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Abstract— In many power systems, particularly those isolated
from larger intercontinental grids, reliance on natural gas is
crucial. This dependence becomes particularly critical during
periods of volatility or scarcity in renewable energy sources,
further complicated by unpredictable consumption trends. To
ensure the uninterrupted operation of these isolated gas-grid
systems, innovative and efficient management strategies are
essential. This paper investigates the complexities of achiev-
ing synchronized, dynamic, and stochastic optimization for
autonomous transmission-level gas-grid infrastructures. We
introduce a novel methodology grounded in differentiable
programming, which synergizes symbolic programming, a con-
servative numerical method for solving gas-flow partial differ-
ential equations, and automated sensitivity analysis powered
by SciML/Julia. Our methodology refines the co-optimization
landscape for gas-grid systems by grounding gas dynamics in
physics-adherent simulation. We demonstrate efficiency and
precision of the methodology by solving a stochastic optimal
gas flow problem, phrased on an open source model of Israel’s
gas grid model.

I. INTRODUCTION & BACKGROUND

The surge in renewable energy integration has heightened
the variability in power demand, intensifying the fluctuations
represented by the duck curve. Concurrently, the shift from
coal to cleaner “bridge fuels” like natural gas places in-
creased dependence on the gas infrastructure. This reliance
extends beyond power generation to include transmission-
level gas systems, which are also impacted by residential,
commercial distribution, and exports. The disparate response
times between gas and power networks – seconds for power
systems versus hours for gas systems – add complexity to
real-time and day-ahead coordination across these sectors.
Earlier research, like that of [1] and [2], integrated gas dy-
namics into day-ahead planning through optimization models
that simplified gas network constraints. More recent efforts
have developed linear approximations for pipe segments
to balance computational efficiency against model fidelity,
aiding their incorporation into optimization frameworks [3].
Yet, efficiently and scalably addressing the full nonlinearity
inherent in gas system dynamics, especially under stress and
uncertainty, continues to pose a significant challenge.

The challenge we face is formally defined as solving a
PDE-constrained optimization problem, which is schemati-

cally represented as:

min
{u(s)(t),q(t)}

∑
s∈S

∫ T

0

C(s)(u(s)(t), q(t)) dt,

s.t. ∀s, ∀t ∈ [0, T ] :
du(s)(t)

dt
= g(u(s)(t), q(t)),

(1)

where u(s)(t) denotes the time-evolving state space as-
sociated with scenario, s ∈ S and q(t) stands for the
time-evolving but scenario-independent control degrees of
freedom. The space S represents uncertainty associated, e.g.,
with stochastic fluctuation in demand and renewable gener-
ation. The term C(s)(u(s)(t), q(t)) denotes the cumulative
cost; in what follows we choose a multi-objective encapsu-
lating the discrepancy between aggregated energy generation
and demand, operational costs of gas generators, and pressure
constraints at the gas-grid nodes. Note that we allow the
cost to depend on the sample; we will use this generality
to cover the case of uncertain demands later in the paper.
For a given sample, u(s)(t) represents the spatiotemporal
gas flows, gas densities, and, indirectly via the gas equation
of state, pressures over the gas-grid. q(t) are controlled
boundary conditions, specifying gas supply/extraction at the
various nodes of the gas-grid where gas supply/generators are
positioned. The equation du(s)(t)

dt = g(u(s)(t), q(t)) enforces
the gas-flow equations; such that for each scenario s, u(s)(t)
is a solution to the Euler equations describing the gas flow,
subject to the controlled boundary conditions q(t). A detailed
explanation is provided in Section II.

In this paper, we propose a novel approach to solving
Eq. (1), aiming to enhance the fidelity of gas accounting
in short-term to day-ahead planning of power generation
in a computationally efficient manner. Our solution crafts a
differentiable simulator by leveraging the principles of differ-
entiable programming (DP) [4], combined with an efficient
explicit staggered-grid method [5], symbolic programming
and the robust capabilities of the SciML sensitivity ecosys-
tem [6], [7]. As we delve further, it will become evident that
our approach adeptly addresses the intertwined challenges of
nonlinearity, dimensionality, and stochastic modeling.

