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Abstract— We study the quadratic prediction error
method—i.e., nonlinear least squares—for a class of time-
varying parametric predictor models satisfying a certain
identifiability condition. While this method is known to
asymptotically achieve the optimal rate for a wide range
of problems, there have been no non-asymptotic results
matching these optimal rates outside of a select few,
typically linear, model classes. By leveraging modern tools
from learning with dependent data, we provide the first
rate-optimal non-asymptotic analysis of this method for
our more general setting of nonlinearly parametrized
model classes. Moreover, we show that our results can be
applied to a particular class of identifiable AutoRegressive
Moving Average (ARMA) models, resulting in the first
optimal non-asymptotic rates for identification of ARMA
models.

I. INTRODUCTION

Identifying predictive models from data is of critical
importance in a wide range of fields, from classical
control theory and signal processing to modern machine
learning. To this end, a significant line of work in system
identification has been devoted to identifying predictor
models of the form:

Yt = ft(Xt, θ⋆) +Wt, (1)

from sequential data (X0, Y0), . . . , (XT−1, YT−1). We
typically refer to the variables Xt as the inputs and the
variables Yt as the outputs, with the inputs allowed to
have a causal dependence on past outputs. However, we
do not restrict attention to input-output models in the
sense that (1) may well be autonomous, cf. (2) below.

Assuming that the regression functions ft(·, ·) are
known, a standard approach for estimating the unknown
parameter θ⋆ is to minimize the quadratic criterion:

LT (θ) :=
1

T

T−1∑
t=0

(ft(Xt, θ)− Yt)
2
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over a parameter class M which is assumed to contain
θ⋆. This approach yields the quadratic prediction error
method, also referred to as nonlinear least squares.

As a motivating example, consider the classical pre-
diction error method for AutoRegressive Moving Aver-
age (ARMA) models of the form:

Yt =

p∑
i=1

a⋆i Yt−i +

q∑
j=0

b⋆jWt−j (2)

from system identification [1], [2]. Such mod-
els can be cast in the form (1) with parameter
θ⋆ :=

[
a⋆1, . . . , a

⋆
p, b

⋆
0, . . . , b

⋆
q

]⊺
and inputs Xt :=[

Y0, . . . , Yt−1

]⊺
. To convert (2) to the form (1), one

selects ft(·, ·) to be the conditional expectation of Yt
given all the past data Y0, . . . , Yt−1. We return to this
example in more detail in Section V.

While the asymptotic rates of prediction error meth-
ods are by now well understood—including opti-
mal rates of convergence [1] as characterized by the
Cramér-Rao Inequality—less is known about their non-
asymptotic counterparts. Some early progress on extend-
ing these ideas to the finite-sample regime was made in
[3]. However, the bounds therein are both qualitatively
and quantitatively loose as compared to older asymptotic
results.

A few years ago, drawing upon recent advances in
high-dimensional statistics and probability [4], [5], non-
asymptotic rates nearly as sharp as the older known
asymptotics were derived for the particular case of fully
observed ARMA models, given by Yt = a⋆1Yt−1 +Wt

[6], [7]. Soon thereafter, classical subspace methods
from system identification, based on higher-order linear
autoregressions [8]–[10], were also given a refined non-
asymptotic analysis [11]. Note that in contrast to the
general prediction error method, the algorithms in [6],
[7], [11] are based on linear least squares. For a broader
overview of recent results on non-asymptotic learning
and identification of linear models, refer to [12], [13].

As for learning and identification of nonlinear models
of the form (1), progress on non-asymptotic analysis has
proven somewhat slower. The special case of a general-
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ized linear model (i.e., a first-order linear autoregression
composed with a static known nonlinearity) is analyzed
in [14], [15]. At a technical level, the goal has primarily
been to sidestep—as much as possible—the blocking
technique [16], which has otherwise been a dominant
approach to deriving non-asymptotic guarantees for
learning with dependent data [17]–[21]. In brief, the
blocking technique splits a dependent sample {Zt}T−1

t=0

into independent blocks, say {Zt}kt=1, {Zt}2kk+1, . . ., and
then proceeds to treat each block as an independent dat-
apoint. The caveat of this technique is that it reduces the
effective sample size (e.g., here by a factor of k) and thus
typically does not yield optimal rates of convergence.
To provide some intuition, k above can be thought of as
an analogue to the inverse stability margin of a linear
system, and in fact, the blocking technique cannot be
applied to marginally stable linear autoregressions. By
contrast, an optimal asymptotic characterization of the
rate of convergence for such autoregressions has been
known since 1943 [22]. Moreover, note that sidestepping
this approach is precisely what allowed [6] to first derive
optimal rates for linear system identification.

