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Abstract— This paper proposes a new framework to compute
finite-horizon safety guarantees for discrete-time piece-wise
affine systems with stochastic noise of unknown distributions.
The approach is based on a novel approach to synthesise a
stochastic barrier function (SBF) from noisy data and rely on
the scenario optimization theory. In particular, we show that
the stochastic program to synthesize a SBF can be relaxed into
a chance-constrained optimisation problem on which scenario
approach theory applies. We further show that the resulting
program can be reduced to a linear programming problem,
thus guaranteeing efficiency. In contrast to existing approaches,
this method is data efficient as it only requires the number of
data to be proportional to the logarithm in the negative inverse
of the confidence level and is computationally efficient due to its
reduction to linear programming. The efficacy of the method
is empirically evaluated on various verification benchmarks.
Experiments show a significant improvement with respect to
state-of-the-art, obtaining tighter certificates with a confidence
that is several orders of magnitude higher.

I. INTRODUCTION

The behavior of modern autonomous systems are often un-
certain, due to e.g., sensor noise or unknown dynamics, and
are commonly employed in safety-critical applications, such
as automated driving [1] or robotics [2]. These applications
require formal guarantees of safety in order for the system
to be deployed in real-life. Consequently, computing such
guarantees for stochastic systems represents an important,
but non-trivial, area of research [3]. Existing approaches
to address this problem either rely on abstractions, where
the original system is abstracted into a finite state model,
generally a variant of a Markov chain [4], or leverage the
concept of Stochastic Barrier Functions (SBFs) [5]. SBFs
are Lyapunov-like functions that can be employed to bound
the probability that a dynamical system will remain safe for
a given time horizon, without the need to explicitly evolve
the system over time. A common assumption for the vast
majority of the existing approaches is that the distribution
of the system is known, and often either Gaussian or of
bounded support [5, 6]. Unfortunately, in practice, the noise
characteristics of the system are generally not known [7, 8].
This leads to the main question of this paper: how can we
compute formal certificates of safety for stochastic systems
with unknown noise distribution?

This paper focuses on guaranteeing safety for stochastic
piece-wise affine (PWA) systems. In particular, a data-driven
framework for the design of SBFs for stochastic PWA
systems with unknown noise distribution is presented. By
relying on tools from probability theory and convex optimisa-
tion, we show that the problem of synthesising a SBF for this
class of systems can be reformulated as a chance-constrained
optimisation problem [9]. This reformulation allows employ-
ing the scenario approach theory to devise a data-driven
framework to synthesize SBFs with high confidence. The
resulting approach is data-efficient, as it only requires the
amount of data to be logarithmic in the negative inverse
of the confidence, and is scalable, as, in the case of PWA
SBFs, it reduces to the solution of a Linear Programming
(LP) problem. We experimentally evaluate the performance
of the method on various systems including a model of a
vehicle in windy conditions. Our analysis illustrates how our
approach outperforms state-of-the-art comparable methods
both in terms of tightness of bounds and amount of data
required to achieve the desired confidence. In summary, the
main contributions are:

• A data-driven method based on the scenario approach to
design piece-wise affine Stochastic Barrier Functions.

• A novel inner chance-constrained approximation to
stochastic programming.

• Empirical studies that illustrates the performance of the
proposed method compared to state-of-the-art in terms
of both certified safety probability and confidence.

The structure of the paper is as follows: Section II reviews
convex and scenario optimisation, which are used exten-
sively throughout the paper. Section III describes the safety
certification problem and Section IV how SBFs formally
can guarantee safety. In Section V are the main results of
this paper; namely the inner approximation to stochastic
programming and data-driven SBF design. Empirical studies
are reported in Section VI.

a) Related works: SBFs were first proposed in [10] to
study the probability that a stochastic system exits a given
set in a finite time using super-martingale theory. Since
then, various works have employed SBFs to study non-linear
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stochastic systems with approaches including sum-of-squares
(SoS) optimisation [5, 6, 11–13] and relaxations to convex
programming [14, 15]. However, all these methods assume
that the model of the system is fully known. A recent set
of works have started to study data-driven approaches to
design SBFs for stochastic systems with (partially) unknown
dynamics, which can be employed to obtain guarantees of
safety with a confidence [12, 16]. These approaches replace
the stochastic program for synthesising SBFs with a Sample
Average Approximation (SAA)-based program, meaning that
the expectation is replaced by the sample average with a
probabilistic guarantee of satisfaction of the original expecta-
tion constraint through concentration inequalities. However,
these methods require an amount of data that is proportional
to the negative inverse of the confidence. In contrast, our
approach requires a number of data that is logarithmic in the
negative inverse of the confidence.

