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Abstract— Reinforcement learning (RL)-based traffic signal
control (TSC) optimizes signal switches through RL agents,
adapting to intersection updates. Yet, existing RL-based TSC
methods often demand substantial storage and computation
resources, impeding real-world implementation. This study
introduces a two-stage approach to compress the network,
maintaining performance. Firstly, we identify a compact net-
work via a removal-verification strategy. Secondly, pruning
yields an even sparser network. In addition, Multi-task RL
is adopted for multi-intersection TSC, reducing costs, and
boosting performance. Our extensive evaluation shows a com-
pressed network at 1/1432nd of original parameters, with an
11.2% enhancement over the best baseline. This work presents
an efficient RL-based TSC solution for real-world contexts,
offering insights into challenges and opportunities in the field.

I. INTRODUCTION

Reinforcement learning (RL) is a subfield of machine
learning that has recently gained attention in the field of
traffic signal control (TSC) which is an important aspect of
urban traffic management that regulates the flow of vehicles
to increase safety and efficiency at intersections [1]. The RL-
based TSC is an emerging approach that has been shown
to improve the performance of the TSC systems. Unlike
fixed timing plans, RL-based systems dynamically adjust to
real-time traffic changes, boosting flexibility and robustness.
The RL agent, informed of intersection states, leverages
past experiences for signal switch decisions. The RL-based
TSC has been explored in a variety of scenarios, including
isolated intersections [2], coordinated intersections [3] [4],
with promising results. However, the existing RL-based TSC
approaches tend to have high costs in terms of computation
and storage [5]. This is because these methods rely on com-
plex model structures and a large amount of computation to
ensure their performance [3]. This hinders their deployment
in real-world scenarios with limited computational resources.
As the TSC is a field with a broad application background, it
is important and desirable to strike a balance between model
performance and cost.

Sparsification is an effective approach to reducing model
complexity. However, improper sparsification can result in
the pruning of important network components and subse-
quent degradation of model performance. For instance, Fig. 1
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Fig. 1. The illustration of the compression of the TSC model is non-
trivial, especially at high sparsity. From dense (left) to compressed (right),
a significant sacrifice of ATT occurs when pruning 90% of the parameters.

illustrates a popular pruning method, structured pruning,
which reduces the number of neurons but also degrades
performance in the example shown in Fig. 1. Additionally,
when the number of parameters between the initial and target
models differs significantly, directly sparsifying the initial
network would cause a high sparsity level, leading to in-
creased control and storage and performance degradation [6].

To tackle these challenges, we propose a two-stage strat-
egy: initially identifying a smaller, promising dense network
and subsequently pruning it for sparsity.

In addition, we apply a multi-task reinforcement learning
approach [7] to address the TSC, enabling the network to
control all road intersections simultaneously. This reduces
storage and training expenses while enhancing performance
through shared intersection knowledge.

The contributions of the paper are summarized as follows:
• We propose an RL-based approach to the TSC that

balances model size and performance.
• We propose a practical two-stage approach to compress

a neural network while maintaining model performance.
• We perform extensive experiments on multiple datasets.

We compress the network up to only 1/1432nd of the
original number of model parameters, while simultane-
ously improving the results by 11.2% compared to the
best baseline.

II. RELATED WORK

Optimizing the TSC to alleviate traffic congestion has
been a challenge in transportation for a long time. Various
approaches have been studied in past decades to resolve this
problem. Among these, pre-timed methods control traffic
lights by employing cyclic control with pre-defined time
splits, while adaptive rule-based methods handle it by using
techniques such as MaxPressure [8] and SOTL [9]. However,
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these methods heavily rely on human experience and struggle
to adapt to modern life’s complex and dynamic traffic condi-
tions. Recently, RL-based approaches [2], [3], [10] have been
widely studied in this field, yielding promising outcomes.
However, few works emphasize computational efficiency and
storage consumption, limiting large-scale implementation.
Our EfficientLight achieves competitive traffic efficiency
performance while increasing computational efficiency by
employing fewer parameters compared to existing works.

Pruning is one of the most popular methods to re-
duce the model size and computation cost of neuron net-
works [11] [12]. Specifically, pruning aims to eliminate
redundant weights, neurons, and even layers in models. Many
works focus on magnitude-based pruning [13] [14], namely
to remove the component with the smallest magnitude. Here
the magnitude refers to not only the weights but also the
output sensitivity, gradients, or Hessian matrices of the
training loss [15] [16], while the component refers to not
only the weights but also neurons and layers. In our work,
we apply iterative magnitude pruning to boost the efficiency
of our RL models.