More recently, [23] showed how to, at least partially,
avoid the blocking approach for the time-invariant ver-
sion of (1)—with ft(·, ·) = f(·, ·) for a fixed function
f(·, ·) independent of time. The result of [23] is almost
sufficient to provide a rate-optimal non-asymptotic anal-
ysis of the ARMA prediction error method. However, it
has two shortcomings for this purpose, one of which we
have already hinted at. First, the result does not allow
for time-varying regression functions ft(·, ·), which is
crucial, as the conditional expectation function of Yt
given the past data Y0, . . . , Yt−1 generally varies in time.
Second, the final bounds in [23] are loose by logarithmic
factors in problem quantities (including dimensional
factors and the time horizon T ) and hence cannot match
known asymptotics [1], [24] even up to constant factors.
For the case of time-invariant regression functions, the
authors in [25] removed these logarithmic factors via a
mixed-tail generic chaining argument.

In this paper, we pursue a simpler approach and
provide the first rate-optimal non-asymptotic prediction
error bound for a relatively general class of time-varying
parametric predictor models. Our model class is rich
enough to allow for ARMA models of the form (2)
that satisfy a certain identifiability condition. Similar
to [23], our approach is based on the martingale offset
complexity introduced to the statistical literature by [26].
We arrive at our result by providing a refined analysis
of this complexity notion for models of the form (1). An
informal version of our main result is presented next.

Informal Version of Theorem 1. Given data from a
sufficiently stable system, for a wide range of iden-
tifiable models ft(·, θ⋆), the mean-squared prediction
error corresponding to any least-squares estimate θ̂ ∈
argminθ∈M LT (θ) satisfies:

Mean-Squared Prediction Error(θ̂)

≤ parameter dimension × noise
number of samples

+ higher-order terms.

The above statistical rate matches known asymptotics
[1], [24] up to constant factors and higher-order terms
that become negligible for a large enough sample size T .
The requirement that T is larger than a so-called burn-in
time is necessary to establish several components of our
result, such as persistence of excitation. We note that the
stability properties of the model, which are measured via
the stochastic dependency of the input process {Xt}T−1

t=0 ,
affects only the burn-in time of our result.

In the next section, we formally present our math-
ematical assumptions and the problem formulation. In
Section III, we introduce our main result, a proof sketch
of which is given in Section IV. In Section V, we apply
our main result to scalar ARMA models. Full proofs
of all components of the main theorem’s proof can be
found in [27, Appendix].

Notation. The norm ∥·∥ is the Euclidean norm whenever
it is applied to vectors and the spectral norm whenever
it is applied to matrices. Moreover, Sd−1 denotes the
unit sphere in Rd, and Bdr the Euclidean ball of radius
r in Rd. We use Id to denote the identity matrix of size
d and tr(A) to denote the trace of any square matrix
A ∈ Rd×d. Expectation and probability with respect to
all the randomness of the underlying probability space
are denoted by E and P, respectively. Expectation with
respect to a random variable X is denoted by EX .
Conditional expectation of a random variable X with
respect to an event E and a σ-field F is denoted by
E[X|E ] and E[X|F ], respectively. For any event E , we
define 1E as the indicator function of E , which takes
value 1 when the event occurs and 0 otherwise. If g(·),
h(·) are functions defined on some unbounded subset of
the positive real numbers and h(x) is strictly positive for
all large enough values of x, we write g = O(h) if there
exists x0 ∈ R such that lim supx→x0

|g(x)/h(x)| <∞.

II. PROBLEM FORMULATION

Consider the predictor model (1), where the input
variables Xt take values in X ⊂ Rdx , whereas the output
and noise variables, denoted by Yt and Wt, respectively,
take values in R. For each t, the regression function
ft : Rdx × Rdθ → R is known and depends on the

2
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input Xt and the unknown parameter θ⋆. The parameter
θ⋆ is assumed to belong to some known and compact
parameter class M ⊆ BdθBθ

, where Bθ > 0.
Before formalizing our problem, we introduce a few

further assumptions about model (1) and the parameter
class M. We start by characterizing the stochastic de-
pendency of {Xt}T−1

t=0 , which can be thought of as a
measure of the stability of model (1). Let us first state
the main definition we will need for this characterization.

