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Abstract— This paper addresses the problem of search
and tracking an unknown number of mobile ground targets
within an uncharted Region of Interest (RoI) using a fleet
of cooperating Unmanned Aerial Vehicles (UAVs). Each UAV
embeds a Computer Vision System providing images with
labeled pixels, depth maps, and bounding boxes around
identified targets. This information is used by a set-membership
estimator to characterize sets guaranteed to contain the
locations of already identified targets and a set containing
the locations of all targets remaining to detect. A map of the
unknown environment is constructed during search to favor
exploration of areas previously occluded by obstacles.

I. INTRODUCTION

The target search and tracking in some unknown Region
of Interest (RoI) is an important problem which has given
rise to a large research activity, see [1] and the references
therein. To address this problem, fleets of cooperating UAVs
collecting measurements from different point of views have
been shown to be more efficient than a single UAV.

This paper presents a set-membership approach to search
and track ground targets evolving in an unknown but
structured environment. Each UAV embeds a Computer
Vision System (CVS) providing images with labeled pixels,
depth maps, and bounding boxes around identified targets.
These CVS outputs are directly exploited, contrary to
previous set-membership approaches [2], where simplified
sensing models have been considered. This requires
assumptions and models to relate the CVS outputs with the
environment to allow their exploitation by a set-membership
estimator [3]. One obtains sets guaranteed to contain the
locations of identified targets and a set containing all possible
locations of not yet detected targets. A set proved to contain
no target is also provided. Based on this map and on the sets
previously calculated, the trajectories of the fleet are then
designed using a Model Predictive Control (MPC) approach
[2] to minimize the target location uncertainties. Compared
to [3], this paper exploits an occupancy elevation map (OEM)
[4] to obtain a rough characterization of the obstacles. This
map is constructed during the target search. The guidance law
of the UAVs uses the OEM to predict the parts of the RoI
which may be occluded by obstacles. UAVs are then driven
into areas previously occluded by obstacles. This improves
the search and tracking performance as illustrated in the
simulations.
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Some related work is introduced in Section II. Section III
formulates the target search and tracking problem. Section IV
introduces some hypotheses and models of the targets, the
UAVs, and the CVS. Section V describes the way CVS
information can be used in the set-membership estimator
described in Section VI. Section VII presents the evaluation
of the guidance law of each UAV. Simulation results are
provided in Section VIII before the conclusion in Section IX.

II. RELATED WORK

Various estimation techniques for the localization of
targets have been proposed such as stochastic approaches
with grid-based probability map [5] or probability hypothesis
density filter with random finite sets [6], or with
alternative set-membership techniques [2] assuming bounded
measurement noise. When the RoI is cluttered, trajectories
which avoid collisions while maximizing the information
collected have to be designed [7]. Without available map,
environment mapping and target search and tracking have to
be done simultaneously as in [8], where the RoI is mapped
with an occupancy grid. Nevertheless, accurate 3D maps of
some unknown RoI with an occupancy grid raises storage
and computation issues for UAVs [9]. In [4], an OEM is used.
It requires less storage but the representation of obstacles is
less accurate. Alternatively, mapping is avoided in [10], by
considering groups of UAVs, each observing a part of the
RoI with complementary viewpoints. This requires, however,
a much larger number of UAVs.

Many prior works addressing the Cooperative Search,
Acquisition, and Track (CSAT) problem [10]–[12] assume
that UAVs get directly a noisy measurement of the state
of targets present in the Field of View (FoV) of their
sensor. The way these measurements are obtained is often
overlooked. Consequently, the characteristics of the assumed
measurement noise are difficult to justify.

Several techniques have been proposed for target detection
using a CVS system. For instance, [13]–[15] exploit some
specific pixels belonging to a 2D bounding box containing
the pixels associated to the target. The bounding box is
provided by target detection techniques [16], [17], but the
pixel selection is often heuristic and may lead to relatively
large localization errors. Deep learning algorithms are able
to estimate the location and orientation of vehicles [18]
from images and depth measurements. Nevertheless, these
algorithms may provide erroneous estimates. Moreover,
several approaches introduce probabilities of non-detection
and of false alarm [6], [19], [20], but their value is difficult
to characterize, since the performance of target detection
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techniques depends on the observation conditions and on the
efficiency of the embedded CVS [7], [21].