Data-driven verification of stochastic systems is a rela-
tively new area to address the problem of verifying (partially)
unknown systems [12, 16–20]. To compute formal guaran-
tees for non-linear systems, apart from the SAA approach
described in the previous paragraph, existing literature fo-
cuses either on the scenario approach [18–20], on Gaussian
processes [21, 22], or on distributionally robust approaches
[7]. In particular, in [18–20] the authors rely on the data
efficiency of scenario approach theory to build abstractions
of the original system with high confidence of correctness,
while in [21, 22] error bounds on performing Gaussian Pro-
cess regression are employed to again build abstractions that
are employed to perform probabilistic model checking of the
unknown system. However, all these methods are abstraction-
based. Consequently, they suffer from the scalability issues
inherent with abstraction-based frameworks. In this paper,
our approach will combine the data-efficiency of the scenario
approach with the flexibility of SBFs.

A. Notation

The set of real, non-negative real, and natural numbers
are denoted with R, R≥0, and N respectively. Vectors in the
Euclidean space will be denoted by the letter x ∈ Rn and
random variables in Rn will be denoted with bold font x.
Subscripts will be used to denote a collection of elements,
i.e., x1, . . . , xm denote different vectors in the same space.
A subset X of Rn is convex if λx1 + (1 − λ)x2 ∈ X , for
all x1, x2 ∈ X and λ ∈ [0, 1]. A polyhedron P ⊆ Rn is
a convex set defined as P = {x ∈ Rn : Hx ≤ h}, where
the matrix H ∈ Rm×n and the vector h ∈ Rm are given,
and the inequality is interpreted element-wise. This form is
called a half-space representation. A function f : Rn 7→
R is convex if and only if its epigraph epi(f), defined as
epi(f) = {(x, t) ∈ Rn+1 : f(x) ≤ t}, is a convex set of
Rn+1. Optimisation variables will be denoted by the letter z
to distinguish it from the state-space variable x.

II. PRELIMINARIES

In this section, we review some concepts used extensively
throughout the paper.

A. Robust linear programming

Robust linear programming (LP) [23] forms a backbone
in this paper, hence we will reiterate its definition and
crucial results. Consider the following robust LP problem
for polyhedron P ⊂ Rn

min
z

s>z

s. t. a(z)>x ≤ b(z), for all x ∈ P
(1)

where z ∈ Rd is the decision variable, s ∈ Rd is the cost
vector, and a : Rd → Rn, b : Rd → R are functions affine
in z. The following result guarantees that Problem 1 can be
reformulated as a LP problem in a lifted space.

Proposition 1 (Strong duality of robust LP [23]):
Consider the robust LP problem in Problem (1) and the
following optimisation problem

min
z,λ

s>z

s. t. h>λ ≤ b(z)
H>λ = a(z), λ ≥ 0.

(2)

where (H,h) is the half-space representation of P . Let sets

Z = {z ∈ Rd : sup
x∈P

a(z)>x ≤ b(z)},

Z ′ = {z ∈ Rd : ∃λ ∈ Rm≥0, h
>λ ≤ b(z), H>λ = a(z)},

be the feasible set of Problem (1) and the feasible set of
Problem (2) projected onto its first d coordinates, respec-
tively. Then we have that Z = Z ′.

B. Scenario optimisation

The scenario approach theory establishes sample complex-
ity guarantees for the probability of constraint violation of a
chance-constrained optimisation problem [24]. Let (Ω,F ,P)
be a probability space, where Ω is the sample space, F is
a σ-algebra over Ω, and P is a probability measure over F .
Then, a chance-constrained program is defined as:

min
z

s>z

s. t. P{ω ∈ Ω : g(z, ω) ≤ 0} ≥ 1− ε,
(3)

where z ∈ Rd is the optimisation variable, s ∈ Rd are the
cost coefficients, g : Rd×Ω→ R is a function that is convex
in z for each value of ω and measurable in ω for each value
of z, and ε ∈ (0, 1) is a given bound on constraint violation.

Now assume D = {ω1, . . . , ωN} is a set of independent
samples from P. Note that the set D belongs to the space
(ΩN ,⊗NF ,PN ), where ΩN is the N -fold Cartesian product
of Ω, and ⊗NF is the product σ-algebra generated by the
σ-algebra F and PN represents the induced measure on
ΩN [24]. Then, at the core of the scenario approach is the
construction of the scenario program

min
z

s>z

s. t. g(z, ω) ≤ 0, for all ω ∈ D.
(4)

The idea of the scenario approach is to use Problem (4) to
obtain high confidence bounds on the solution of Problem
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(3). To do that, we need some standard assumptions [24].
Assumption 1: Assume that:
• PN -almost surely, the feasible set of Problem (4) given

by Z = {z ∈ Rd : g(z, ω) ≤ 0, for all ω ∈ D}, has
non-empty interior.