Definition 1 (Dependency Matrix). [28, Section 2] Let
{Zt}T−1

t=0 be a stochastic process with joint distribution
PZ. For each (i, j), let PZi:j

denote the joint distribution
of {Zt}jt=i and Zij := σ(Zi, . . . , Zj) the σ-algebra gen-
erated by {Zt}jt=i. The dependency matrix of {Zt}T−1

t=0

is the matrix Γdep(PZ) := {Γij}T−1
i,j=0 ∈ RT×T , where:

Γij =
√

2 sup
A∈Z0:i

B∈Zj:T−1

∣∣PZj:T−1
(B|A)− PZj:T−1

(B)
∣∣,

for i < j, Γii = 1, and Γij = 0, for i > j.

Let PX denote the joint distribution of the input
process {Xt}T−1

t=0 . We can measure the dependency
of {Xt}T−1

t=0 via the norm ∥Γdep(PX)∥ of its depen-
dency matrix. Notice that Γdep(PX) always satisfies
1 ≤ ∥Γdep(PX)∥ ≤ cT , for some c > 0. The lower
bound of ∥Γdep(PX)∥ corresponds to independent input
processes, whereas the upper bound corresponds to fully
dependent input processes (i.e., processes with Xt =
Xt+1, for all t = 0, . . . , T − 2). Our results apply to
processes for which ∥Γdep(PX)∥2 grows sublinearly in
T , as formalized in the following assumption.

Assumption 1. There exist b1 > 0 and b2 ∈ [0, 1) such
that ∥Γdep(PX)∥2 ≤ b1T

b2 .

Assumption 1 holds for a large family of input pro-
cesses {Xt}T−1

t=0 including, e.g., geometrically ϕ-mixing
processes [28], processes that satisfy Doeblin’s condition
[28], [29], and stationary time-homogeneous Markov
chains (see [23] for details). In the context of stable
linear dynamical systems with bounded noise, it has
been shown that the spectral norm of the dependency
matrix Γdep(PX) is uniformly bounded (i.e., b2 = 0) [23],
which implies an intuitive connection between stability
and dependency in the process {Xt}T−1

t=0 .

Assumption 2. For each t, let Ft := σ(X0, . . . , Xt+1,
W0, . . . ,Wt) be the σ-field generated by the inputs
X0, . . . , Xt+1 and the noise variables W0, . . . ,Wt. For
every t, the noise variable Wt is σ2

w-conditionally sub-
Gaussian with respect to Ft−1, that is:

E[eλWt |Ft−1] ≤ e
λ2σ2

w
2 ,

for all λ ∈ R, for some σw > 0.

Assumption 2 is satisfied if the noise variables Wt

are i.i.d. zero-mean Gaussian with variance σ2
w and

independent of the inputs X0, . . . , Xt. In addition, it
is satisfied by a large number of non-Gaussian random
variables Wt [5]; it is also standard in prior work [23],
[30], [31].

Assumption 3. For each t, the regression function
ft(·, ·) is twice differentiable with respect to its sec-
ond argument. Moreover, there exist L1, L2 > 0 such
that the partial gradients ∇θ ft(·, ·) and the partial
Hessians ∇θ

2 ft(·, ·) satisfy ∥∇θ ft(x, θ)∥ ≤ L1 and
∥∇θ

2 ft(x, θ)∥ ≤ L2, respectively, for all (x, θ) ∈
X×M. In addition, the partial Hessians ∇θ

2 ft(·, ·) are
L3-Lipschitz continuous in their second argument with
respect to the norm ∥ · ∥.

Note that for all functions ft(·, ·) that are three times
differentiable with respect to their second argument,
Assumption 3 trivially holds if X is bounded given that
M ⊆ BdθBθ

is bounded. One expects that our results
extend to unbounded inputs via a truncation argument,
see for instance [23, Section 5.1]. We leave a thorough
analysis of this case for future work.

Assumption 4 (Positive Definite Information Matrix).
There exists λ0 > 0 such that:

E

[
1

T

T−1∑
t=0

∇θ ft(Xt, θ⋆)∇θ
⊺ ft(Xt, θ⋆)

]
⪰ λ0Idθ .

Assumption 4 imposes a minimal noise excitation
condition, quantifying the notion of persistence of ex-
citation [1]. Put differently, it asks that the parameter
θ⋆ is identifiable (in the second-order sense). We note
in passing that analogous conditions are employed in
recent related work (see, e.g., [15], [23], [32]).