In the proposed framework, DP facilitates the calculation
of gradients by seamlessly solving the gas-flow PDE across a
network. This is realized by auto-generating the correspond-
ing adjoint equations, providing flexibility in formulating the
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forward pass. The approach not only supports sensitivity
analysis but, with a judicious selection of algorithms, pro-
ficiently manages scalability issues in parameter spaces, all
while preserving the intricate nonlinear dynamics.

In this manuscript, we leverage recent efforts[8] in sym-
bolic computing to decouple a model specification (i.e.,
PDE, boundary conditions and numerical method) and its
implementation (compiled code). Historically, the developer
has needed to implement both the numerical method and
the code representation, worrying about low-level details
like parallelism, memory access, etc. These low-level details
often compete with correctness of the implementation in the
developer’s attention. ModelingToolkit.jl is a julia package
that transforms an ODE specification to compiled code -
compiling and optimizing according to the target hardware
(e.g. CPU/GPU). In our work, we discretize the PDE symbol-
ically, then stitch the resulting systems of ODEs into a single
system - similar to [9] but with the added detail of network
topology. This system is then compiled into executable
code. This approach ensures the code exactly implements
the model, abstracting away from low-level implementation
details. Additionally, this weakens the coupling between
component pieces - allowing future users to extend this mod-
ular methodology directly, e.g. implementing compressors
simply by implementing a new network component type,
and writing equations describing its interaction with incident
pipes.

Motivated by the everyday operational challenges charac-
teristic of Israel’s power system, as expounded in [10] and
its associated references, we design and solve a dynamic,
stochastic problem that integrates power and gas flows over
an operational timeframe ranging from several hours to an
entire day. The example provided demonstrates the following
unique aspects of the system:

(a) Limited availability or operational restrictions of gas
compressors;

(b) Notable fluctuations in renewable resources and power
loads, with curtailment being inadmissible under the
normal operational paradigms assumed in this research;

(c) An intentionally over-engineered power system, en-
suring power lines remain within thermal boundaries
during standard operations.

Note critically that while the example presented in the
following contains gas network specializations (e.g., (a)),
because of the generality of symbolic programming and
automatic differentiation, the proposed methodology is not
restricted to these simplifying assumptions on the gas net-
work.

The remainder of the manuscript is structured as follows:
In Section II, we elucidate our gas modeling methodology,
elaborate our fundamental optimization problem, and delin-
eate our strategy for its resolution. Experimental results for a
representative regional gas network are presented in Section
III. Finally, the manuscript culminates with conclusions and
suggested future directions in Section IV.

Fig. 1. Schematic of methodology

II. METHODOLOGY

A. Solving PDE Constrained Optimization

In this Section, we elucidate our strategy to address
Eq. (1). Essentially, two predominant methodologies emerge
for tackling the PDE-constrained optimization challenge:

1) Constraint Matrix Encoding: The prevailing method-
ology (demonstrated in [1][11][12] among others); the
gas network PDEs are integrated into a constraint
matrix that grows as discretization becomes finer. The
resulting approximation to the constrained optimiza-
tion in Eq. (1) can then be fed into any optimizer
compatible with equality constraints. A notable merit
of this approach is its flexibility in harnessing advanced
optimization techniques and the ability to consider all
timepoints simultaneously. However, the methodology
grapples with potential pitfalls such as the emergence
of unphysical solutions, failure to locate a feasible
point (especially as the constraint matrix grows), non-
adherence to constraints during intermediary time-
frames, and the curse of dimensionality. To elaborate
on the emergence of unphysical solutions, we demon-
strate in Appendix IV-A), the resulting adjoint equation
may be a poor approximation to the truth - so that even
finding an optimal point may not guarantee a physical
solution.

2) Differentiable Programming: This strategy (to the
authors’ knowledge never deployed in this field) lever-
ages the continuous adjoint method (Appendix IV-A)
to calculate gradients with respect to control parame-
ters through the PDE solver. This method ensures the
PDE solution u remains physically valid throughout
the optimization process. Further, u converges to a
well-defined solution as the grid undergoes refinement
(∆x,∆t → 0), which cannot be guaranteed for the
constraint-matrix approach. However, challenges arise
in generalizing the calculation of gradients through
the PDE solver, dimensionality of the discretized PDE
growing as the grid refines, and induced temporal com-
putational complexity due to the Courant-Friedrichs-
Lewy (CFL) condition for hyperbolic PDEs[13].

