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Abstract— Controllability and feasiblity measures are used
to determine whether a given system can achieve its specified
objective. However, for nonlinear systems with state constraints,
the controllable and feasible sets may be highly sensitive
to minor perturbations in the system’s constraints, initial
states and parameters. This becomes particularly important
in codesign of hypersonic vehicles, where functions governing
the dynamics must be estimated from expensive computational
fluid dynamics simulations, and poor initialization can lead to
significant waste of resources. By relaxation of the constraints
and introduction of a surrogate cost, we provide a method for
detecting and quantifying which constraints are violated. To
demonstrate the method in a concrete example, we apply the
technique to simulation of hypersonic vehicle trajectories.

I. INTRODUCTION

Codesign is a multidisciplinary optimization approach to
design of parameterized dynamical systems with control
inputs [2], [10], [1]. The two most successful approaches
are simultaneous and nested optimization strategies [12],
[23]. In the simultaneous approach, an objective function is
jointly optimized in both the plant parameters and control
inputs. While this approach is effective and efficient in
some situations, in many settings it is more effective to
exploit more structure in the the problem, as is the case
when high-fidelity simulations (typically via computational
fluid dynamics or finite element analysis) are required in
the optimization loop. In contrast, the nested approach de-
composes the problem as a bi-level optimization problem,
where the inner optimization loop computes the optimal
control inputs for fixed plant parameters, and the outer
loop optimizes the plant parameters. However, for tightly
constrained problems, a poor choice of the initial design
parameters or a parameter update in the optimization step can
preclude the feasibility of the inner-loop control problem. To
facilitate routine application of nested codesign, we require
algorithms for efficiently detecting feasibility of the inner-
loop control problem.

First achieved in the 1950s in the X-15 program, hy-
personic flight represents a significant human technological
achievement and continues to be an active area of aerospace
research [9]. Hypersonic vehicles (HSVs) fly aggressive
trajectories in extreme environments and are thus required
to operate close to many system constraints, such as thermal

CH, PC, VB, PD and CM are with the Department of Electrical
and Electronic Engineering, The University of Melbourne, VIC,
3010 Australia. IJ is with the School of Engineering, The
University of Southern Queensland, Springfield, QLD, 4300
Australia. Email: chris.vanderheide@.unimelb.edu.au;
peter.cudmore@uqconnect.edu.au;
ingo.jahn@usq.edu.au; viv.bone@unimelb.edu.au;
pdower@unimelb.edu.au; manziec@unimelb.edu.au.

load limitations, maximum dynamic pressure limits, actuator
limits, and aerodynamic survivability constraints. Moreover,
safety, reliability, reproducibility and economic factors are all
paramount to ensure feasibility of commercial and military
applications. Each of these factors are important and they of-
ten compete with one another; for example, a lighter airframe
may be capable of flying more complex trajectories, but may
be more vulnerable to maximum dynamic pressure limits.
Due to the presence of interacting constraints and compet-
ing design objectives, codesign approaches are a powerful
tool for improving the performance of hypersonic vehicles.
However, codesign implementations typically rely on ad-hoc
methods, and tools for reliable black-box algorighms for end-
to-end design of these systems are still being developed.

Even for a fixed vehicle design, control system design
for airbreathing HSVs is a challenging problem due to the
nonlinearity of the vehicle’s dynamics and the presence
of interacting state and input constraints. Moreover, the
dynamics themselves often have limited control authority,
which renders feasibility of the control problem particularly
sensitive to minor changes in the aircraft and mission design.
Further, the difference in the magnitudes and time-scales
of different variables results in trajectories that are highly
sensitive to minor perturbations of the optimal control.
As such, judicious choice of feedback controller becomes
crucial, since the computational intensity required can be
prohibitive for online control [17]. Similarly, approaches that
directly incentivize some level of robustness to perturbations
of the optimal trajectory have shown promise [22].