III. PROBLEM FORMULATION

Consider an environment equipped with a frame F , in
which a fleet of N u UAVs, each equipped with a CVS, is
tasked to search and track a fixed but unknown number N t

of ground targets located in a RoI X0 ⊂ R2 × R+ with a
flat ground Xg = {x ∈ X0 | x3 = 0}. The RoI contains an
unknown number N o of static obstacles. So

m ⊂ X0 is the
shape of the m-th obstacle, i.e., the part of X0 it occupies.
The sets N u, N t, and N o respectively gather the indexes
of UAVs, targets, and obstacles. The time is sampled with a
period T and k refers to the time index.

At time tk = kT , assume that the knowledge UAV i has
about its environment consists of a list Lt

i,k−1 of indexes of
targets already identified. For each j ∈ Lt

i,k−1, UAV i has
access to a set estimate Xt

i,j,k−1 ⊂ Xg containing the location
of target j at time tk−1. A set Xt

i,k−1 ⊂ Xg containing the
locations of targets still to be identified at time tk−1 has also
been evaluated. Finally, UAV i has a map Mi,k−1 of the
RoI, approximating Xg ∪

⋃
m∈N o So

m. All these sets exploit
the information collected or exchanged up to time tk.

Accounting for the dynamics of targets, a prediction
Xt

i,j,k|k−1 of Xi,j,k, j ∈ Lt
i,k−1 and a prediction Xt

i,k|k−1

of Xt
i,k can be evaluated.

At time tk, the camera of UAV i acquires an image Ii,k
of a part of its environment. Its embedded CVS generates
then a depth-map Di,k [22], an array of pixel labels Li,k

[23], a list Dt
i,k of indexes of identified targets, and a list

Bt
i,k = {[Y t

i,j,k]}j∈Di,k
of bounding boxes around identified

targets in Ii,k [14], [16], [17].
Using this new information, UAV i evaluates Lt

i,k|k =

Lt
i,k−1 ∪ Dt

i,k and updates Xt
i,j,k|k−1 to get Xt

i,j,k|k for all

targets j ∈ Li,k|k as well as Xt
i,k|k−1 to get Xt

i,k|k. An
updated version of the map Mi,k|k is also obtained.

Then, UAV i broadcasts the updated set estimates and the
map to its neighbors with indices in Ni,k ⊂ N t. From similar
information received from its neighbors, UAV i can evaluate
Lt
i,k, Xt

i,j,k for all j ∈ Lt
i,k, Xt

i,k as well as Mi,k.
The aim of this paper is to design the trajectories and

guidance laws of UAVs minimizing the target location
estimation uncertainty evaluated as ϕ(Xt

i,k ∪
⋃

j∈Lt
i,k
Xt

i,j,k),
where ϕ (X) is the area of the set X ⊂ R2.

A distributed solution to evaluate the guidance laws of
UAVs is proposed in what follows. Hypotheses and models
related to the targets and UAVs are first introduced in
Sections IV-A and IV-B. Then, hypotheses on the relation
between the output of the CVS and the elements of the
UAV environment are introduced in Section IV-C. These
hypotheses are instrumental in the characterization of the
set estimates and of the map managed by the UAVs.

IV. HYPOTHESES AND MODELS

In what follows, vectors with no superscript related to a
frame are implicitly expressed in F .

Fig. 1. Unknown shape St
j(x

t
j), center of mass xt

j , and location x
t,q
j of

target j. The purple dot represents the part of St
j(x

t
j) seen by the UAV.

A. Target model

At time tk, the state of target j ∈ N t is xt
j,k. It contains the

vector xt
j,k of coordinates of the center of mass of target j.

The targets are assumed to evolve on the ground Xg and
never leave X0 nor enter in any obstacle. The location xt,g

j,k =
pg(x

t
j,k) of target j is the projection of xt

j,k on Xg and is
assumed to evolve as

xt,g
j,k+1 = f t(xt,g

j,k,v
t
j,k), (1)

where f t is known and vt
j,k represents some unknown control

input only assumed to belong to a known box [vt].
The space occupied by target j is St

j(x
t
j,k) ⊂ X0

and depends on xt
j,k. We assume that xt

j,k ∈ St
j(x

t
j,k).