• PN -almost surely, the optimal solution of Problem (4)
exists and is unique.

Denote by z?(D) the unique, optimal solution of Problem
(4), which is a random variable from ΩN to Rd. Then, we
are ready to state Proposition 2.

Proposition 2 ([24]): Let N ∈ N represent the number of
available samples and V (z) = P{ω ∈ Ω : g(z, ω) > 0}. be
the probability of constraint violation associated with z?(D).
Assume a threshold ε ∈ (0, 1) is given. Then we have that

PN{D ∈ ΩN : V (z?(D)) > ε} ≤
d−1∑
i=0

(
N

i

)
εi(1− ε)N−i.

Proposition 2 will be key in establishing safety guarantees
for the class of stochastic models considered in this paper.

III. PROBLEM STATEMENT

The goal of this paper is to certify safety for piece-wise
affine stochastic systems, which we formally introduce in
Section III-A, while probabilistic safety is introduced in
Section III-B.

A. Piece-wise affine stochastic systems

Let P = {P1, . . . , P`} be a polyhedral partition of the state
space X ⊆ Rn, where each Pi, i = 1, . . . , ` is given by its
half-space representation. Consider the following discrete-
time stochastic PWA system:

x(k + 1) = f(x(k)) + η(k), x(0) ∈ X0, (5)

where k ∈ N denotes the (discrete) time index, X0 is a set of
initial states, and f : X 7→ Rn is a PWA vector field given
by

f(x) = fi(x) = Aix+ bi, x ∈ Pi ⊆ Rn,

for some matrix Ai ∈ Rn×n and vector bi ∈ Rn. The
additive term (η(k))k∈N is a sequence of independent and
identically distributed random variables representing an ad-
ditive noise term. We assume that η(k) is defined on the
filtered probability space (Ω,F , (Fk)k∈N,P), where Fk is
the natural filtration of the process η(k), and P is assumed
to be unknown. Consequently, (x(k))k∈N is also a stochastic
process in the space (Ω,F ,P) that is, it is Fk−1-measurable
[9]. We note that System (5) represents a flexible and
expressive model. In fact, not only does it include linear
systems, but we note that PWA functions can approximate
any non-linear function arbitrarily well.

B. Time-bounded probabilistic safety

Our goal is to study probabilistic safety for System (5).
Definition 1 (Probabilistic safety [5]): Let T ∈ N be a

time horizon and S be a measurable subset of X1. We define
1If X 6= Rn then it may be necessary to replace x(k) with an equivalent

stopped process x̃(k) [6].

probability safety2 for System (5) as

ζ(S, T ) = P{ω ∈ Ω : x(k) ∈ S for all k ∈ {0, . . . , T}}.
(6)

We assume that, while f is known, η is unknown and
we can only generate independent and identically distributed
(iid.) samples from it. Under these assumptions, the goal
in this paper is to compute a (non-trivial) lower bound on
ζ(S, T ) for System (5).

Our approach is based on using the sampled data to
synthesize a piece-wise affine (PWA) Stochastic Barrier
Function (SBF) for System (5) with high confidence. In order
to do that, in Section V-A we develop a novel and pow-
erful inner approximation for the feasible set of stochastic
programs in terms of chance-constrained optimisation. This
result is employed to use the scenario approach to synthesize
SBF for System (5) with high confidence and by requiring a
number of data logarithmic in the negative inverse of the
confidence. In Section V-B, we show that in the setting
considered in this paper the resulting optimization problem
reduces to LP, thus enabling efficient and scalable synthesis.
Before presenting the main result, we review in the next
section SBFs and how they can be employed to guarantee a
lower bound on ζ(S, T ).

IV. STOCHASTIC BARRIER FUNCTION (SBF)

SBFs are Lyapunov-like functions commonly employed to
compute the safety probability of stochastic systems [5].

Definition 2 (Stochastic Barrier Function): Let U = X \
S be the unsafe set and X0 ⊆ S the set of initial states, then
a non-negative function B : X 7→ R≥0 is called a Stochastic
Barrier Function if there exist non-negative constants γ, c
satisfying the following conditions

B(x) ≤ γ, for all x ∈ X0, (7)
B(x) ≥ 1, for all x ∈ U , (8)

E [B(f(x) + η(ω))] ≤ B(x) + c, for all x ∈ S. (9)

where the expectation is with respect to ω ∼ P.
A pictorial representation of a SBF is presented in Figure

1. Intuitively, the conditions in Definition 2 allows one to use
martingale inequalities to lower bound probabilistic safety.