The characteristics of the HSV design problem impose fur-
ther challenges on the codesign procedure [13], [16]. To en-
able good performance, vehicle geometries are often highly
parameterized, resulting in high-dimensional outer-loop op-
timization problems. For each set of parameter values, we
must generate the aerodynamic coefficient (such as lift, drag,
and pitching moment) functions that appear in the vehicle
dynamics. When high accuracy is required, these functions
are typically modeled by approximating results sampled from
computational fluid dynamics (CFD) simulations, and using
lower resolution simulations can have profound effects on
the accuracy of the optimal trajectories [8], [19]. Time-scale
separation means that steady-state CFD simulations provide
good approximations to dynamic behaviour, but even these
simpler simulations still impose a formidable computational
bottleneck on the codesign procedure [14], [15]. Thus, to
make codesign tractable, we require an efficient method that
can (i) iterate the initial design parameters towards a region
where the inner-loop control problem is feasible and (ii)
during the codesign problem, ensure feasibility of the inner-
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loop when iterating already-feasible values of the design
parameters.

In order to facilitate tractable black-box codesign for
HSVs, we propose a procedure with an additional surrogate
inner-loop optimization problem that quantifies infeasibility
by measuring constraint violations along the ‘most feasible’
trajectory. When the problem is feasible — i.e., the design
parameters admit an optimal control trajectory that respects
all constraints — the codesign problem proceeds as usual.
Otherwise, we use sensitivity tools in the NLP solver to
generate gradient information that can then be used to
iterate the design parameters back towards a region where
the inner-loop is feasible. This process significantly reduces
the computational cost of the entire codesign problem. The
feasibility detection step adds only small computational cost
itself, but avoids the need for unnecessary design parameter
iterations, which would require expensive CFD simulations.

The layout of the paper is as follows. In Section II we
begin with a review of the codesign procedure and introduce
a simplified version of the HSV’s dynamics that retain the
pathologies characteristic of more sophisticated models. We
then extend the codesign framework to incorporate feasibility
of the inner-loop optimal control problem, and discuss eval-
uation of the feasibility sub-problem. Numerical simulations
using the HSV example are given in Section III. Finally, we
provide discussion and conclude in Section IV.

II. CODESIGN FOR HYPERSONIC VEHICLES

The nested optimal codesign framework is a
decomposition-based approach to design of engineered
systems. In its simplest formulation in the current context,
it casts the design problem as a bi-level optimization with
a single objective function, where the outer-loop optimizes
the design parameters θ of the physical system and the
inner-loop computes the optimal control inputs u(·) and
state trajectories x(·). A simple version of the codesign
procedure is as follows: for fixed values of the design
parameters, we first solve an optimal control problem to
compute the input trajectory that minimizes the objective
function. Next, we update the parameters. While heuristic
methods can be deployed, we consider the commonly used
gradient-informed approach. This is done by differentiating
the objective function J sys evaluated with the optimal
control, with respect to the design parameters, and then
updating the parameters, typically via gradient descent.
This process is repeated until some convergence criteria
is met and a final (locally optimal) pair of design/control
parameters is selected. Of course, this description is heavily
simplified; more sophisticated systems require, for example,
choice of an inner-loop feedback controller, closed-loop
simulations with disturbances, and state estimation.

In general, both the inner-loop and outer-loop optimization
problems in the codesign formulation are highly non-convex
and are not guaranteed to converge to a globally optimal
design. The dynamics themselves are typically highly non-
linear and hard constraints on both the control inputs and
states are present. Moreover, for certain values of the design

parameters, the inner-loop control problem may be infeasi-
ble. Due to the inherent nonlinearities in the aerodynamics
models, HSV codesign is affected by these non-convexity
and infeasibility problems, even when considering simpli-
fied vehicle dynamics and only a small number of design
parameters.

A schematic of a codesign framework for HSVs appears
in Figure I.

A. Hypersonic Vehicle Dynamics

The most commonly used control oriented model of an
airbreathing HSV contains planar rigid body aircraft dynam-
ics, as given by Parker et al [21]. For clarity we consider a
trimmed version of this model with three degrees of freedom,
which still captures the pathological behaviour of the full-
order system. Under this model, the dynamics evolve via

v̇ =
1

m
(Tr cos(α)−D)− g sin(γ),

vγ̇ =
1

m
(Tr sin(α) + L)− g cos(γ),

ẏ = v sin(γ),

subject to the initial conditions (v(0), γ(0), y(0)) =
(v0, γ0, y0). Here, the coordinates y, v, and γ respectively
model the altitude, velocity, and flight path angle. The control
input α represents angle of attack. The constants m and g are
the vehicle mass and the gravitational acceleration, while the
coefficient maps Tr, L, D are the vehicle thrust, aerodynamic
lift and drag forces. For simplicity, we consider a constant
thrust model, and model the drag and lift as