Nevertheless, the target location xt,g
j,k does not necessarily

belong to St
j(x

t
j,k), as in the case of cars, see Figure 1. The

type of targets to be localized is usually known and some
information about their dimensions is assumed available: For
any target state xt

j,k, St
j(x

t
j,k) ⊂ Ct(xt,g

j,k), where Ct(xt,g
j,k)

is the vertical circular right cylinder of known height ht and
radius rt with basis centered in xt,g

j,k.
Moreover, we assume that targets always remain at a

distance larger than rs to other targets and to obstacles of
the environment.

B. UAV model

At time tk, the state of UAV i ∈ N u is xu
i,k. It is assumed

perfectly known by UAV i and to evolve as

xu
i,k+1 = f u (xu

i,k,u
u
i,k

)
, (2)

where f u is known and uu
i,k is the control input constrained

in the set U. The vector xu
i,k contains the location of the

center of mass xu
i,k of UAV i. The space occupied by UAV i

is Su(xu
i,k). A body frame Fb

i , with origin xu
i,k is attached

to UAV i. The rotation matrix from Fb
i to F is MF

Fb
i
.

Ni,k is the set of indexes of UAVs with which UAV i is
able to communicate at time tk. We consider that i ∈ Ni,k.

C. Model of the CVS

Each UAV is assumed equipped with identical camera and
CVS. The time index k is omitted in this section.

1) Camera model: A pinhole model without distortion
[24] is considered, where F c

i is the camera frame and xc
i is

the vector of coordinates of its optical center. The FoV of
UAV i is described by a half-cone of apex xc

i and with four
unit vectors v

F c
i

ℓ , ℓ = 1, . . . , 4, i.e.,

F (xu
i ) =

{
xc
i +

∑4
ℓ=1 aℓM

F
F c

i
v
F c

i

ℓ | aℓ ∈ R+
}
, (3)
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Fig. 2. Pinhole model of the camera and several light rays (green, red and
blue) contributing to the illumination of the pixel (nr, nc) highlighted in
gray. The quadrangle Pg

i ((nr, nc)) is defined in Section V.

where MF
F c

i
= MF

Fb
i
M

Fb
i

F c
i

and M
F c

i

Fb
i

is the rotation matrix
from Fb

i to F c
i . A function pc (x

u
i ,x) is assumed available

to provide the coordinates in the CCD array of a point x ∈
F (xu

i ), see, e.g., [25]. The notation pc (x
u
i ,x) ∈ (nr, nc),

with x ∈ F (xu
i ), indicates that the projection of x on Ii

belongs to the pixel with coordinates (nr, nc) ∈ N I, with
N I = {1 . . . Nr} × {1 . . . Nc}.

Considering the pinhole model, each light ray passing
through xc

i and illuminating the CCD array at (x, y) ∈
[0, Nc]× [0, Nr] can be modeled by a half-line of direction

vF c
i (x, y) =

1

ν (x, y)

 (
Nc
2 − x

)
/fc(

Nr
2 − y

)
/fr

1

 , (4)

where fc and fr are the camera focal lengths (in pixels) and
ν (x, y) is a normalization coefficient. Figure 2 illustrates the
illumination of a pixel by two different light rays.

2) Depth map and bounded-error range measurements:
The part SRoI = Xg ∪

⋃
m∈N o So

m ∪
⋃

j∈N t St
j

(
xt
j

)
∪⋃

ℓ∈N u Su (xu
ℓ) of the environment that UAV i is able to

perceive consists of the ground, the obstacles, the targets,
and other UAVs. The distance between xc

i of the camera
and SRoI along v ∈ Vi (nr, nc), for any (nr, nc) ∈ N I,
is ρ (xc

i,v) = dv (x
c
i,SRoI) ,where dv (x,S) is the distance

from a point x ∈ X0 to the intersection of the set S along
the half-line of origin x and direction v.