Proposition 3 ([10, Chapter 3, Theorem 3]): Let B be a
SBF satisfying the conditions in Definition 2 for System (5),
time horizon T , and safe set S. Then, it holds that ζ(S, T ) ≥
1− (γ + cT ).
Thanks to Proposition 3, a sufficient condition to establish
a lower bound on the safety probability is to design a SBF
satisfying Equations (7)-(9). This can be obtained by solving
the following stochastic program where B is parameterised
by θ as B(x, θ) according to a chosen function class

min
γ, c, θ

γ + cT, (BP)

2Notice that η(k) is measurable function N × Ω → Rn, omitting the
dependence on ω ∈ Ω. Therefore, when we use the notation P{ω ∈ Ω :
x(k) ∈ S, for all k ∈ {1, . . . , T}}, the reader should have in mind that
the process x is dependent on ω. Please refer to [9] for more details.
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0

Fig. 1: The figure is borrowed from [15]. A SBF B(x) is
a non-negative function that is greater than 1 in an unsafe
region U , which is the complement of the safe set S. The
variable γ is an upper bound for B(x) over an initial region
X0. The upper bound for the expected increase in B(x) after
one step of (5) over the safe set S is denoted c. Then it holds
that the probability of safety ζ(S, T ) ≥ 1− (γ + cT ).

subject to the conditions in Definition 23. In other words,
synthesis of a SBF can be framed as a minimisation over γ+
cT . In this optimisation problem, the expectation condition
(Equation (9)) can generally be computed analytically only
under some strong assumptions on the noise distribution [6,
25]. Our approach proposes a new, inner chance-constrained
approximation of Problem (BP), which allows us to rely on
tools from scenario optimisation to synthesize a barrier [24].
The resulting approach is a distribution-free, data-driven
method to obtain a SBF as a safety certificate with a high
confidence of validity. Note that to guarantee the convexity
of Problem (BP), B is generally restricted to be either a
SoS polynomial or an exponential function [6]. In this paper,
motivated by the structure of System (5), we will consider
piece-wise affine B, which have the flexibility to be able to
model arbitrarily well any continuous function assuming the
number of pieces of B is large enough.

V. DATA-DRIVEN STOCHASTIC BARRIER FUNCTION
DESIGN

In this section, we present the main results of this paper.
In Section V-A, an inner approximation of the feasible set
of Problem (BP) in terms of a chance-constrained problem
(Theorem 1) is described. Such a relaxation allows us to use
the scenario approach to derive high confidence bounds on
the resulting solution (Corollary 1). Finally in Section V-B,
we will introduce PWA SBFs and show how for this class
of barriers the resulting scenario approach is a LP.

A. Data-driven stochastic barrier design

Solving Problem (BP) is challenging because analytic
expressions of the expectation constraint are rarely available,
even if the distribution P is known (which is not the case in
this paper). To solve this problem, in Theorem 1, we derive a
chance-constrained problem whose feasible set is a subset of

3For all barrier programs, we use an abbreviated reference to carry
semantic meaning about the variation, such as Problem (BP) for the general
barrier program.

the feasible set for Problem (BP). Thus, its optimal solution
is an upper bound to that of Problem (BP).

Theorem 1: Consider System (5), and the barrier function
B(x, θ) as in Definition 2, where B is convex in θ. Assume
a given ε ∈ (0, 1) and M ≥ 1, and define decision variables
z = (c, γ, θ). Let g(x, z, η(ω)) = B(f(x) + η(ω), θ) and
h(x, z) = B(x, θ) + c, and choose ν ≥ εM

1−ε . Define the set

E(x, z) = {ω ∈ Ω : g(x, z, η(ω)) + ν ≤ h(x, z)} .
Then, the feasible set of the chance-constrained barrier
program

min
γ≥0, c≥0, θ

γ + cT

s. t.

B(x, θ) ∈ [0,M ], for all x ∈ Rn,

B(x, θ) ≤ γ, for all x ∈ X0,

B(x, θ) ≥ 1, for all x ∈ U ,

P {E(x, z)} ≥ 1− ε, for all x ∈ S,

(CCBP)

is contained in the feasible set of Problem (BP).

The proof of Theorem 1 is reported in Section VIII. Theorem
1 opens new ways for data-driven design of Stochastic Bar-
rier Functions. Rather than relying on standard concentration
inequalities to approximate the expectation in Equation (9)
as in [16], we can perform chance-constraint tightening with
the parameter ν to guarantee the feasible set of (SBP) is an
inner approximation of (CCBP). Building on this result, in
Corollary 1 we use the scenario approach to design SBFs
from data with high confidence.

