition to the plot in Figure 1, we included a chart of
absolute sequential differences in Figure 2 for the confidence
bandwidth CBk(q;α,N) ∈ RT/τ , and Abs. Diff.(N) =∥∥CBk+1(q;α,N)− CBk(q;α,N)

∥∥
1
,CB0 = 0, k =

1, 2, ..., T/τ . Observe that the differences drop quickly to-
wards zero for most of the confidence bandwidth, which in-
dicates the convergence of confidence bands as N increases.
For the sup-t band, the convergence is less convincing due
to the fact that approximation is required in order to find the
critical value. Being an empirical method, unlike the other
cases, the critical values for the sup-t band vary with N .

Fig. 1. 95% Confidence Bands for the IRF hk(black) or output yk from
unit impulse at time k = 0 with N = 60. The pink region represents
the sup-t band coverage, while only upper/lower bounds are provided for
the other bands. The continuous band is the interpolation of the discrete
confidence intervals discussed in Section IV determined at each time k,
k = 1, 2, ...,K, where K = 300 (τ = 1/60).

VI. CONCLUDING REMARKS AND FUTURE RESEARCH.

Using the delta method, we determined the asymptotic
distribution of the response function given the distribution of
the parameters q, and established methods for constructing
uniform confidence bands. Computations required the in-
troduction of finite-dimensional approximation and the con-
sideration of associated convergence issues. We established

Fig. 2. Table of Absolute Sequential Difference for Confidence Bandwidth

convergence of the approximating confidence bands and we
presented an example involving a SISO system modeling the
transdermal transport of ethanol and numerically illustrated
the convergence of the confidence bands for the IRF.

The problem of interest to us here has not been entirely
resolved. We are especially interested in finding confidence
bands for the inverse or deconvolution problem to quantify
the uncertainty in the deconvolved input signal (i.e. the
estimated BAC or BrAC) [4] due to the uncertainty in the
model parameters. Research on this problem is continuing.
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