We assume that each element Di (nr, nc) of Di satisfies

Di (nr, nc) = D0
i (nr, nc) (1 + w) (5)

where D0
i (nr, nc) = ρ (xu

i ,v) is the distance between xc
i

and SRoI along some unknown direction v ∈ Vi (nr, nc). The
noise w is assumed to belong to the known interval [w,w].
Consequently, D0

i (nr, nc) is contained in the interval

[Di] (nr, nc) =

[
1

1 + w
,

1

1 + w

]
Di (nr, nc) , (6)

and represents a bounded-error range measurement
associated to the pixel (nr, nc).

3) Classifier: The array of labels Li is obtained at the
output of a classifier. Each element (nr, nc) of Li is assumed
to belong to one of the following classes: Ground (G), Target
(T), Obstacle (O), and Unknown/Not Labeled (U). The last

class is for unclassified pixels due to a lack of confidence.
Then, four sets may be deduced from Li, namely Yg

i , Y t
i, Yo

i ,
and Yn

i gathering coordinates of pixels respectively labeled
as Ground, Target, Obstacle, and Unknown/Not Labeled.

Moreover, we assume that if a pixel (nr, nc) ∈ Yg
i , then all

light rays illuminating pixel (nr, nc) stem from the ground
Xg, i.e.,

∀v ∈ Vi (nr, nc) , ρ (x
c
i,v) = dv (x

c
i,Xg) . (7)

Similarly, if a pixel (nr, nc) ∈ Y t
i, then there exists a

target j ∈ N t such that all light rays illuminating pixel
(nr, nc) stem from St

j(x
t
j,k), i.e.,

∃j ∈ N t, ∀v ∈ Vi (nr, nc) , ρ (x
c
i,v) = dv

(
xc

i, St
j

(
xt
j,k

))
. (8)

Finally, if a pixel (nr, nc) ∈ Yo
i , then there exists an

obstacle m ∈ N o such that all light rays illuminating pixel
(nr, nc) stem from So

m, i.e.,

∃m ∈ N o,∀v ∈ Vi (nr, nc) , ρ (x
c
i,v) = dv (x

c
i,So

m) . (9)

4) Target detection and identification: When Y t
i is not

empty, at least one target located within F (xu
i ) has been

detected. In such case, the CVS may also provide a list Dt
i ⊂

N t of identified target indexes and an axis-aligned box
[
Y t
i,j

]
for each j ∈ Dt

i. Even if Y t
i is not empty, Dt

i may be empty
when Y t

i does not provide enough information to identify a
target.

Consider the set Y t
i,j ⊂ Y t

i of all pixels associated to
target j only. Even if the classifier is unable to provide Y t

i,j ,
we assume that if j ∈ Dt

i, then Y t
i,j ̸= ∅ and that

[
Y t
i,j

]
contains Y t

i,j , i.e.,

j ∈ Dt
i ⇒ Y t

i,j ⊂
[
Y t
i,j

]
. (10)

D. Assumption on observed targets

Consider some target j such that xt,g
j ∈ F (xu

i ). We assume
that the half-open segment [xc

i,x
t,g
j [ intersects St

j(x
t
j), i.e.,

xt,g
j ∈ F (xu

i ) =⇒
[
xc
i,x

t,g
j

[
∩ St

j

(
xt
j

)
̸= ∅. (11)

If xt,g
j ∈ F (xu

i ), then some point on St
j

(
xt
j

)
reflects a light

ray that illuminates the CCD array of the camera (in absence
of obstacles), see Figure 1. Therefore, if xt,g

j ∈ F (xu
i ), then

there exists a pixel (nr, nc) such that pc

(
xu
i ,x

t,g
j

)
∈ (nr, nc).

Then according to (11) and (7), (nr, nc) /∈ Yg
i .

The assumption (11) is instrumental to characterize parts
of Xg that cannot contain any target location. Its validity
mainly depends on the camera orientation and on the target
characteristics.