Corollary 1: Assume that D = {ω1, . . . , ωN} is a col-
lection of N independent samples from the distribution P.
Fix ε ∈ (0, 1), M ≥ 1 and ν ≥ εM

1−ε , and let β =∑d−1
i=0

(
N
i

)
εi(1− ε)N−i, where d = |θ|+ 2. Let (c?, γ?, θ?)

be the optimal solution to the scenario program

min
γ≥0, c≥0, θ

γ + cT

s. t. B(x, θ) ∈ [0,M ], for all x ∈ Rn,

B(x, θ) ≤ γ, for all x ∈ X0,

B(x, θ) ≥ 1, for all x ∈ U ,

g(x, z, η(ω)) + ν ≤ h(x, z),

for all ω ∈ D, for all x ∈ S,
(SBP)

where g and h are defined as in Theorem 1. Then, with
confidence 1− β, it holds that ζ(S, T ) ≥ 1− (γ? + c?T ).

Remark 1: Observe that the amount of data N required to
achieve a desired confidence 1−β with existing approaches
based on concentration inequalities to approximate Equation
(9) is proportional to 1/β [16] whereas for our approach,
the amount required is proportional to ln(1/β) [26]. To put
this into perspective, consider β = 10−9, which is the gold
standard in both aviation and autonomous vehicle design [1],
then 1/β = 109 while ln(1/β) ≈ 20.7.
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B. Linear programming reformulation of stochastic barrier
function design

Corollary 1 defines an optimisation problem (Problem
(SBP)) for the data-driven design of SBFs. For instance,
the resulting problem can be solved under the assumption
that B is a SoS function using semi-definite programming
[5, 6]. However, while viable, this approach can often be
conservative and lack of scalability [15]. Motivated by the
PWA structure of System (5), we propose instead to use a
PWA function to parameterise a SBF. Then, by applying
tools from robust LP, i.e. Proposition 1, we show that
Problem (SBP) can be transformed into a linear program
with a finite number of constraints. To this end, let P̄ =
{P̄1, . . . , P̄¯̀} be a polyhedral partition of the state space X
with ¯̀≥ `. We assume that for any two regions i, j where
i 6= j the the intersection has zero-measure

P{ω ∈ Ω : x(k) ∈ P̄i ∩ P̄j for all k = 0, . . . , T} = 0.

Furthermore, assume for simplicity that each region P̄i is
a subset of exactly one region Pr(i) from the partition P ,
with a surjective function r : {1, . . . , ¯̀} → {1, . . . , `}
mapping between indices. In other words, the partition for
the PWA barrier candidate P̄ is aligned with the partition of
the dynamics P , although potentially more fine-grained. We
consider a PWA SBF B defined as follows

B(x, θ) = max(B1(x, θ), . . . , B¯̀(x, θ)), (10)

where

Bi(x, θ) =

{
u>i x+ vi, for x ∈ P̄i,

0, otherwise,

and θ ∈ R¯̀(n+1) is the set of parameters (ui, vi) ∈ Rn+1,
i = 1, . . . , ¯̀, used to define the SBF.

For convenience, we also define collections of indices from
I = {1, . . . , ¯̀} that correspond to elements of the partition P̄
that have non-empty intersection with the set of safe, unsafe,
and initial states, respectively:

IS = {i ∈ I : P̄i ∩ S 6= ∅},
IU = {i ∈ I : P̄i ∩ U 6= ∅},
IX0

= {i ∈ I : P̄i ∩X0 6= ∅}.
(11)

With the family of barrier functions defined, we turn our
attention to the reduction of Problem (SBP) into a linear
problem. In order to do that we need to reduce each of
the constraints in Problem (SBP) into linear constraints. The
reduction for the non-negativity, upper bound, initial, and
unsafe set constraints follow a similar structure. Hence, for
brevity, we only describe the process for the non-negativity
constraint. With the assumption that the intersection of two
regions has no volume, we can impose Bi(x, θ) ≥ 0 for
all x ∈ P̄i independently for each region. Note that for
each region i the barrier Bi(x, θ) is an affine function in
x over the polyhedron P̄i. Hence, the resulting constraint
is a robust LP constraint and we can rely on Proposition
1 to transform the problem to a lifted space representable
by a regular LP constraint. More concretely, consider the

constraint Bi(x, θ) = u>i x + vi ≥ 0 for all x ∈ P̄i where
P̄i is defined by its half-space representation (Hi, hi) ∈
Rm×n×Rm. Then with a dual variable λi ∈ Rm≥0, this can be
replaced with the following two equivalent constraints using
Proposition 1: h>i λi ≤ vi and H>i λi = −ui.