Assumption 5 (Quadratic Identifiability). There exists
a > 0 such that for every θ ∈ M:

∥θ − θ⋆∥2 ≤ aE

[
1

T

T−1∑
t=0

(ft(Xt, θ)− ft(Xt, θ⋆))
2

]
.

(3)

Assumption 5 imposes a regularity condition on the
regression functions ft(·, ·) with respect to the parameter
space. More specifically, it quantifies the growth of the
prediction error as quadratic in the parameter error. We
point out that condition (3) is weaker than the global
positive-definiteness condition:

E

[
1

T

T−1∑
t=0

∇θ ft(Xt, θ)∇θ
⊺ ft(Xt, θ)

]
⪰ δIdθ ,

3
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which is often assumed in the asymptotic literature [24],
for all θ ∈ M, for some δ > 0. Moreover, note that
Assumption 5 always holds for linear dynamical systems
as well as generalized linear models satisfying a certain
expansivity condition (see, e.g., [14], [15], [33]).

The goal of system identification can often be cast
as to identify the parameter θ⋆, specifying the data-
generating distribution in (1), from sequential input-
output data (X0, Y0), . . . , (XT−1, YT−1) [34]. In this
paper, we analyze the finite-sample performance of the
regression functions ft(·, θ̂), where θ̂ satisfies:

θ̂ ∈ argmin
θ∈M

1

T

T−1∑
t=0

(ft(Xt, θ)− Yt)
2. (4)

In particular, we are interested in providing an upper
bound for the (mean-squared) prediction error of the
models ft(·, θ̂), given by:

E

[
1

T

T−1∑
t=0

(ft(X̄t, θ̂)− ft(X̄t, θ⋆))
2

]
. (5)

Herein, we use {X̄t}T−1
t=0 to denote a fresh sample drawn

from PX independently of {Xt}T−1
t=0 . We formalize the

problem in the following statement.

Problem 1 (Rate-Optimal Non-asymptotic Analysis of
the Quadratic Prediction Error Method). Assume that
θ⋆ in predictor model (1) is unknown. Consider a
finite number T ∈ N+ of sequential input-output data
(X0, Y0), . . . , (XT−1, YT−1) generated by model (1)
and let θ̂ satisfy (4). Provide bounds T0 and ε(T ) such
that if T ≥ T0, then:

E

[
1

T

T−1∑
t=0

(ft(X̄t, θ̂)− ft(X̄t, θ⋆))
2

]
≤ ε(T ).

The bounds T0 and ε(T ) may also depend on the
parameters dθ, σw, Bθ, L1, L2, L3, λ0, a, b1, and b2.
Moreover, the prediction error bound ε(T ) should match
known asymptotics up to constant factors in its leading
term (see Remark 1 for details).

Remark 1. We refer to non-asymptotic rates for the
prediction error (5) as optimal if they match known
asymptotics up to constant factors and higher-order
terms. In particular, existing results for the quadratic
prediction error method from the asymptotic literature
[1], [24] guarantee that

√
T (θ̂ − θ⋆) converges in

distribution to N (0, I−1(θ⋆)), where:

I(θ⋆) :=
1

σ2
w

E

[
1

T

T−1∑
t=0

∇θft(Xt, θ⋆)∇⊺
θft(Xt, θ⋆)

]

is the Fisher information matrix. An informal
calculation—ignoring the higher-order terms in
Taylor’s theorem—suggests that the prediction error
can be written as follows:

E

[
1

T

T−1∑
t=0

(ft(X̄t, θ̂)− ft(X̄t, θ⋆))
2

]
≈ E

[
(θ̂ − θ⋆)

⊺(σ2
wI(θ⋆))(θ̂ − θ⋆)

]
= E tr

(
σ2
wI(θ⋆)(θ̂ − θ⋆)(θ̂ − θ⋆)

⊺
)
. (6)

Under suitable regularity conditions, we can deduce that
the expectation of the trace on the right-hand side of (6)
asymptotically converges to σ2

wdθ
T , that is:

T−1E tr
(
σ2
wI(θ⋆)(θ̂ − θ⋆)(θ̂ − θ⋆)

⊺
)

→ tr
(
σ2
wI(θ⋆)I−1(θ⋆)

)
= σ2

wdθ.

In light of the above result, our goal is to obtain a rate
of convergence that decays as fast as cσ2

wdθ
T , for some

universal constant c > 0.