V. EXPLOITING CVS INFORMATION

This section describes the way information from the CVS
is used to evaluate set estimates of the location of targets,
sets free of targets, and to build the map managed by UAVs.
The time index k is also omitted in this section.
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Fig. 3. Sets Pi ((nr, nc)) for different (nr, nc) ∈
[
Y t
i,j

]
A. Estimation of the location of a target

To estimate the location xt,g
j of an identified target j ∈

Dt
i, UAV i exploits the indexes of pixels in Y t

i (labeled as
Target), the bounding box

[
Y t
i,j

]
, and the depth map Di. A

set estimate Xt,m
i,j is evaluated such that xt,g

j ∈ Xt,m
i,j .

One first characterizes a subset of X0 intersecting the
shape St

j

(
xt
j

)
of target j. Consider the set

Pi ((nr, nc)) = {x ∈ F (xu
i ) ∩ X0 | ∃v ∈ Vi (nr, nc) ,

dv (x
c
i, {x}) ∈ [Di] (nr, nc)} (12)

containing all points in F (xu
i )∩X0 that may have contributed

to the illumination of a pixel (nr, nc) ∈ Ii while being at a
distance from UAV i consistent with Di (nr, nc). Figure 3
represents Pi ((nr, nc)) for three different pixels (nr, nc) ∈[
Y t
i,j

]
.

As j ∈ Dt
i, according to Section IV-C.4, Y t

i,j ⊂ Y t
i is not

empty and Y t
i,j ⊂

[
Y t
i,j

]
. Since only Y t

i is available, the set

Pt
i,j =

⋃
(nr,nc)∈[Y t

i,j]∩Y t
i
Pi ((nr, nc)) , (13)

is introduced and shown in Corollary 2 of [3] to have a
non-empty intersection with St

j(x
t
j). As St

j

(
xt
j

)
is unknown,

the outer-approximation Ct
(
xt,g
j

)
of St

j

(
xt
j

)
is considered.

If some x ∈ Pt
i,j ∩ St

j

(
xt
j

)
would be available, exploiting

the fact that St
j

(
xt
j

)
⊂ Ct

(
xt,g
j

)
, one would have xt,g

j ∈
Ct

(
pg (x)

)
. As Pt

i,j is only known to intersect St
j

(
xt
j

)
, the

set estimate Xt,m
i,j of xt,g

j introduced in Proposition 1 accounts
for the fact that x is only known to belong to Pt

i,j .
Proposition 1: If j ∈ Dt

i, then xt,g
j ∈ Xt,m

i,j with

Xt,m
i,j = Xg ∩

⋃
x∈Pt

i,j
Ct

(
pg (x)

)
. (14)

The proof for Proposition 1 is detailed in [3], Section IV-
A. The evaluation of Xt,m

i,j is detailed in [3], Appendix A and
illustrated in Figure 4.

B. Estimation of the space free of target

Using pixels labeled as Ground and Obstacle, UAV i is
able to characterize subsets of Xg free of targets.

1) Using pixels labeled as Ground: According to (7),
pixels in Yg

i have only been illuminated by light rays
stemming from the ground Xg. Using (11), from Yg

i , UAV i
can evaluate a subset of Xg which does not contain any target
location. For that purpose, consider pixel (nr, nc) and the set

Pg
i ((nr, nc)) = {x ∈ F (xu

i ) ∩ Xg | pc (x
u
i ,x) ∈ (nr, nc)}

Fig. 4. Estimation of the location of target j: The set Pt
i,j is projected

on the ground (red set). Then pg (Ct) (black lines) is used to build Xt,m
i,j

(green set). The green dot represents xt
j,k .

of all points of Xg which may have contributed to the
illumination of (nr, nc). According to (7) and (11), for all
j ∈ N t, xt,g

j /∈ Pg
i ((nr, nc)). Now, consider all (nr, nc) ∈ Yg

i .

Pg
i

(
Yg
i

)
=

⋃
((nr,nc))∈Yg

i
Pg
i ((nr, nc)) . (15)

Proposition 2 states that Pg
i

(
Yg
i

)
is free of target.

Proposition 2: For all j ∈ N t. xt,g
j /∈ Pg

i

(
Yg
i

)
.

The proof for Proposition 2 is in [3], Section IV-B. The
characterization of Pg

i

(
Yg
i

)
is detailed in [3], Appendix C.