Now, consider the last constraint of Problem (SBP),
namely g(x, z, η(ω)) + ν ≤ h(x, z) for all ω ∈ D, for all
x ∈ S. For this constraint Proposition 1 is not immediately
applicable, as we must consider the value of the barrier
before and after a transition. Instead, we construct a robust
LP constraint for each pair of regions (i, j) ∈ IS × I:

Bj(fr(i)(x) + η(ω)) + ν ≤ Bi(x) + c,

for all ω ∈ D, for all x ∈ Qij(ω).
(12)

The random subset Qij(ω) of X is defined as

Qij(ω) = {x ∈ P̄i : fr(i)(x) + η(ω) ∈ P̄j}, (13)

representing the set of elements in the region P̄i that are
mapped to P̄j under a given realisation of the noise ω.
A pictorial example of Qij(ω) can be found in Figure
2. Since both P̄i and P̄j are polyhedra and fr(i) is an
affine function, Qij(ω) is a polyhedron [23]. Thus, we can
again use Proposition 1 to transform Equation (12) to linear
constraints. Specifically, for a pair of regions (i, j) ∈ IS × I
and a realisation of the noise ω ∈ D, with half-space
representation (Hijω, hijω) ∈ Rm×n×Rm of region Qij(ω)
and dual variable λijω ∈ Rm≥0, the original semi-infinite
constraint is transformed into the following two constraints

h>ijωλijω ≤ vi − vj − u>j (br(i) + η(ω)) + c− ν,

H>ijωλijω = A>r(i)uj − ui.
Collecting together all finite sets of constraints, the LP

equivalent representation of Program (SBP) is as follows.

min
γ≥0, c≥0, θ

γ + cT

s. t.

h>i λi ≤ vi, H>i λi = −ui,

h>i λiM ≤M − vi, H>i λiM = ui, for all i ∈ I,

h>i0λi0 ≤ γ − vi, H>i0λi0 = ui0, for all i ∈ IX0
,

h>i λiU ≤ vi − 1, H>i λiU = −ui, for all i ∈ IU ,

h>ijωλijω ≤ vi − vj − u>j (br(i) + η(ω)) + c− ν,

H>ijωλijω = A>r(i)uj − ui, for all ω ∈ D,
for all (i, j) ∈ IS × I,

(LBP)
where λi, λiM , λi0, λiU , λijω are non-negative dual vari-
ables. (Hi0, hi0) denotes the half-space representation of
P̄i ∩X0.

Theorem 2: Let B be a piece-wise affine Stochastic Bar-
rier Function as defined in Equation (10). Then, an optimal
solution z?(D) to Problem (LBP) is an optimal solution to
Problem (SBP).
By Corollary 1 and Theorem 2, Problem (LBP) is an equiva-
lent LP representation of Problem (BP) that can be employed
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Fig. 2: Given two regions P̄i, P̄j and a realisation of the
noise ω, the set Qij(ω) represents the subset of x ∈ P̄i such
that f(x) + η(ω) ∈ P̄j . In other words, Qij(ω) is the subset
of P̄i that can reach P̄j given the realisation of the noise ω.

to synthesize a SBF. The number of decision variables and
constraints of the resulting LP depends on the number of
half-spaces necessary to represent each polyhedron. In par-
ticular, assume for simplicity that each polyhedral region is
represented by m half-spaces. Then, the number of decision
variables in Problem (LBP) is

2︸︷︷︸
γ,c

+ (n+ 1) · ¯̀︸ ︷︷ ︸
θ

+m · (2¯̀+ |IX0
|+ |IU |+N |IS |¯̀)︸ ︷︷ ︸

dual variables

,

while the number of constraints is:

2 +m · (6¯̀+ 3|IX0
|+ 3|IU |+ 3N |IS |¯̀).

Note that both the number of constraints and number of
variables are dominated by the term mN |IS |¯̀, where |IS |
and ¯̀ are respectively number of pieces in the SBF that
intersect with S and total number of pieces in the SBF. This
illustrates how the dimension of the resulting LP problem
grows linearly in the number of samples N and quadratically
in the complexity (i.e., number of pieces) of the barrier B.

VI. EXPERIMENTS

To show the efficacy of the proposed method, we evaluate
it on three different benchmarks. Namely:
• a 1D linear system governed by the following dynamics

x(k + 1) = x(k) + η(k), which is a martingale,
• a 2D linear model of longitudinal dynamics for a drone

from [19],
• a 2D PWA model of a vehicle driving with constant

velocity subject to a wind disturbance along its path.
For the martingale system, the goal is to quantify the
probability that from any state within a radius of 0.5 around
the origin the system will stay within a set of radius of 2.5
around the origin for a time horizon T = 10. For the drone,
the goal is to certify that the speed of the drone always
stays lower than 10 units, again for a time horizon T = 10.
Please note that in [19], they consider an uncertain mass of
the drone, which is not compatible with Problem (LBP). To
make the benchmark compatible, we let the mass be equal to