In the present study, we adopt the second approach and
implement it as outlined in Fig. (1). We confront the afore-
mentioned challenges by

99



1) Using symbolic programming to discretize the PDE,
and pre-compute coupling conditions at nodes.
This eliminates unnecessary memory accesses dur-
ing simulation, ensures compatibility across network
topologies, and creates an auto-differentiation friendly
system of ODEs. Further, efficient memory access and
the composability of julia enable easy parallelization
across threads, processors, or accelerators[7].

2) Using a conservative, method-of-lines discretization
to allow for temporal integration using high-order,
strong-stability preserving numerical integrators to
mitigate temporal computational complexity induced
by the hyperbolic structure of the PDE.

3) Leveraging modern, source-to-source Automatic
Differentiation (AD) tools to automatically define
and solve the corresponding adjoint equation; al-
lowing for freedom in expanding the network com-
ponent library, and favorable scaling when computing
gradients of high-dimensional parameterizations.[4]

Collectively, our proposed methodology bridges the gap
between low-fidelity, optimization-centric ‘constraint matrix’
methods suited for long-term planning, and the demand for
a physics-based tool, tailored for medium-term to real-time
planning and analysis; essential for operational coordination
between power and gas utilities.

B. Gas-Flow Equations

We begin by discussing the dynamics of a single pipe. The
governing partial differential equations (PDEs) for the Gas
Flow (GF), describing the dynamics of density ρ(x, t) and
mass-flux φ(x, t) along the pipe coordinate x with respect
to time t, are provided as follows [14],[15],[16]:

∂tρ+ ∂xφ = 0, (2)

∂tφ+ ∂xp = − λ

2D

φ|φ|
ρ
, (3)

where λ is the Darcy-Weisbach friction factor.
These equations are valid under the assumption that the

gas velocity is much smaller than the speed of sound, cs, in
the gas (φ/ρ� cs). This is a reasonable approximation for
the typical flows we consider, see e.g. [14].

To provide a complete description, it is necessary to relate
the pressure p(x, t) and density ρ(x, t) using an equation of
state:

p = Z(ρ, T )RTρ, (4)

where Z(ρ, T ) denotes the compressibility factor. For clarity,
we adopt the ideal gas law to model the equation of state,
where Z(ρ, T )RT is replaced by a constant, c2s, with cs
representing the speed of sound in the gas. Notably, there
are more accurate models available (e.g., CNGA [17]), and
the methodology we present here is agnostic to the specific
choice of model.

The system of Eqs. (2,3,4) is also supplemented by the
boundary conditions, for example given profile of injec-
tion/consumption, at both ends of the pipe of length l,

q(0, t) and q(L, t). (5)

Fig. 2. Schematic of spatially staggered grid with variable locations

To extend the described equations from a single pipe to
a network, the boundary condtions (5) need to appropriately
couple pipe boundaries together, depending on the network
topology. This is explained with the numerics in the next
section.

C. Explicit Numerical Method for the Forward Path

To solve Eqs. (2,3,4) for a single pipe and their network
generalizations, we employ a conservative, explicit, stag-
gered spatial grid. This approach is inspired by the staggered-
grid (in space and time) method of Gyrya & Zlotnik [5],
but with modification consisted in rejecting the staggering
in time.

To motivate this seemingly subtle modification from prior
methods, consider that the computational complexity in sim-
ulating this PDE over interested timescales is dominated by
the temporal complexity resulting from long time integration
using timesteps compliant with the CFL condition. The CFL
condition is a global condition dependent on the maximum
local wave-speed across the network - a priori one can only
upper bound this maximum using the speed of sound, leading
to a very restrictive and costly CFL condition. Rejecting
the staggering in time allows for deploying the method-of-
lines discretization introduced below, to high-order, adap-
tive, strong-stability preserving ODE integrators - effectively
allowing the ODE integrator to discover the (time-varying)
maximum wave-speed. In practice, for nominal flows, this
allows our timesteps to increase substantially beyond what
is required by a speed-of-sound derived CFL - mitigating
temporal computational complexity while retaining accuracy.