III. OPTIMAL NON-ASYMPTOTIC RATES FOR THE
QUADRATIC PREDICTION ERROR METHOD

In this section, we present our main result, which
is a rate-optimal bound for the prediction error (5)
of the models ft(·, θ̂), where θ̂ is an estimate of the
true parameter θ⋆, satisfying (4). Before we state our
main theorem, let us note that herein, polyψ denotes a
polynomial of degree of order ψ in its arguments.

Theorem 1 (Optimal Non-asymptotic Rates for the
Quadratic Prediction Error Method). Consider the pre-
dictor model (1) and the parameter class M under
Assumptions 1 to 5. Fix any γ ∈ (0, 1/2) and let θ̂
satisfy (4). Then, there exist:

T1 := poly 1
1−b2

(dθ, L1, a, b1, 1/(1− b2)), (7a)

T2 := poly 1
1−b2

(dθ, σw,Bθ, L1, 1/λ0, b1, 1/(1− b2)),

(7b)
T3 := poly 1

1−2γ
(dθ, σw,Bθ, L1, L2, L3, a, 1/(1− 2γ)),

(7c)

and a universal constant c > 0 such that if T ≥
max{T1, T2, T3}, we have:

E
[ 1
T

T−1∑
t=0

(ft(X̄t, θ̂)− ft(X̄t, θ⋆))
2
]
≤ cdθσ

2
w

T
+

B

T 1+γ
,

(8)
where B = 2L2

1 Bθ
2 +16.

The exact expressions of the polynomials T1, T2, and
T3 of Theorem 1 are given in [27, Appendix].

4
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Remark 2 (Result interpretation). Observe in (8) that
for sufficiently large sample size T , the least-squares
prediction error decays at a rate of O(T−1). In partic-
ular, the leading term in (8) is determined by the signal-
to-noise ratio (SNR) of model (1), which is defined as
SNR = σ2

w/T . Notice that the longer the predictor
model is excited by noise and the smaller the sub-
Gaussian parameter σw is, the smaller the prediction
error bound becomes. We note that this rate is optimal
in the sense that it matches known asymptotics up to
constant factors in its leading term (see Remark 1),
after a finite burn-in time T0 := max{T1, T2, T3}. The
burn-in time grows polynomially in: i) the parameter
dimension dθ, ii) the sub-Gaussian parameter σw, iii)
the noise bound Bθ, iv) the dependency parameter b1,
v) the smoothness parameters L1, L2, L3, a, and vi)
the inverse of the noise excitation constant λ0. Notice
also the exponential growth of T0 in the dependency
parameter b2. The parameter b2 is typically zero for
exponentially stable dynamical systems (consider, e.g.,
exponentially stable ARMA models, cf. [23] for the case
of autoregressive models). Nonetheless, improving this
growth rate is an interesting future research direction.

In the following section, we sketch the proof steps of
Theorem 1.

IV. PROOF SKETCH OF THEOREM 1

In this section, we present the main proof steps
of Theorem 1, which provides us with optimal non-
asymptotic rates for the quadratic prediction error
method.

A key quantity appearing in our analysis is the
martingale offset corresponding to a parameter θ ∈
M, which can be thought of as a measure of the
complexity of the corresponding regression functions
ft(·, θ). To formally define the martingale offset, let us
first introduce relevant notation. Let {Wt}T−1

t=0 denote
the noise sequence corresponding to the input-output
data (X0, Y0), . . . , (XT−1, YT−1), i.e., let Wt = Yt −
ft(Xt, θ⋆), for all t = 0, . . . , T − 1. Moreover, consider
the shifted process {gt(Xt, θ)}T−1

t=0 , where gt(Xt, θ) =
ft(Xt, θ) − ft(Xt, θ⋆), for all t = 0, . . . , T − 1. For
any θ ∈ M, the martingale offset corresponding to the
parameter θ is defined as:

MT (θ) =
1

T

T−1∑
t=0

(
4Wtgt(Xt, θ)− g2t (Xt, θ)

)
.

The above definition is motivated by the martingale
offset complexity supθ∈MMT (θ), which is employed
in previous works [23], [30], [35]. As we will see
in the analysis that follows, deriving a bound on the

expected martingale offset EMT (θ̂) of any least-squares
estimate θ̂, instead of the expected martingale offset
complexity E[supθ∈MMT (θ)], is essential for obtaining
optimal finite-sample rates for the quadratic prediction
error method.