the center of the uncertainty interval, namely m = 1. Finally,
the last model represents a vehicle driving with constant
velocity. The goal is to stay on the road within T = 10,
despite a varying disturbance from wind along the route.
Mathematically, we describe the dynamics as follows:

x(k + 1) =

[
1 0
0 0.95τ

]
x(k) +

[
vτ

0.5dτ2

]
+ η(k)

where we choose a velocity v = 13.89, a time resolution
τ = 1, and a disturbance d = 0.0626 for regions where the
longitudinal position x1 satisfies 80 ≤ x1 ≤ 120 and d = 0
otherwise. For the purpose of the experiment, we assume
η(k) is Gaussian noise with diagonal covariance, which of
course is assumed unknown and only iid. samples can be
generated from it.

We compare our method against SAA [16], arguably
the state-of-the-art for data-driven synthesis of SBFs, on
the three benchmarks. For SAA, we employ a 4th degree
polynomial barrier and SoS optimisation. For our method,
we consider a PWA barrier function with 7 and 33 pieces
for respectively the Martingale and Drone example, while
for the Vehicle example we consider different values of ¯̀ to
study its impact. The benchmarks and methods have been
implemented4 in Julia (1.8.3) with JuMP.jl (1.6.0) as the
modelling framework and Mosek (9.3.11) as the LP solver.
The experiments are conducted on a computer running Linux
Manjaro (5.10.157) with an Intel Core i7-10610U CPU and
16GB RAM.

Table I shows the results across all three systems. The
results are reported as the average over 100 trials to ensure
that certification is not spurious due to a sampling of the
noise. Comparing the two methods in Table I, we see that
the proposed method outperforms SAA across all measures
on both the Martingale and Drone system, while the vehicle
is intractable for SAA. Note that for any system considered
in this paper, SAA can only certify with a confidence
1 − 10−6 and probability of safety up to 0.95, due to an
intractable amount of samples required for higher confidence
and smaller auxiliary variable ν. On the other hand, our
method, thanks to the bounds we compute in Corollary 1,
achieves a confidence of 1 − 10−9 (see Remark 1), and a
probability of safety up to 0.995. In addition, our method
achieves a higher certified probability of safety and is orders
of magnitude faster. The latter is due the reduction to LP
and to the use of the scenario approach to derive confidence
bounds. To further highlight the data-efficiency, we present in
Figure 3 the number of samples required to achieve a desired
confidence for both methods. The figure clearly shows that
our method requires orders of magnitude less samples to
achieve the same confidence.

Next, we analyze the impact of increasing the number of
pieces in the SBF l̄, towards a more expressive SBF. Table I
reveals that increasing the number of partitions for the barrier
(see Equation 10) yields tighter guarantees as expected.

4Code is available at https://github.com/DAI-Lab-HERALD/
scenario-barrier under a GNU GPLv3 license.
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TABLE I: Certified safety and computation time using the
method explained in Section V. Results are reported as the
average over 100 trials. n is the dimensionality of the system
and ¯̀ is the number of pieces of the PWA SBF B. 1−β is the
confidence in the certificate and ζ(S, T ) is the certified level
of safety. Bold font denotes best method for each measure
and system.

System n Method ¯̀ β ζ(S, T ) Comp. time (s)

Martingale 1 Our 7 10−9 0.769 0.096
SAA - 10−6 0.910 0.249

Drone 2 Our 33 10−9 0.995 4.84
SAA - 10−6 0.950 1.18

Vehicle 2

Our 18 10−9 0.618 1.44
Our 42 10−9 0.712 2.45
Our 46 10−9 0.842 3.72
Our 126 10−9 0.994 9.06
SAA - 10−6 0.000 2.14
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Fig. 3: A plot for the number of samples required to achieve
a given confidence 1−β for SAA and the proposed method
using the scenario approach. The number of samples reported
in this plot is specifically for the vehicle system with 126
regions, as reported in Table I.

In fact, a PWA function with arbitrarily many pieces can
approximate arbitrarily well any continuous function, thus
increasing the flexibility of the framework. However, this
comes at the cost of increased computation time. Note
however, that computation times are always faster than SAA
even for relatively large ¯̀. We also observe that despite using
fewer regions for the Drone system, it is slower to compute
than for the Vehicle system with both 42 and 46 regions.
To understand why note that the constraint in Equation (12)
is trivially satisfied if Qij(ω) is empty, or in other words,
it is impossible to reach region j from region i under the
realisation of the noise ω. The Drone system has more non-
empty Qij(ω) over the Vehicle system and thus is slower.