D(v, α, y, θ) =
1

2
v2ρ(y)S(θ)CD(α, θ),

L(v, α, y, θ) =
1

2
v2ρ(y)S(θ)CL(α, θ),

where S is the reference area. The air density ρ(y)
.
=

ρ0 exp
(
− c(y − y0)

)
is modeled via exponential decay as

from a reference altitude with decay rate c, with reference
density ρ0 at y0. The coefficient functions CD and CL are
typically modeled as low-order polynomials in α, although
more sophisticated methods have been proposed [20], [24].
Even though this is a reductive assumption, for a fixed
vehicle design, estimates on the coefficients must be re-
calculated via regression. The data used in this regression
is obtained from CFD sweeps across the operating envelope
for each design point. This data acquisition is by far the most
computationally expensive component in the overall model.
The issue of tractability is compounded in the codesign
setting, where the outer loop’s parameter updates invalidate
the previous iteration’s estimates on these coefficients. In our
trimmed model, we assume that α is controlled directly (in
contrast to the full-order model, where α varies according to
some setpoint value and higher-order dynamics).

We also impose the following altitude, flight path angle,
angle of attack bounds, as well as constraints on the dynamic
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Codesign Optimiser θ[k + 1] = θ[k]− γ∇θJ
sys[x, u](θ[k])

u(·), x(·)

Integrated System Model

Path Planner
xdes = argminJθ

θ [x, u]
Governor

xcmd = argminJg
θ [x̂, xdes]

Controller
u = κθx̂cmd

Aero Forces
(CF , CM ) = Fθ(x, δ)

Propulsion Model
(T, ṁ) = fθ(x,m, ϕ)

Dynamics
ẋ = F (x,CF , . . . )

Sensor/Estimator
x̂ = g(x)

xdes xcmd u = (δ, ϕ)

(T, ṁ)

(CF , CM )

xx̂

θ

Fig. 1. Schematic of codesign framework. Note the different modules in the integrated system model may use different fidelity process models with
resulting different uncertainty bounds.

pressure and terminal altitude:

y < y < y, (altitude)

γ < γ < γ, (flight path angle)

α < α < α, (angle of attack)

q <
1

2
ρ(y)v2 < q, (dynamic pressure)

y
T
≤ y(T ) ≤ yT , (terminal altitude).

These types of hard constraints are typically required
to ensure the vehicle survivability over the mission. The
feasibility of the inner-loop control problem with respect
to these constraints is highly sensitive to design parameters
changes, which occur in the outer loop. This makes finding
feasible design parameters challenging, precluding the use
of naı̈ve nested approaches. To address this challenge, we
propose an auxiliary test for feasibility. This test not only
detects infeasibility, but provides a method to update the
outer-loop design parameters to improve feasibility of the
inner-loop control problem.

B. Codesign Problem

The simplified codesign problem for the vehicle model
described above has the general form of minimizing a cost
functional

C[u](θ)
.
=

∫ T

0

R(t, x(t), u(t), θ) dt, (1a)

where the constraints are given by

ẋ = f(x(t), u(t), θ), t ∈ [0, T ], (1b)
0 ≤ cj(x(t), u(t), θ), j = 1, . . . , J, (1c)
0 ≤ χk(x(0), x(T ), θ), k = 1, . . . ,K. (1d)

Here t denotes the time, x : [0, T ] → Rn is the state of the
system, and u ∈ U ⊂ L∞([0, T ];Rm) is the control. The
design parameters θ are constrained in some set Θ ⊂ Rp.
The function f ∈ C1(Rn × Rm × Θ;Rn) governs the state
dynamics, and R : [0, T ] × Rn × Rm × Θ → R is the
running cost. The functions cj : Rn × Rm × Θ → R
and χk : Rn × Rn × Θ → R constrain the state and
control of the system within the finite time horizon and at
the endpoints, respectively. Here, we have rewritten equality

constraints as pairs of inequalities. These conditions typically
constrain the solution and its controls to lie in compact sets
X ⊂ Rn and U ⊂ Rm. The admissible class of controls then
becomes U .