As illustrated in Fig. (2), we let the staggered grids for ρ
and φ be denoted by xi, xj respectively, such that xj = xi+
∆x/2. Futher, denote ρni := ρ(xi, tn) and φnj := φ(xj , tn).
Then we take centered differences on the staggered grid of
Eqs. (2,3) to obtain

dρni
dt

= − 1

∆x

(
φnj − φnj−1

)
, (6)

dφnj
dt

= −

(
pni+1 − pni

∆x
+

λ

2D

φnj |φnj |
ρnj

)
. (7)

Here ρnj ≈ 1
2 (ρni−1 + ρni ). As we are interested in in-

tegration in day-ahead planning of energy generation, we
control Dirichlet boundary conditions on nodal mass flows
{qi}i∈nodes (relating to generated power through heat-rate
curves). These boundaries are resolved according to the
numerical method using a boundary discretization shown in
Fig. (3). The density updates for these junctions are evaluated
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Fig. 3. An example of a 3-pipe junction discretization, with a fictitious
pipe setting the nodal flow boundary condition.

using conservation of mass at boundary node `

dρn`
dt

∑
k∈∂`

(
∆x

2

)
Skl =

q` +
∑
k∈∂`

sgnklSklφ
n
kl(x = x`),

(8)

where Skl is the cross-section area of pipe from node k to
node l, and sgnkl keeps track of the directionality of the mass
flux. ρkl, φkl denote the l-side boundary values of density and
mass flux for the pipe from node k to node l. φnkl(x = x`)
is approximated by a second-order, one-sided stencil. After
solving for the density at the node, the flux update at the
ends of the pipes can proceed using the momentum equation
(7).

D. Optimization Formulation: Cost Function

In our pursuit to devise a scalable framework that aptly
accommodates optimization challenges akin to the archetype
presented in Eq. (1), we pivot our attention to a paradig-
matic problem: the minimization of an integrated objective
spanning time and evaluated under the cloak of uncertainty.
This uncertainty, in our presentation reflected through sce-
narios s ∈ S, pertains to uncertain energy demand D(s)(t),
e.g., resulting from variable renewable generation. The time
interval t ∈ [0, T ] typically encapsulates a pre-established
performance window.

Our control parameters, symbolized by nodal flows q(t),
permit adjustments within our dynamic and stochastic opti-
mization

min
(q(t)|t∈[0,T ])

∑
s∈S

∫ T

0

C(s)(u(s)(t), q(t)) dt. (9)

Here, u(s)(t) := {ρ(s)(x, t), φ(s)(x, t)}∀x∈nodes & pipes denote
the solution of the PDE defined by Eqs. (6-8), with nodal
flows (injections/consumptions) q(t); and the specific per-

Fig. 4. Computational complexity scaling for the forward and adjoint
calculations, (top) as a function of dimensionality of discretized PDE, and
(bottom) as a function of parameter dimension.

Fig. 5. Quasi-quadratic penalty for violating pressure constraints, with
40− 80 bar shown here, but configurable on a per-node basis.

time t and per-scenario s cost is expanded as:

C(s)(u(s)(t), q(t)) = α

(
D(s)(t)−

∑
i∈nodes

Gi(qi(t))

)2

+ β
∑
i∈nodes

Ei(qi(t)) + γ
∑

x∈nodes

V (p(s)(x, t)), (10)

constrained by the gas-flow PDEs and associated boundary
conditions over gas-grid network detailed earlier.

The first term in Eq. (10) aims to minimize the cumulative
mismatch between energy demand D(s)(t) and the sum of
generation at each node i and at each moment of time t,
Gi(qi(t)), with qi(t) representing nodal flows (our control
variable). Gi(qi(t)) is a so-called heat rate curve, mapping
mass flow (in kg/s) to power production (in MW ). Here the
assumption is that any residual mismatch, if not optimal, can
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Fig. 6. 11-node network diagram, with supply nodes (injection into the
network) in red, demand nodes (consumption from the network) in green.

be adjusted by either shedding demand or introducing a gen-
eration reserve, at a certain cost. The second term in Eq (10),
Ei(qi(t)), represents the cost of operating power generator
run on gas and located at the node i at the gas withdrawal
rate qi(t). The third term in Eq. (10),

∑
x∈nodes V (p(s)(x, t)),

is chosen to be a quasi-quadratic cost to penalize pressure
constraint violations across the network (refer to Fig. 5): with
pmin(x) and pmax(x) denoting pre-set pressure boundaries at
system nodes. The influence of the multi-objective cost C’s
components can be modulated using the hyperparameters α,
β, and γ; found as coefficients to the individual terms in
Eq[10].