Multi-task learning, involving multiple optimization objec-
tives simultaneously, is a critical challenge in machine learn-
ing. It’s demonstrated value in robotics and reinforcement
learning (RL) systems [17], [18]. However, limited research
on the TSC exists in this field. Further research is necessary
to reveal potential benefits and challenges, enhancing traffic
control systems’ efficiency and performance.

III. PRELIMINARIES

Definition 1 (Traffic movement): A traffic movement is
defined as the route traffic traveling through intersections.
It could be uniquely characterized by a pair of incoming and
outgoing lanes. The traffic movement (l,m) means the traffic
enters the intersection through lane l and exits it through m.

Definition 2 (Signal phase): Traffic signal phases are a
set of pre-defined combinations of traffic movements that
do not conflict while vehicles pass through intersections.

Definition 3 (Pressure of each signal phase): A certain
combination of traffic movements is enabled at each traffic
signal phase. The pressure of the signal phase is the sum
of the discrepancies in the number of vehicles between
incoming and outgoing lanes in each traffic movement. In
phase p, we denote x(l,m) as the discrepancy between
incoming lane l and outgoing lane m, the pressure of phase
p is represented as

∑
(l,m) x(l,m), where (l,m) ∈ p.

Definition 4 (Pressure of intersection): The pressure of
an intersection is the difference between the sum of vehicles
on incoming lanes and the sum of vehicles on outgoing lanes.

Problem 1 (Multi-task RL for traffic signal control):
Following the definition of traditional multi-task
reinforcement learning [7], [17], We define our traffic
signal control problem in the multi-task RL framework as
the following: Given a set of intersections I = {I1, . . . , IN}
sampled over task distribution p(T ), the control process
of each task Ti could be described as a Markov decision
process Mi = ⟨Si,Ai,Ri, γi, Hi⟩, consisting a finite set of

states Si, a finite set of actions Ai, a reward function Ri, a
discounted factor γi and a finite episode length Hi.

In multi-task reinforcement learning, we use πϕ(at|st, z)
to represent the policy parameterized by ϕ, where z is the
task embedding. Our goal is to find the optimal policy to
maximize the expected return across all tasks sampled from
p(T ), which could be described as:

Jπ(ϕ) = ET ∼p(T )[Jπ,T (ϕ)] (1)

and the Jπ,T (ϕ) is the expected return induced by πϕ from
single task T .

l

m

Fig. 2. An illustration of the ATSC environment.

IV. METHOD

This paper introduces a novel solution to the traffic sig-
nal control challenge using Yang’s multi-task reinforcement
learning method [7]. This method utilizes a single base policy
network with multiple modules. A routing network that takes
task identity and observed state as inputs outputs probabil-
ities to weight the modules in the base policy network in
a soft manner, allowing task-specific policies to learn and
discover which modules to share across tasks. This method
also balances learning across tasks by adjusting the training
objectives for each task based on the policy’s confidence.

A. Simplify the Neural Network

1) Structured pruning: Initially, the network’s baseline
performance is gauged across various datasets. During prun-
ing, layers with identical functions are removed one by
one, and performance is checked after each removal. If
performance doesn’t drop significantly, the removal pro-
ceeds; otherwise, the layer is returned. Subsequently, neuron
count in layers is halved and performance is reassessed. If
consistent, the change stays; if not, neurons are reinstated.
The goal is a compact network with performance mirroring
the original, especially for the TSC.

2) Unstructured pruning: Unstructured pruning reduces a
neural network’s complexity by selectively removing some
non-zero weights, leading to a sparser model. This approach
is applied to the previous compact, dense model to balance
sparsity and performance. The pruning process starts by
setting two parameters: target sparsity (starget), indicating the
final weight proportion to prune, and pruning frequency (d),
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Fig. 3. Visualizing model reduction. Our two-stage method involves reducing layers and neurons to create a smaller network. During training, we remove
weights with the smallest absolute values as the weights presented differences, resulting in a sparse network with fewer parameters.

showing how often to increase sparsity during training. We
demonstrate the current model sparsity as follows:

scurrent =
starget

⌊ttotal/d⌋
· ⌊tcurrent/d⌋ (2)

where t represents the optimization steps. During training,
a binary mask with the same shape as the model’s weight
matrix indicates the sparsity pattern. The mask sets top k
weight magnitudes to 1 (retained) and others to 0 (pruned).
k is found using k = scurrent · n, with scurrent as the current
sparsity and n as total weights. The final sparse computation
can be described as:

fθ(x) = f(θ ·mask, x) (3)

After reaching the desired sparsity, the sparse model is
refined for better performance. This optimized network is
ideal for environments with limited computational power.