= L∞([0, T ];U). If a solution to the constrained
minimization problem (1a)-(1d) exists, then nested codesign
gives a locally optimal design θ⋆, as well as corresponding
optimal trajectory and controls x⋆(·) and u⋆(·).

Remark 1: In the case where f is linear in its arguments
and only the control is constrained, i.e. cj(x, u, θ) = cj(u),
determining the feasibility of the problem is trivial.

For nonlinear systems with constrained states, the set of
inputs for which the control problem is feasible can be very
sensitive to minor perturbations of the design parameters.
This sensitivity can make the problem difficult to initialize,
and parameter updates of the outer loop can lead to failure of
existence of solutions to the constrained dynamical system
(1b)-(1d), or otherwise infeasibility of the optimal control
problem.

We will see that this is the case for the HSV models,
including the simplified model outlined in the previous sec-
tion. Consequently, a reasonable codesign approach requires
detection of when the parameters are in a region where there
is no feasible solution, and correction towards a feasible
design. In order to facilitate our approach, we will consider
the problem of minimizing (1a) for a fixed design, by writing

W (θ)
.
= inf

u∈U
{C[u](θ) : (1b)-(1d) hold}.

C. Feasibility Detection

Our proposed solution relies on the observation that the
existence of a feasible trajectory to the constrained dynamical
system (1b)-(1d) is independent of the cost function (1a) ap-
pearing in the minimization problem. Inspired by tools from
sensitivity analysis [7], we propose the following optimal
control problem with auxiliary cost whose parameters allow
for relaxation of the constraints. This perturbation is designed
to detect which, if any, of the constraints in (1c)-(1d) are
involved in the failure of feasibility of the optimal control
problem (1a)-(1d).

To do so, we introduce the parameters µ ∈ RJ and ν ∈
RK corresponding to the constraints c and χ, and consider
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Fig. 2. Failure of feasibility of the trimmed HSV dynamics surrogate
optimal control problem, measured by Wfs as a function of γ0. Infeasibility
results in non-zero surrogate cost.

the surrogate cost

Cfs[u, µ, ν](θ)
.
= µ⊤µ+ ν⊤ν. (2)

For fixed design θ, this lets us solve the auxiliary optimal
control problem

Wfs(θ)
.
= inf

u∈U,

(µ,ν)∈RJ+K

{Cfs[u, µ, ν](θ) : (3b)-(3d) hold}, (3a)

where the constraints are given by

ẋ(t) = f(x(t), u(t), θ), t ∈ [0, T ], (3b)

−µ2
j ≤ cj(x(t), u(t), θ), j = 1, . . . , J, (3c)

−ν2k ≤ χk(x(0), x(T ), θ), k = 1, . . . ,K. (3d)

Under standard conditions on f, ci and χj given below,
we have the following proposition. The result follows directly
from the existence of solutions to the ODE appearing in (3b)
with constant control, since the surrogate cost is constructed
to always have a feasible solution.

Proposition 1: Let X ⊂ Rn and U ⊂ Rm be compact
sets and f ∈ C1(Rn × Rm × Θ;R). Further suppose that
cj ∈ C1(X × U × Θ;R), χk ∈ C1(X × X × Θ;R) for
j = 1, . . . , J and k = 1, . . . ,K. Then (3a)-(3d) is feasible.

Proof: By multiplication of f with smooth cut-off
function ϕ ∈ C∞

0 (Rn;R) that vanishes outside of X in
a controlled way if necessary, differentiability implies that
this product is Lipschitz continuous, so that the existence
of uniformly bounded solutions to ẋ0 = ϕ(x0)f(x0, u0, θ)
for any fixed constant u0 ∈ U is guaranteed for t ∈ [0, T ].
Here, the initial data appear in χ. Since the ci and χj are
continuous they are themselves bounded on BM(x0)×U and
BM(x0) ×BM(x0) for each fixed θ, where BM(x0) is a ball
of radius M(x0)

.
= maxt∈[0,T ] |x0(t)|. This gives an upper

bound on Wfs(θ).
We remark that we have assumed slightly higher smooth-

ness than is required for feasibility detection, in order to
ensure the differentiability that will be used in the next
section to generate parameter updates. By construction, the
existence of a solution to (3a)-(3d) with µ = 0 and ν =
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Fig. 3. Optimal trajectories with respect to the surrogate cost, as a function
of γ0. Trajectories violating the constraints are displayed as dotted lines.
Infeasibility corresponds to trajectories that violate the constraints.