E. Solving the optimization

To solve the optimization in Eq(9), we iterate over three
steps: (i) given a guess of our control q(t), solve the forward
problem Eqs(6,7,8) for u(t) = {ρ(t), φ(t)}; (ii) solve the
adjoint ODE Eqs(15,16) backward in time for λ(t); (iii)
use the solutions u(t), λ(t) to compute the update to our
control, Eq(19). Derivation and further exposition can be
found in Section IV. A complete description, including
implementation details, as well as full consideration of
application specific trade-offs of different sensitivity methods
for differentiable programming can be found in [18].

III. RESULTS

To exemplify the methodology, we solve an optimal gas
flow problem phrased on a previously studied reduced model
of Israel’s gas grid [10]. The reduced model, shown in
Fig. (6), has 11 nodes, with a total pipe length of approxi-
mately 550km. We minimize the objective in Eq. (9) over
a time horizon of 10hrs, encompassing a morning ramp
in energy use. The demand curves D(t) are aggregated
from publicly available data; the gas cost G(q) is taken
as a constant; the efficiency curves Ei(q(t)) take one of
three constant values representing efficient, nominal, and
inefficient turbines; and the pressure limits are set as pmin =
60bar, pmax = 80bar. We use a box-constrained Limited-
memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) op-
timizer; the constraints enforcing max and min injec-
tion/consumption at each node. Each node has hourly flow-

Fig. 7. Optimal gas flow results from an 11-node network, spanning
≈ 550km. The OGF is solved across a time horizon of 10 hours, using
representative data of a morning ramp in the energy demand. (Top) Shows
the quick convergence of LBGFS, despite the initial guess yielding a
large penalty. (Middle) shows the evolution of pressure at each node using
the optimized injections/withdrawals. Note that despite the dynamic initial
conditions being outside the pressure window, the optimization quickly
rectifies and holds all pressures in the acceptable range marked by the
dashed lines. (Bottom) shows that we meet demand during the morning
ramp, without waste.

rate control parameters, so the dimension of the optimization
space is 110 = 11nodes ∗ 10hrs.

The optimization results, considering a deterministic gas
consumption profile, are depicted in Fig. 7. We observe an
exponential decrease in the loss function, with the algorithm
converging to a stable minimum within 30 iterations. System
pressures remain within specified limits, except for the
uncontrolled initial data, which does not contribute to the
loss calculation. Notably, at node 6 – the system’s lowest
pressure point – there is a proactive pressure increase to
accommodate the expected rise in consumption during the
morning peak. This optimization strategy, navigating the
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system’s nonlinearities, proves crucial for operators in mak-
ing informed real-time decisions. Impressively, the optimizer
achieves exact demand fulfillment, despite starting very far
from the optimum.

Subsequently, we applied the software to perform opti-
mization under uncertain consumption patterns, assuming
a normal distribution with a standard deviation equal to
5% of the current consumption level. This scenario aims
to simulate the uniform response of all generators to the
variability inherent in renewable energy sources. The find-
ings, illustrated in Fig. (8), indicate the network’s ability to
achieve a reduced minimum. This improvement is attributed
to effectively managing the pressures at nodes 7 and 8 (the
nodes with the highest pressure) to remain below 80bar
towards the latter part of the simulation, thereby mitigating
less frequent low-pressure breaches at node 6, the node with
the lowest pressure.

All code required to run and analyze these simulations
as well as smaller test networks is available at https://
github.com/cmhyett/DiffGasNetworks.

IV. CONCLUSION & PATH FORWARD

The chief technical contribution of this manuscript is
the integration of symbolic programming, automatic differ-
entiation, and gas-flow PDE numerics to develop a more
accurate, physics-based approach for addressing optimization
and control issues in gas networks. This was demonstrated
through the solution of a stochastic optimal gas flow problem.
Our development efforts concentrated on:

1) Efficiency: We prioritized the forward solution’s effi-
ciency and the gradient computation’s scalability us-
ing the adjoint method. Achievements in efficiency
resulted from combining symbolic programming, high-
performance ODE integrators, and advanced AD tools.