3) Combination of structured and unstructured pruning:
Our two-stage compression merges structured and unstruc-
tured pruning benefits. Compared to singular compression
methods, our initial structured pruning allows the model to
quickly reduce its size and inference time. The subsequent
unstructured pruning further reduces the model size and
increases its sparsity, ensuring that the model retains its
performance even in an extremely sparse state. However, it’s
essential to acknowledge that the unstructured sparse mode in
the second phase does not achieve acceleration under general
hardware. Yet, with specially designed sparse hardware, like
the Moffett S4 accelerator, this unstructured execution can
still be accelerated [19].

B. Agent Design

• State. State is conveyed per lane, segmented into k
equal parts. State variables encompass total active ve-
hicles (speed > 0.1 m/s) and total waiting vehicles
(speed ≤ 0.1 m/s) in each segment. Real-world data
accessibility underscores this design. State uniformity
across intersections adds practicality to our approach.

• Reward. We utilize the intersection’s negative pressure
as the reward [20].

• Action. The agent’s actions span all possible phases.

C. Process of Learning
Here, we employ a Soft Actor-Critic (SAC) to train our

policy. SAC is an off-policy actor-critic deep reinforce-
ment learning method. The actor seeks task success while

introducing randomness, fostering exploration for strategy
discovery and performance enhancement.

V. EXPERIMENTS

This section presents experimental studies. Sections A to
D provide related settings. We assess our approach through
efficiency (Section E) and cost (Section F). Additionally, an
ablation study (Section G) shows the performance of the
unstructured pruning method employed.

A. Experiments Settings

We test on CityFlow, an open-source simulator for realistic
traffic. It generates a road network as per settings. Traffic data
guides vehicle movement. The simulator feeds state to signal
control, executing actions from the method.

B. Dataset Description

We use four real-world road networks which are ab-
stracted from OpenStreetMap, with traffic flows extracted
from camera data. Fig. 4 presents a top view of these road
networks. The road networks in Hangzhou 1, Hangzhou 2,
and Jinan contain ten traffic flows each. Nine of these flows
were obtained by shifting the original vehicle appearance
times recorded in real-world data with random noise [5]. We
average results across ten flows per network.

C. Methods for Comparison

We compare our model with the following two categories
of methods: rule-based solutions and RL-based ones.

Rule-based Methods. Fixedtime [21]: This employs
preset cycle and phase times, common for stable traffic
scenarios. MaxPressure [8]: It selects the highest pressure
phase greedily. A state-of-the-art network-level signal control
method in transportation. SOTL [9]: It will switch to the next
phase once the number of waiting vehicles exceeds the pre-
defined threshold. EcoLight [22]: EcoLight is a threshold-
based model for scenarios with primitive conditions.

RL-based Methods. CoLight [3]: It is designed for the
multi-intersection scenario. It uses graph attentional networks
to facilitate communication. FRAP [2]: It is based on the
intuitive principle of phase competition in traffic signal
control. MPLight [4]: It tackles the problem of multi-
intersection traffic signal control, especially for large-scale
networks. TinyLight [5]: It is designed for devices with
extremely limited resources.
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(a) Hangzhou1 (b) Hangzhou2 (c) Jinan (d) Hangzhou3

Fig. 4. Road networks for real-world datasets. Blue dots are the traffic signals we control. (a) Baochu Rd. and Tiyuchang Rd., Hangzhou; (b) Tianmushan
Rd. and Xueyuan Rd., Hangzhou; (c) Dongfeng Dist., Jinan; (d) Gudang Dist., Hangzhou.

TABLE I
PERFORMANCE ON TWO REAL-WORLD SINGLE INTERSECTION ROAD

NETWORKS. EFFICIENTLIGHT AND EFFICIENTLIGHT (32X) ACHIEVE

ADVANCED PERFORMANCES.

Hangzhou-1 (1×1) Hangzhou-2 (1×1)

Travel Time Throughput Travel Time Throughput
(sec./veh.) (veh./min.) (sec./veh.) (veh./min.)