In the theorem below, we present a bound for the
prediction error of the models f0(·, θ̂), . . . , fT−1(·, θ̂),
conditioned on the given sample {(Xt, Yt)}T−1

t=0 . Note
that the following theorem is a modified version of
[23, Corollary 4.2] for time-varying predictor models.
We achieve the extension to the time-varying case by
deriving concentration inequalities for the sum of time-
varying functions of the input data, leveraging a result
from [28] (see [27, Appendix B] for details).

Theorem 2. Consider the predictor model (1) and the
parameter class M under Assumptions 1, 3 and 5. Fix
any γ ∈ [0, 1) and let θ̂ satisfy (4). Then, there exists
T1, defined as in (7a), such that if T ≥ T1, we have:

EX̄0:T−1

[
1

T

T−1∑
t=0

(ft(X̄t, θ̂)− ft(X̄t, θ⋆))
2

]

≤ 8MT (θ̂) +
2L2

1B
2
θ

T 1+γ
, (9)

where X̄0:T−1 = (X̄0, . . . , X̄T−1).

Given (4), by taking the expectation over the sample
{(Xt, Yt)}T−1

t=0 , (9) yields:

E

[
1

T

T−1∑
t=0

(ft(X̄t, θ̂)− ft(X̄t, θ⋆))
2

]

≤ 8EMT (θ̂) +
2L2

1B
2
θ

T 1+γ
, (10)

for any γ ∈ [0, 1). Moreover, Assumption 5 can be
invoked to obtain the parameter error bound:

∥θ̂ − θ⋆∥2 ≤ 8aMT (θ̂) +
2aL2

1B
2
θ

T
, (11)

since T ≤ T 1+γ , for all γ ∈ [0, 1).
Employing the result from [30, Lemma 10] to

bound the expected martingale offset complexity
E[supθ∈MMT (θ)], inequality (10) directly provides us
with a prediction error bound of order O(log T/T ), after
a finite burn-in time T1. We note that this is the first non-
asymptotic result for predictor models of the form (1),
where the regression functions ft(·, ·) are time-varying.

In the rest of this section, our goal is to improve
upon that rate and ensure an optimal convergence rate
of O(T−1), after a longer but finite burn-in time. Recall
that herein optimality of rate implies matching existing
results from the asymptotic literature, modulo constant
factors and higher-order terms (see Remark 1). Our

5
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refinement of the prediction error bound resulting from
Theorem 2 consists of three distinct steps:

i) First, we derive an upper bound for EMT (θ̂) by
using the Taylor expansion of the models ft(Xt, θ̂)
around θ⋆. This bound depends on a “linearized”
term and higher-order terms related to the parame-
ter error ∥θ̂ − θ⋆∥.

ii) Second, we provide a rate-optimal bound which
scales like dθσ2

wT
−1 for the “linearized” term, by

leveraging ideas from linear system identification.
iii) Third, we combine our bound for the “linearized”

term with faster decaying bounds for the higher-
order terms to obtain a refined bound for EMT (θ̂).
The main idea is to bound the higher-order terms
employing the nearly optimal bounds resulting from
Theorem 2. Owing to the higher order of these
components, a careful analysis does not degrade
the leading dθσ

2
wT

−1-order term of the linearized
component.

Putting everything together, we provide the first op-
timal non-asymptotic rates for the quadratic prediction
error method. For clarity of presentation, we separately
analyze the aforementioned proof steps.
Step I: Bounding EMT (θ̂) via Taylor expansion. By
Taylor’s theorem with remainder, for each t, we have:

ft(Xt, θ̂) =ft(Xt, θ⋆) + Z⊺
t (θ̂ − θ⋆)

+
1

2
(θ̂ − θ⋆)

⊺Vt(θ̂ − θ⋆), (12)

where Zt = ∇θft(Xt, θ⋆) and Vt = ∇2
θft(Xt, θ̃t), with

θ̃t = αtθ̂+ (1− αt)θ⋆, for some αt ∈ [0, 1]. Exploiting
the Taylor expansion of each ft(Xt, θ̂) from (12), we
can prove the following lemma.

Lemma 1. Consider the predictor model (1) and the
parameter class M under Assumption 3. Moreover, let
θ̂ satisfy (4), and for each t, consider the Taylor ex-
pansion of ft(Xt, θ̂) around θ⋆ given in (12). Then, the
martingale offset of θ̂ satisfies:

MT (θ̂) ≤ M̄T (θ̂) +

∥∥∥∥ 2

T

T−1∑
t=0

WtVt

∥∥∥∥∥θ̂ − θ⋆∥2

+
L2
2

4
∥θ̂ − θ⋆∥4, (13)

where:

M̄T (θ̂) =
1

T

T−1∑
t=0

[
4WtZ

⊺
t (θ̂ − θ⋆)−

1

2
(Z⊺

t (θ̂ − θ⋆))
2
]
.