2) Consistency: For PDE-constrained optimization, espe-
cially in short-term or real-time planning, it is crucial
to maintain precise physical solutions irrespective of
grid refinement choices. The differentiable program-
ming framework ensures consistent convergence within
the physical domain and offers error assurances.

3) Flexibility: The methodology’s design allows adapt-
able network and component configurations, support-
ing a range of applications from uncertainty quan-
tification to inverse problems and data assimilation.
By preserving symbolic representations until execution
and employing Automatic Differentiation for deriva-
tive calculations, our approach facilitates selecting the
most appropriate gradient computation method from
available library of options, ensuring both application
breadth and solution specificity.

We demonstrated our ability to utilize these characteristics
to effectively solve an Optimal Gas Flow (OGF) problem
under uncertainty, preserving essential system properties and
the complete nonlinear dynamics of a representative regional
gas network.

Future endeavors will focus on integrating this method-
ology into the broader scope of gas network optimization

and control. Comparison and integration with optimization-
centric (e.g., constraint-matrix and mixed integer optimiz-
ers) approaches is a promising avenue to more completely
understand and mitigate the weaknesses of any individual
approach. Additionally, such work provides the capability to
bridge the OGF timescales of long-term planning, day-ahead
scheduling, and real-time mitigation of intraday variations or
emergencies.

Although our current model omits gas compressors due to
specific characteristics of the Israel’s system, the extension of
this method to include compressors and valves in the network
library is straightforward. Also important are representative
equations of state - while the ideal gas law is convenient for
exposition, utilization of this methodology in more extreme
environments and at higher degrees of accuracy necessitate
the adoption of more expressive equations of state. Both the
addition of network components and enriching the equation
of state are facilitated by the inherent generality of our
method’s design.

Moreover, while our Optimal Gas Flow (OGF) model
under uncertainty effectively managed the expected cost,
the realm of stochastic optimal control offers the capability
to target more specific objectives, such as managing the
higher moments of nodal pressures. Proactively addressing
and planning for these uncommon occurrences within gas-
grid system coordination remains a dynamic and critical field
of research, see e.g., [19].

Finally, there have been significant theoretical
advancements in multi-fidelity methods for outer-loop
applications[20]. By integrating the methodology presented
in this manuscript with constraint-matrix and machine
learning techniques, one might develop a comprehensive
multi-fidelity approach. This integration promises to be both
efficient and versatile, offering high-fidelity solutions to the
underlying PDEs across networks. Such an approach has
the potential for broader applicability, extending beyond
gas networks to encompass a wider spectrum of complex
systems.

APPENDICES

A. Adjoint Method
In this appendix we present the adjoint (conjugated gra-

dient) method used to compute gradient steps to resolve the
minimization problem Eq. (1).

Let us drop index (s) in Eq. (1) to simplify notations (as
if it would be just one sample), and restate Eq. (1) in the
Lagrangian form:

min
(q(t),u(t)|t∈[0,T ])

max
(λ(t)|t∈[0,T ])

L(q(t), u(t), λ(t)|t ∈ [0, T ]),

(11)

L :=

∫ T

0

(
C(u(t), q(t)) + λ(t)T (u̇(t)− g(u(t), q(t)))

)
dt,

where (λ(t)|t ∈ [0, T ]) is the functional Lagrangian multi-
plier introduced to enforce the underlying differential equa-
tion at t ∈ [0, T ]:

u̇(t) = g(u(t), q(t)). (12)
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Fig. 8. Results of optimization under uncertainty. We initialize the optimization using the solution in Fig. 7, and then re-perform the optimization, taking
the loss as the expectation over samples of noisy consumption as in Eq. (9). Plotted are the mean (solid line) plus/minus a standard deviation (opaque
region) for selected nodes. This procedure illustrates the ability to tune for robustness against stochastic fluctuations in the power network.