2) Using pixels labeled as Obstacle: Since the distance
between a target and any obstacle is at least rs, UAV i
can also characterize parts of Xg free of targets using
pixels labeled as Obstacle. For that purpose, we introduce
the rs-neighborhood of a set S ⊂ X0 as N (S, rs) =
{x ∈ X0 | d (x,S) ⩽ rs} with d (x,S) = miny∈S ∥x− y∥.

According to (9), for all (nr, nc) ∈ Yo
i , we have

Pi ((nr, nc)) ∩ So
m ̸= ∅ for some obstacle m ∈ N o. As

for Pt
i,j , Pi ((nr, nc)) ∩ So

m is only known to be included
in Pi ((nr, nc)). Therefore, consider the set

So
i ((nr, nc) , rs) =

⋂
x∈Pi((nr,nc))

N ({x} , rs) . (16)

defined as the intersections of the balls N ({x} , rs) for all
x ∈ Pi ((nr, nc)). If (nr, nc) ∈ Yo

i , then So
i ((nr, nc) , rs)

is an inner-approximation of the rs-neighborhood of an
unknown obstacle m ∈ N o, i.e.,

So ((nr, nc) , rs) ⊂ N (So
m, rs) . (17)

Now, the set

So
i (Yo

i , rs) =
⋃

(nr,nc)∈Yo
i
pg (So

i ((nr, nc) , rs)) (18)

is an inner-approximation of the rs-neighborhood of the
projection on Xg all obstacles located within the FoV of
UAV i. So

i (Yo
i , rs) can be proved to be free of any target.

Proposition 3: If Yo
i ̸= ∅, then xt,g

j /∈ So
i (Yo

i , rs), for all
j ∈ N t.

The proof for Proposition 3 is in [3], Section IV-B. The
evaluation of Xo

i is detailed in [3], Appendix B.

C. Estimation of the hidden area

The pixels labeled Obstacle or Target result from the
observation of an obstacle or a target which may have hidden
another target. Moreover, pixels labeled Unknown may also
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correspond to a target. Consequently, as will be seen in
Section VI, it is useful to characterize parts of the ground
which where hidden, or not classified. This hidden area is
evaluated as

Pg
i

(
Yo
i ∪ Y t

i ∪ Yn
i

)
=

⋃
(nr,nc)∈Yo

i∪Y t
i∪Yn

i

Pg
i ((nr, nc)) . (19)

D. Estimation of the occupancy elevation map

UAV i maintains an OEM representation Mi of the
obstacles inspired from [4]. Mi consists of a covering of
Xg with NM non-overlapping square cells. NM is the set of
cell indexes, c(n), si(n), and hi(n) represent respectively
the center, the status, and the estimated height of the cell n.
The cell centers are the same for all UAVs. The status takes
value in {U,O,G} where U stands for Unexplored, O for
Obstacle, i.e., an obstacle has been detected on that cell, and
G for Ground, i.e., no obstacle is located on that cell. Then
Mi = {(c(n), si(n), hi(n))}n∈NM .

The status and the estimated height of a cell are updated
using CVS information.

For each pixel (nr, nc) ∈ Yo
i,k (labeled Obstacle),

according to (9), there exists m ∈ N o such that Pi ((nr, nc))
introduced in (12) intersects So

m. As this intersection is
difficult to characterize, we consider that m (Pi ((nr, nc))),
the barycenter of Pi ((nr, nc)), belongs to So

m and change
the status of the cell n containing the projection on
Xg of m (Pi ((nr, nc))) to Obstacle, i.e., si(n) = O.
Moreover, the estimated height of that cell n is updated
using m3 (Pi ((nr, nc))), the height of the barycenter of
Pi ((nr, nc)) as

hi(n) = max{hi(n),m3 (Pi ((nr, nc)))}. (20)

For each pixel (nr, nc) ∈ Yg
i (labeled Ground), the status

and estimated height of all cells n ∈ NM such that ci(n) ∈
Pg
i ((nr, nc)), are updated as si(n) = G and hi(n) = 0.
This approach leads to an approximate map of the

obstacles used to estimate the parts of the FoV that will
be hidden by obstacles, see Section VII.