0 implies that the same trajectory gives a finite value of
W (θ), and so the codesign problem W (θ) is feasible. In
this situation, the codesign procedure can proceed by solving
the optimal control problem (1a)-(1d). On the other hand, a
positive value of Wfs(θ) detects infeasibility of W (θ), and
the sets {j ∈ 1, . . . , J : µj ̸= 0} and {k ∈ 1, . . . ,K : νk ̸=
0} identify the violated constraints.

D. Evaluation and Iteration

Our proposed method is summarized as pseudocode in
Algorithm 1. We use a direct collocation method to simulate
the dynamics and control and thus evaluate the cost in (3a).
Here, we first discretize the interval 0 = t0 < ... < tNα

into
Nα segments, and on each interval [tα−1, tα] approximate
x by a d degree polynomial xα and u by a constant uα.
We ease notation by writing x and u for the collection of
these approximations. This reduces problem (3a)-(3d) to the
following nonlinear program for the infeasibility cost Wfs(θ),
which can be solved with off-the-shelf solvers,

Wα
fs (θ)

.
= inf

u∈U,

(µ,ν)∈RJ+K

{Cfs[u, µ, ν](θ) : (4b)-(4d) hold}, (4a)

subject to the constraints

ẋα(tα) = f(xα(tα), uα(tα), θ), α = 1, ..., Nα, (4b)
xα(tα) = xα+1(tα), α = 1, ..., Nα–1, (4c)

−µ2
j ≤ cj(xα(tα), uα, θ), j = 1, ..., J, (4d)

α = 1, ..., Nα,

−ν2k ≤ χk(x1(0), xNα
(T ), θ), k = 1, ...,K, (4e)

α = 1, ..., Nα,

with each xα ∈ Cd([tα−1, tα];X), uα ∈ U , and (µ, ν) ∈
RJ+K .

Once the infeasibility cost has been evaluated, we can
update the parameters θ in the direction of ‘best feasibility
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Fig. 4. Gradient-based parameter updates on the surrogate optimal control
problem, initialized at ±0.1134464 radians. Feasibility is achieved after 2
Newton iterations (black) and 3 iterations (red).

Algorithm 1: Feasibility initialization via Newton’s
Method

1: Input: Initial design parameters θ; nonlinear program
formulation (4a)-(4e) with objective cost C[u](θ) and
surrogate cost Wfs; initialized trajectory and control
discretizations x and u; initialized constraint violation
vectors µ > 0 ∈ RJ , ν > 0 ∈ RK , cost tolerance ε > 0.

2: while ∥µ∥+ ∥ν∥ > ε do
3: update (u, µ, ν)← argminCfs[u, µ, ν](θ).
4: compute ∇θW

α
fs (θ).

5: update θ ← θ −Wα
fs (θ)/∇θW

α
fs (θ).

6: end while

improvement’. We do this by first computing the gradient
of the cost with respect to the design parameters ∇θW

α
fs (θ).

We then update θ using Newton’s method [6], according to

θk+1 = θk −Wα
fs (θk)/∇θW

α
fs (θk),

where division of a scalar by a vector is interpreted element-
wise. Note that the version of Newton’s method we have
used is for finding zeros of a function and is appropriate
here, rather than the version for seeking critical points that
may be more familiar to the reader.

Remark 2: While we have chosen to implement Newton’s
method for the gradient update, gradient descent or any
number of its variants could also be used and may be more
suitable in other applications. Using Newton’s method to find
zeros of the gradient may also be suitable in some situations,
but non-convexity precluded its usefulness in our example.

This process of feasibility detection and improvement can
be repeated until design parameters are found that admit a
feasible solution. At this stage, the usual codesign optimiza-
tion procedure can commence. Analysis of the convergence
of this process is left for future work. We demonstrate it in
a numerical example to follow.