Next we rewrite Eq. (11) splitting variation over (q(t)|t ∈
[0, T ]) from variation over (u(t)|t ∈ [0, T ]) and (λ(t)|t ∈
[0, T ]):

min
(q(t)|t∈[0,T ])

L̃(q(t)|t ∈ [0, T ]), (13)

L̃(q(t)|t ∈ [0, T ]) := min
(u(t)|t∈[0,T ])

max
(λ(t)|t∈[0,T ])

L. (14)

Given the control function (q(t)|t ∈ [0, T ]) our task be-
comes to find L̃(q(t)|t ∈ [0, T ]) which we do replacing
minimization over (u(t)|t ∈ [0, T ]) and maximization over
(λ(t)|t ∈ [0, T ]) by finding the stationary point of L, that is
solving respective Euler-Lagrange (EL) equations:

t ∈]0, T [:
δL
δu(t)

= 0 =⇒ ∂uC = λT∂ug +
d

dt
λT ,

(15)
δL

δu(T )
= 0 =⇒ λ(T ) = 0, (16)

t ∈ [0, T ] :
δL
δq(t)

= 0 =⇒ ∂qC + λT∂qg = 0. (17)

We solve the system of the EL by, first, running Eqs. (12)
forward in time, and thus finding (u(t)|t ∈ [0, T ]). Once
u(T ) is found, and λ(T ) is fixed to zero, according to
Eq. (16), we solve Eqs. (15) running them backwards in time
to find (λ(t)|t ∈ [0, T ]). Finally, we arrive at the following
EL expression for L̃(q(t)|t ∈ [0, T ])

L̃ = L(q(t), u(t), λ(t)|t ∈ [0, T ])

∣∣∣∣∣
Eqs. (12,15,16))

. (18)

What is now left is to optimize over (q(t)|t ∈ [0, T ]) in
Eq. (13). This last step is done iteratively – starting with
a guess for (q(t)|t ∈ [0, T ]) and updating it at each step
according to, t ∈ [0, T ]:

q(new)(t) = q(t)− η · δL̃(q(t′)|t′ ∈ [0, T ])

δq(t)
, (19)

where η is the so-called learning rate and at each iteration
we update the functional L̃(q(t′)|t′ ∈ [0, T ]) according to
the procedure described above and resulting in Eq. (18).

To avoid laborious encoding of derivative functions, the
functional forms – such as partial derivatives of C and g
– dependent on the current state u(t) and control q(t), are
determined and evaluated using source-to-source Automatic
Differentiation (AD).

We can now clearly point to a main difference between
the constraint-matrix and differentiable programming ap-
proaches. When encoding the PDE into the constraint matrix,
a choice of ∆x,∆t is made. This choice is likely far coarser
than would be necessary to solve the PDE (otherwise the
dimension of the equality constraints could easily reach
the tens of millions for moderately sized networks), and
results in particular choices ti for which the solutions, u(ti),
λ(ti) are available. This in turn reduces the fidelity of the
approximation to Eq. (15), so that solutions u(t) may or may
not be physical, depending on the spectrum of the differential
operator Eq. (15).

Contrast this with the differentiable programming ap-
proach, where the differential Eqs. (12,15) can be approxi-
mated at any time since it is truly solved continuously. Even
when the forward solution u(t) is not available at a needed
time, one can use interpolation, or checkpointing (shown
in Fig. 9) to obtain the needed value. This guarantees the
gradient moves us along the solution manifold and never off
of it.

B. Differentiable Programming

Source-to-source differentiation, particularly from Zy-
gote.jl [21], is a transformational capability that allows
reverse-mode automatic differentiation (AD) through pro-
gramming language constructs – enabling optimized adjoint
function evaluation without the need to write the derivatives
by hand. This freedom ensures correctness, and allows for
generality in construction of the forward pass [22].
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Fig. 9. Schematic of adjoint method implementation, where the adjoint
ODE utilizes checkpointing to accelerate queries of the state u at required
times.[23]

In order to compute the right hand side of Eq. (19), the
adjoint ODE Eq. (15) is solved for λ(t), and the term ∂qg is
found via source-to-source reverse-mode AD. This method
to compute the adjoint has computational cost that scales
linearly with the forward pass, and with the number of pa-
rameters [23]. Notably, the sensitivity backend used evaluates
the most efficient approach, and dispatches the appropriate
sensitivity method (e.g., forward or adjoint sensitivities). We
emphasize the adjoint method here, because of its preferable
scaling with respect to high-dimensional parameterizations.
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