VI. ESTIMATION ALGORITHM

This section describes a distributed set-membership target
location estimator exploiting the information provided by the
CVS and the set estimates introduced in Section V. The
structure of the set-membership estimator is adapted from
[2]. Only the parts related to the exploitation of the CVS
information are detailed. For UAV i, the set estimates are
initialized at time t0 as Lt

i,0 = ∅, X t
i,0 = ∅, and Xt

i,0 = Xg.
In addition, UAV i also maintains an inner aproximation
So
i,k of the rs-neighborhood of the projection on Xg of all

obstacles, with So
i,k = ∅. Finally, the map Mi,0 is initialized

as si,0(n) = U and hi,0(n) = 0 for all n ∈ NM.

A. Prediction step

At tk, the predicted sets Xt
i,j,k|k−1 of possible future

locations of identified target j ∈ Lt
i,k and Xt

i,k|k−1 of

possible locations of targets still to be identified are evaluated
using (1) and the fact that vj,k ∈ [vt] as follows

Xt
i,j,k|k−1 = f t (Xt

i,j,k−1,
[
vt]) ∩ Xg,∀j ∈ Lt

i,k (21)

Xt
i,k|k−1 = f t(Xt

i,k−1,
[
vt]) ∩ Xg. (22)

B. Correction step using CVS information

The CVS of UAV i provides the list Dt
i,k, and the sets

Xt,m
i,j,k, So

i,k (Yo
i , rs), and Pg

i,k(Y
g
i,k).

Based on Section V-B.2, the inner approximation of the
rs-neighborhoods of all obstacles is updated as So

i,k|k =
So
i,k (Yo

i , rs) ∪ So
i,k.

From Sections V-B.1 and V-B.2, as the set Pg
i,k(Y

g
i,k) ∪

So
i,k|k is proved to be free of targets the set Xt

i,k|k−1 is
updated as

Xt
i,k|k = Xt

i,k|k−1 \
(
Pg
i,k

(
Yg
i,k

)
∪ So

i,k|k

)
, (23)

For identified targets, three cases are considered. For each
target j ∈ Lt

i,k−1 \Dt
i,k already identified before time tk and

not identified at time tk one has

Xt
i,j,k|k = Xt

i,j,k|k−1 \
(
Pg
i,k

(
Yg
i,k

)
∪ So

i,k|k

)
. (24)

If target j is identified at time tk, i.e., j ∈ Dt
i,k, then

according to Section V-A, xt,g
j,k ∈ Xt,m

i,j,k. If j ∈ Lt
i,k−1, then

xt,g
j,k ∈ Xt

i,j,k|k−1, and Xt
i,j,k|k is updated as

Xt
i,j,k|k =

(
Xt

i,j,k|k−1 ∩ Xt,m
i,j,k

)
\
(
Pg
i,k

(
Yg

i,k

)
∪ So

i,k|k

)
, (25)

Otherwise, if j /∈ Lt
i,k−1, then xt,g

j,k ∈ Xt
i,k|k−1, and Xt

i,j,k|k
is updated as

Xt
i,j,k|k =

(
Xt

i,k|k−1 ∩ Xt,m
i,j,k

)
\
(
Pg
i,k

(
Yg

i,k

)
∪ So

i,k|k

)
. (26)

The list of identified targets becomes Lt
i,k|k = Lt

i,k−1∪Dt
i,k.

The map Mi,k|k is updated from Mi,k−1 as described in
Section V-D.

C. Update after communication with neighbors

Using the information received from its neighbors, UAV i
updates the list of identified targets Lt

i,k =
⋃

ℓ∈Ni,k
Lt
ℓ,k|k

the rs-neighborhoods of all obstacles So
i,k =

⋃
ℓ∈Ni,k

So
ℓ,k|k

and the set of possible locations of targets still to be detected
Xt

i,k =
⋂

ℓ∈Ni,k
Xt

ℓ,k|k. Then, if j ∈ Lt
i,k, one has Xt

i,j,k =⋂
ℓ∈Ni,k

Xt
ℓ,j,k|k.