EcoLight 196.82 29.73 100.45 28.67
FixedTime 282.68 27.59 418.05 23.54
MaxPressure 121.23 31.19 103.98 28.62
SOTL 250.58 28.69 143.35 28.32
FRAP 129.65 30.79 107.74 28.353
MPLight 128.61 30.81 82.48 28.73
TinyLight 102.87 31.36 81.79 28.74
EfficientLight 87.90 31.51 71.45 28.72
EfficientLight (32x) 101.82 31.29 72.63 28.72

TABLE II
PERFORMANCE ON TWO REAL-WORLD MULTIPLE INTERSECTIONS ROAD

NETWORKS. EFFICIENTLIGHT-CENTRAL IS THE BEST.

Jinan (3×4) Hangzhou-3 (4×4)

Travel Time Throughput Travel Time Throughput
(sec./veh.) (veh./min.) (sec./veh.) (veh./min.))

EcoLight 384.43 92.08 371.05 45.12
FixedTime 457.21 86.27 689.02 39.75
MaxPressure 340.13 94.76 365.06 48.80
SOTL 424.67 90.02 354.13 48.60
CoLight 865.53 57.96 331.43 48.85
FRAP 327.90 95.10 330.15 45.83
MPLight 297.00 96.21 325.22 45.90
TinyLight 310.62 95.79 345.25 45.53
EfficientLight 283.95 102.88 334.58 48.86
EfficientLight-Central 270.99 102.88 321.85 48.86

D. Evaluation Metrics

• Travel time: A lower Average travel time (ATT) of all
vehicles signifies greater model efficiency.

• Throughput: Throughput is the count of completed
trips within a time frame. A higher throughput indicates
enhanced model efficiency.

Both of these metrics are widely adopted in previous works
on traffic signal control [1].

E. Performance Comparison

TABLE I and TABLE II report our experimental results
w.r.t. ATT and throughput (sec. = second, veh. = vehicle,
min. = minute). There are two versions, EfficientLight
and EfficientLight-Central. They utilize a single policy
network that achieves a sparse multiplier of 20 or 16. The
key distinction: EfficientLight controls a single intersection’s
signals, while EfficientLight-Central manages signals across
multiple intersections.

Please note that compared with most other RL-based
works, our models are implemented with less parameter size.

1) Single Intersection Scenarios: The results of models
on Hangzhou1 and Hangzhou2 are presented in TABLE I
(Colight is designed for multiple intersections, so it is not
covered in TABLE I). The results of the experiment indicate
that EfficientLight achieves advanced performances on both
metrics. The ATT of EfficientLight was found to be reduced
by 14.55% and 12.64% on the two datasets, respectively,
in comparison to the best baseline model, indicating a
significant reduction. To further compress the model size,
We increase the sparse multiplier to 32. Compared to all
baselines, EfficientLight (32x) requires the lowest ATT on
two datasets with much smaller costs.

2) Multiple Intersection Scenarios: The performance of
all models on Jinan and Hangzhou3 is presented in TA-
BLE II. Our results show that EfficientLight achieves su-
perior performance on both metrics when compared to base-
lines. Also, EfficientLight-Central achieves the best results
for both metrics on both datasets. The performance of
EfficientLight-Central is superior to the performance of Ef-
ficientLight, which indicates that sharing learned knowledge
from different intersections with traffic signal control can
effectively improve the performance of the model.

F. Resource Consumption

The cost of different models is evaluated in terms of
storage and computation. The measure of storage is the
number of policy network parameters, while the measure of
computation is in MACs (multiply-accumulate operations).
However, distinct equation implementations can significantly
alter additive computation count. To ensure a generalized
comparison, only multiplicative computations are considered
for MACs comparison. We create two types of scatter plots
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Fig. 5. Storage cost vs performance. Our methods achieve low ATT while utilizing a relatively small number of parameters.
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Fig. 6. Computational cost vs performance. Our methods achieve low ATT while requiring minimal computational resources.

that visualize the relationship between the cost and perfor-
mance. In both plots, our method is represented by yellow
five-pointed stars, other RL-based methods are represented
by blue crosses and Rule-Based methods are represented by
pink solid circles. Points closer to the origin represent lower
cost and smaller ATT. Fig. 5 shows the relationship between
storage cost and performance. On the multi-intersection
datasets, the number of parameters for the method in which
a neural network controls only one intersection is the sum of
the number of all network parameters. Fig. 6 shows the rela-
tionship between computational cost and performance. Note
that this second plot does not include the three Rule-Based
methods, as they do not involve multiplication operations.