(14)

By taking the expectation over the sample
{Xt, Yt}T−1

t=0 in (13), we obtain the following bound

for the expected martingale offset of θ̂:

EMT (θ̂) ≤ EM̄T (θ̂) +E

[∥∥∥∥ 2

T

T−1∑
t=0

WtVt

∥∥∥∥∥θ̂ − θ⋆∥2
]

+
L2
2

4
E∥θ̂ − θ⋆∥4. (15)

Notice that the bound for EMT (θ̂) in (15) consists of
the “linearized” term EM̄T (θ) (note that the quadratic
term on the right-hand side of (14) is negative) and two
higher-order terms depending on the parameter error
∥θ̂ − θ⋆∥. In the next step of our proof, we focus on
bounding the linearized component.

Step II: Bounding the “linearized” term EM̄T (θ̂).
In the following theorem, we provide a bound for
the “linearized” term EM̄T (θ) appearing on the right-
hand side of (15). Our analysis employs tools for self-
normalized martingales, similar to previous works in
linear system identification (see, e.g., [12]).

Theorem 3. Consider the predictor model (1) and the
parameter class M under Assumptions 1 to 4. Fix any
γ ∈ (0, 1) and let θ̂ satisfy (4). Then, there exists T2,
defined as in (7b), and a universal constant c > 0 such
that if T ≥ T2, we have:

EM̄T (θ̂) ≤
cdθσ

2
w

T
+

1

T 1+γ
. (16)

Notice that the bound in (16) decays at the optimal
rate of σ2

wdθ
T (cf. Remark 1), up to a constant factor

c > 0 and a higher-order term 1/T γ+1, which becomes
negligible in finite time (set for instance γ = 1/4).
Next, we present the final step of our proof, which
combines the bound (16) with faster decaying bounds
for the higher-order terms on the right-hand side of (15).

Step III: Bounding EMT (θ̂) using the bound (16)
for EM̄T (θ̂) and the bound (11) for the higher-order
terms in (15). In Step II we provided a bound of order
O(T−1) for the “linearized” term EM̄T (θ) appearing
on the right-hand side of (15). To bound EMT (θ̂) at
a rate of O(T−1), it suffices to derive faster decaying
bounds of order O(T 1/(1+γ)) for the higher-order terms,
where γ ∈ (0, 1/2). Combining (16) from Theorem 3
and the parameter error bound given in (11), we obtain
the following corollary.

Corollary 1. Consider the predictor model (1) and the
parameter class M under Assumptions 1 to 5. Fix any
γ ∈ (0, 1/2) and let θ̂ satisfy (4). Then, there exist
T1, T2, T3, defined as in Theorem 1, and a universal
constant c > 0 such that if T ≥ max{T1, T2, T3}, we
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have:

EMT (θ̂) ≤
cdθσ

2
w

T
+

2

T 1+γ
. (17)

Notice that the dominant term on the right-hand side
of (17) decays at a rate of cdθσ

2
W

T , which is optimal up
to a constant factor c > 0 (see Remark 1). We note that
the above bound improves upon the rate O(log T/T )
that can been shown for the martingale offset complexity
E[supθ∈MMT (θ)] via maximal inequalities [30]. The
key point here is that the offset process locally, once θ̂ is
sufficiently near θ⋆, behaves like a linear offset process.

Combining (10) with (17) from Corollary 1, we com-
plete the proof of (8) in Theorem 1. Next, we instantiate
Theorem 1 to provide finite-sample guarantees for the
quadratic prediction error method for AutoRegressive
Moving Average (ARMA) models.

V. CASE STUDY: THE ARMA MODEL

In this section, we demonstrate the applicability of our
rate-optimal non-asymptotic analysis of the quadratic
prediction error method to scalar ARMA models. Our
result relies on a standard analysis from [2], [36] that
allows converting any ARMA model into a predictor
model of the form (1). For completeness of presenta-
tion, we briefly review the conversion methodology and
then present a rate-optimal non-asymptotic bound for a
particular class of ARMA models.