VII. CONCLUSIONS

We studied the problem of certifying probabilistic safety
for partially known stochastic systems. The problem is

important for the adoption of autonomous safety-critical
systems. This safety verification problem was addressed by
synthesising Stochastic Barrier Function (SBF) with a data-
driven approach leveraging the scenario optimisation theory.
To apply the data-driven scenario approach to SBF synthesis,
a novel inner chance-constrained approximation to stochastic
programming was presented. The chance-constrained ap-
proximation was applied to SBFs in Theorem 1: an important
consequence of the theorem is that the method can be easily
extended to other classes of systems, e.g. polynomial or more
general non-linear systems. Experimental studies showed that
our method can certify systems with a confidence that is
orders of magnitude greater than the state-of-the-art methods,
while also producing tighter bounds and being faster.

VIII. TECHNICAL PROOFS

A. Proof for Theorem 1

In order to prove Theorem 1 we consider the following
stochastic program, which generalizes Problem (BP),

min
z

s>z

s. t. E {g(x, z, η(ω))} ≤ h(x, z), for all x ∈ S,
(14)

where z ∈ Rd is the decision variable, s ∈ Rd is the cost
vector, η : Ω → Rm is a random variable on (Ω,F ,P),
and g : Rn ×Rd ×Rm → R is a measurable and integrable
function for each pair (x, z) ∈ Rn×Rd, h : Rn×Rd → R≥0

is a function, and S is a measureable set on Rn. The feasible
set of Problem (14) is given by

Z = {z ∈ Rd : E{g(x, z, η(ω))} ≤ h(x, z) for all x ∈ S}.
Theorem 3 shows that an inner approximation of the

feasible set Z for Problem (14) can be obtained through
a chance-constrained problem. Thus, we can relax Problem
(14) to the following chance-constrained problem.

Theorem 3 (Inner chance-constrained approximation):
Let ε ∈ (0, 1) be a given threshold and assume h(x, z) ≥ 0
for all (x, z) ∈ Rn × Rd. Define a uniform upper bound
M = sup

x,z,ω
g(x, z, η(ω)) > 0 on g and let ν ≥ εM

1−ε . Define

the set

E(x, z) = {ω ∈ Ω : g(x, z, η(ω)) + ν ≤ h(x, z)} ,
and consider the chance-constrained problem

min
z

s>z

s. t. P {E(x, z)} ≥ 1− ε, for all x ∈ S,
(15)

whose feasible set is given by Z ′ =
{
z ∈ Rd :

P
{
E(x, z)

}
≥ 1− ε, for all x ∈ S

}
. Then we have that

Z ′ ⊆ Z .
Proof: Pick any z̄ ∈ Z ′. Our goal is to show that z̄ ∈ Z .

To this end, pick any x ∈ S and notice that

E [g(x, z̄, η(ω))] =

∫
E(x,z̄)

g(x, z̄, η(ω)) dP(ω)+∫
E(x,z̄)c

g(x, z̄, η(ω)) dP(ω).
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Hence, we can derive the following

E {g(x, z̄, η(ω))}
≤ (h(x, z̄)− ν)P{E(x, z̄)}+MP{E(x, z̄)c}
= h(x, z̄)− νP{E(x, z̄)}+MP{E(x, z̄)c}

(16)

where the first inequality follows from the fact that
g(x, z̄, η(ω)) is less than or equal to h(x, z̄) − ν on the set
E(x, z̄) and that g is uniformly upper bounded by M on
the whole space Ω. and the second inequality follows from
h(x, z̄) ≥ 0 for all (x, z̄) ∈ Rn×Rd and P{E(x, z̄)} ∈ [0, 1].

Now, by transitivity it holds that E {g(x, z̄, η(ω))} ≤
h(x, z̄) if h(x, z̄)−νP{E(x, z̄)}+MP{E(x, z̄)c} ≤ h(x, z̄).
Due to the feasibility of z̄, it holds that P{E(x, z̄)} ≥
1 − ε and P{E(x, z̄)c} ≤ ε. Furthermore, observe that
ν ≥ 0 and M > 0, hence the second inequality holds
if −νP{E(x, z̄)} + MP{E(x, z̄)c} ≤ 0. Restructuring this
inequality, we arrive at ν ≥ εM

1−ε , which is assumed to hold
(by carefully choosing ν). Therefore, we observe that z̄ ∈ Z ,
thus concluding the proof of the theorem.
What is left to show to conclude the proof is to show that
g(x, z, η(ω)) = B(f(x) + η(ω), θ) and h(x, z) = B(x) + c
satisfies the conditions of Theorem 3, i.e., h is non-negative
and g is uniformly bounded by M . Non-negative follows
trivially by the definition of a SBF, while boundedness of B
and consequently of g, can always be enforced.
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