1) Storage Costs:
• Single Intersection Scenarios. In Fig. 5, it can be seen

that on the single-intersection datasets of Hangzhou1
and Hangzhou2, our two models achieve the smallest
model size and ATT among RL-based methods.

• Multiple Intersection Scenarios. The EfficientLight-
Central method achieves the best tradeoff between
model size and performance on the datasets Hangzhou3
and Jinan, as indicated by the smallest parameter size
and ATT in Fig. 5. As for EfficientLight, on the
Hangzhou3 dataset. EfficientLight’s model size and
ATT are similar to those of TinyLight. And Efficient-
Light’s ATT is slightly higher (0.95% and 1.34% respec-
tively) than CoLight and FRAP, while with significantly
fewer model parameters (25.76% and 34.07% fewer re-

spectively). It has the fewest parameters and lowest ATT
on the Jinan dataset compared to the RL-based methods
other than MPLight and lower ATT than MPLight.

2) Computational Costs: In Fig. 6, our two models are
the closest to the origin for the single-junction datasets of
Hangzhou1 and Hangzhou2, and the multi-junction dataset of
Jinan. On the Hangzhou3 dataset, the ATT of EfficientLight
is 0.95%, 1.34%, and 2.88% higher than CoLight, FRAP,
and MPLight, respectively, but the computational effort is
only 1.94%, 1.02%, and 1.02% of these three methods,
respectively.

G. Ablation Study

In this ablation study, we extensively evaluate three
variants of the EfficientLight method: EL-Stochastic, EL-
FixedK, and EL-PostPrune. These variants were introduced
to prove the efficiency of the unstructured pruning by making
modifications to specific steps.

• EL-Stochastic randomly selects unchanged weights.
• EL-FixedK fixes k value.
• EL-PostPrune utilizes a one-time pruning approach,

after the completion of the training process.
Fig. 7 presents the training process of three methods

on the Hangang1 dataset. EfficientLight’s training curve
steadily rises with stability, in contrast to EL-Random’s
erratic behavior. This underscores EfficientLight’s efficacy in
preserving stability by eliminating weights with the smallest
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Fig. 7. Training curves of EfficientLight, EL-FixedK, and EL-Random.
The Reward of EfficientLight exhibits a consistent and steady increase over
time.

TABLE III
RESULTS OF SMALL-DENSE, EFFICIENTLIGHT AND EL-POSTPRUNE ON

DIFFERENT DATA SETS. EL-POSTPRUNE’S PERFORMANCE DROPS

CONSIDERABLY.

Hangzhou-1 (1×1) Hangzhou-2 (1×1)

ATT Throughput ATT Throughput
(sec./veh.) (veh./min.) (sec./veh.) (veh./min.)

Small-Dense 90.89 31.57 69.43 28.83
EL-PostPrune 500.25 24.45 922.02 16.43
EfficientLight 90.93 31.50 73.51 28.63

absolute values each epoch. EL-FixedK maintains stability
initially, with fewer weight cuts than EfficientLight. Yet, as
cuts rise, rewards plummet suddenly, recovering slowly. This
emphasizes EfficientLight’s gradual pruning for sustained
training stability.

TABLE III reports the results of three methods, Small-
Dense, EfficientLight, and EL-PostPrune, regarding one traf-
fic flow in Hangzhou1 and Hangzhou2. Small-dense refers to
the model obtained in the first stage. The results underscore
the benefit of in-training weight pruning, allowing the model
to learn using retained weights. Contrastingly, post-training
pruning can reduce accuracy.

VI. CONCLUSION

In this paper, we introduce EfficientLight, an RL-based ap-
proach to traffic signal control that balances cost and perfor-
mance. Our approach follows a two-stage process, involving
model structure compression and weight reduction. We also
introduce EfficientLight (32x), which sacrifices performance
for a smaller model, and EfficientLight-Central, which con-
trols multiple intersections with one neural network. In single
intersection settings, EfficientLight and EfficientLight (32x)
achieve minimal ATT with minimal storage and computa-
tional costs. In multi-intersection scenarios, EfficientLight-
Central surpasses all baseline models in performance, with
fewer parameters and relatively lower computation costs
than other RL-based methods. These results illustrate our
method’s capacity to deliver strong performance at a reason-
able cost.
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