Consider the scalar ARMA(p, q) model given by:

Yt =

p∑
i=1

a⋆i Yt−i +

q∑
j=0

b⋆jWt−j , (18)

where the noise variables Wt ∈ R are assumed to be
independent and zero-mean, and the initial conditions
are assumed to be zero, i.e., Yt = 0, Wt = 0, for all
t < 0. Suppose that b⋆0 = 1 and the parameter θ⋆ :=[
a⋆1, . . . , a

⋆
p, b

⋆
0, . . . , b

⋆
q

]⊺ ∈ Rp+q+1 belongs to some
known set M ⊆ BdθBθ

, where Bθ is a positive constant.
The assumption that b⋆0 = 1 can always be ensured by
providing additional artificial noise components of zero
mean and variance, and applying linear transformations
to the noise variables Wt [36]. Let z−1 denote the
backward-shift operator, defined by z−1et := et−1,
for any stochastic process {et}∞−∞. Powers of z−1 are
defined recursively by z−(i+1)et := z−1(z−iet) so that
z−iet = et−i. It is straightforward to show that (18) is
equivalent to Aθ⋆(z

−1)Yt = Bθ⋆(z
−1)Wt, where Aθ⋆(·)

and Bθ⋆(·) are polynomials given by:

Aθ⋆(λ) = 1−
p∑
i=1

a⋆i λ
i, Bθ⋆(λ) =

q∑
j=0

b⋆jλ
j ,

respectively, for all λ ∈ R. For each t, let F̄t :=
σ(Y0, . . . , Yt) be the σ-field generated by the outputs
Y0, . . . , Yt. It is known [2, Section 2.6] that the condi-
tional expectation Ŷt := E[Yt|F̄t−1] satisfies:

Bθ⋆(z
−1)Ŷt = [Bθ⋆(z

−1)−Aθ⋆(z
−1)]Yt, (19)

for all t = 0, . . . , T − 1. Hence, we can rewrite model
(18) in the predictor model form (1) with regression
functions:

ft(Xt, θ⋆) := Ŷt, (20)

where Xt =
[
Y0, . . . , Yt−1

]⊺
. The conditional expec-

tations Ŷ0, . . . , ŶT−1 can be computed recursively from
(19) with zero initial condition, i.e., Ŷt = 0, for all t < 0.
We can similarly define the regression functions ft(·, θ)
corresponding to any parameter θ in the class M. In the
corollary that follows, we combine Theorem 1 with the
predictor model form of the ARMA model (18) derived
above and provide the first rate-optimal non-asymptotic
prediction error bounds for ARMA models.

Corollary 2. Consider the predictor model form of the
ARMA(p, q) model (18), defined by (1) and (20), as well
as the parameter class M, under Assumptions 1 to 5. Fix
any γ ∈ (0, 1/2) and let θ̂ satisfy (4). Then, there exist
T1, T2, T3, defined as in Theorem 1, and a universal
constant c > 0 such that if T ≥ max{T1, T2, T3}, we
have:

E
[ 1
T

T−1∑
t=0

(ft(X̄t, θ̂)− ft(X̄t, θ⋆))
2
]
≤ cdθσ

2
w

T
+

B

T γ+1
,

where dθ = p+ q and B = 2L2
1 Bθ

2 +16.

The proof of Corollary 2 follows directly from The-
orem 1, given the predictor model form of model (18).

Note that the above corollary applies to a particular
class of ARMA models that satisfy Assumptions 1 to 5.
Assumptions 1 to 4 are relatively benign for this exam-
ple, and hold as long as the noise sequence {Wt}T−1

t=0 is
bounded and the system (18) is stable. For Assumption
1, see e.g. [23] for the case of Bθ⋆(λ) = 1. Assumption
2 is true by construction of the regression functions (20)
corresponding to model (18) as well as the hypothesis
of bounded noise. Assumption 3 can be verified via
arguments entirely analogous to those in [37] as long
as {Wt}T−1

t=0 is bounded and the system (18) is stable.
Sufficient conditions for guaranteeing Assumption 4,
related to the roots of the polynomials Aθ⋆(λ) and
Bθ⋆(λ), can be found in [38]. Assumption 5 restricts
our result to a specific class of quadratically identifiable
ARMA models (see (3)). As previously explained in
Section II, this assumption is weaker than the corre-
sponding assumption made in the asymptotic literature
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for the quadratic prediction error method [24]. Exploring
potential relaxations of the identifiability condition (3)
is an interesting problem for future work.
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