III. NUMERICAL EXAMPLE
To illustrate Algorithm 1, we consider the trimmed HSV

model from Section II. To this end, we set the running
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Fig. 5. Gradient-based parameter updates on the surrogate optimal control
problem, initialized at ±0.1204277 radians. Feasibility is achieved after 3
iterations in both cases.

cost in (1a) to R
.
= −v cos(γ), so that C maximizes

displacement in the x-axis. We used third-degree Lagrange
polynomials with zeros at the zeros of the corresponding
Legendre polynomials, between Nα − 1 = 64 uniformly
spaced knot points, although more sophisticated hp-adaptive
pseudospectral methods could be used [11]. We implemented
the direct collocation scheme using CasADi [4], and use its
sensitivity tools to obtain the gradients ∇θW

α
fs (θ) [5]. For

simplicity, and to avoid unnecessary computation involving
CFD, we consider problem initialization in the setting where
the sole design parameter γ0 to be the initial angle of the
HSV upon entry to the flight path [3]. However, the same
technique can be readily incorporated between outer-loop
updates in a full codesign procedure with more realistic
design parameters. Following Parker et al. [21], the drag and
lift coefficient functions CD and CL are modeled as low-
order polynomials in α given by

CD(α) = C0
D + C1

Dα+ C2
Dα2, CL(α) = C0

L + C1
Lα.

The values of the parameters used in our simulations are
given in Table I.

Optimal values of Wfs are plotted against their corre-
sponding values of γ0 as the dotted black line in Figure 2.
The coloured lines give the values of each µi and νi. Note
that in this example, both terminal constraints were violated
for different values of γ0, as well as the dynamic pressure
constraint. The corresponding trajectories x⋆ to the optimal
controls u⋆ have been displayed in Figure 3. The dashed lines
represent the infeasible trajectories corresponding to values
of γ0 with nonzero values of Wα

fs .
Figure 4 depicts the optimal values of Wα

fs against the
corresponding values of γ0, as well as the parameter updates
via Algorithm 1. The arrows depict the Newton updates.
In this example, γ0 was initialized at −6.5◦ (-0.1134464
radians) in black, and 6.5◦ (0.1134464 radians) in red.
Feasible trajectories were found after two iterations of the
algorithm in the black example, and three in the red example
(the third update obstructs the second). Figure 5 reinitializes
this experiment at −6.9◦ (-0.1204277 radians) in black, and
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C0
D 1.0131× 10−2 C0

L −1.8714× 10−2

C1
D 4.5315× 10−2rad−1 C1

L 4.6773× 100rad−1

C2
D 5.8224× 100rad−2 c 7km

m 201.59kg ρ0 1.23kg/m3

S 4.5m T 30s
v 0m/s v ∞ m/s
γ π

4
rad γ π

4
rad

y 32.5km y 21.5km
α -0.436332rad α 0.436332rad
q 10kPa q 100kPa
y
T

24km yT 26km
Tr 4031.8N/m v0 1500m/s
γ0 [-1.2217rad,1.2217rad] y0 30km

TABLE I
PARAMETER VALUES USED IN THE TRIMMED HSV MODEL.

6.9◦ (0.1204277 radians) in red. Contrasting Figures 4 and
5 with Figure 2, we note that the parameter updates land
near points where constraints are no longer violated. This is
due to the behaviour of the cost function, and the fact that
Newton’s method returns parameters that would have zero
cost if the cost functional was linear.

IV. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

Nested codesign is a challenging optimization problem
whose difficulties are highlighted when applied to optimal
design of bespoke hypersonic vehicles, tailored to specific
mission objectives. In particular, the constrained dynamics
are highly nonlinear, and depend on lift and drag functions
that need to be estimated via expensive CFD simulations.
This can lead to design initialization in regions where the
dynamics problem is infeasible. We have proposed a method
that mitigates this issue by allowing for detection of not only
infeasibility itself, but which constraints have been violated
by the design parameter settings. The nonlinear program that
was used in this detection was differentiated to obtain a
gradient that can be used in a parameter update to move
towards a feasible design.

B. Future Works

While the current method targets poor initialization, it
can immediately be inserted between parameter updates to
ensure feasibility throughout the codesign procedure. Simi-
larly, mitigation of the non-global minima found due to the
problems inherent nonconvexity requires attention. Formal
convergence analysis involving conditions under which one
can obtain convergence guarantees, as well as estimates
on the error in the cost induced by the discretization are
required in order to make the method more robust. Adap-
tation of reachability techniques based on the Hamilton-
Jacobi-Bellman equations [18] to the current setting may also
provide additional benefits over current techniques.
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