UAV i also updates its OEM as follow. For all n ∈ NM, if
there exists ℓ ∈ N u, such that sℓ,k|k(n) = G, then si,k(n) =
G and hi,k(n) = 0. For all n ∈ NM, such that there does
not exist any ℓ ∈ N u with sℓ,k|k(n) = G, but such that there
exists ℓ′ ∈ N u with sℓ′,k|k(n) = O, then si,k(n) = O and
hi,k(n) = maxℓ∈N u hℓ,k|k(n). A cell considered as Ground
by at least one of the UAVs is updated to Ground. For all
other cells with status Obstacle for at least one UAV, the
height is set to the maximum observed height.
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VII. DESIGN OF THE UAV GUIDANCE LAW

This section introduces a distributed MPC approach [26]
based on that of [2]. Compared to [2], previously occluded
areas and predicted occluded areas are taken into account in
the design of the control inputs of the UAVs.

For a sequence ui,k:h = (ui,k, . . . ,ui,k+h−1) ∈ Uh of
control inputs over a horizon of h steps, the state xu,P

i,k+h

of UAV i can be predicted using (2). Then, two types of
occluded areas are considered: those which were previoulsy
occluded and those which are likely to be occluded after
applying ui,k:h on UAV i. At time tk, the occluded parts of
the RoI for UAV i correspond to the set Pg

i,k(Yo
i,k ∪ Y t

i,k ∪
Yn
i,k) introduced in (19). Accounting for the occluded parts

for its neighbors, UAV i evaluates the set

HCVS
i,k =

⋃
ℓ∈Ni,k

Pg
ℓ,k

(
Yo
ℓ,k ∪ Y t

ℓ,k ∪ Yn
ℓ,k

)
(27)

of all occluded parts. In the MPC approach, the sets HCVS
i,k

obtained during the last h time steps are gathered as

HCVS
i,k−h+1:h =

⋃k
t=k−h+1 HCVS

i,t , (28)

and are considered as areas requiring further exploration.
Predicting the map is difficult. Nevertheless, the version
Mi,k of the map at time tk can be used to evaluate the part
Hm

i,k(x
u,P
i,k+h) of the FoV that may be hidden by obstacles if

the predicted state of UAV i is xu,P
i,k+h using [27].

For UAV i, considering ui,k:h, a prediction xu,P
i,k+τ+1 of

xu
i,k+τ+1 at step τ ∈ {0, . . . , h− 1} can be performed using

(2) and ui,k+τ .
Iterative predictions and corrections are then performed for

all τ ∈ {1, . . . , h}. Predicted versions Xt,P
i,j,k+τ |k+τ−1, j ∈

Lt
i,k, and Xt,P

i,k+τ |k+τ−1, of the set estimates Xt
i,j,k+τ |k+τ−1,

j ∈ Lt
i,k and Xt

i,k+τ |k+τ−1 are evaluated using (1).
To account for the future CVS information, a predicted

FoV is then evaluated as FP
i,k+τ = F(xu,P

i,k+τ )\Hm
i,k(x

u,P
i,k+τ ).

Then, as described in [2], the predicted sets Xt,P
i,j,k+τ and

Xt,P
i,k+τ , for all τ ∈ {1, . . . , h}, are evaluated as

Xt,P
i,j,k+τ = Xt,P

i,j,k+τ |k+τ−1 \ F
P
i,k+τ (29)

Xt,P
i,k+τ = Xt,P

i,k+τ |k+τ−1 \ FP
i,k+τ . (30)

The aim of the considered MPC approach is to evaluate a
sequence uMPC

i,k:h that minimizes

J
(
uMPC
i,k:h

)
= ΦX

i,k+h|k + λΦd
i,k+h|k + κΦh

i,k+h|k, (31)

where λ and κ are tuning parameters. The components of
(31) are detailed in what follows.

ΦX
i,k+h|k is the area of the predicted set estimates Xt,P

i,j,k+h,

j ∈ Lt
i,k, and Xt,P

i,k+h expressed as

ΦX
i,k+h|k = ϕ

(
Xt,P

i,k+h ∪
⋃

j∈Lt
i,k

Xt,P
i,j,k+h

)
. (32)

Fig. 5. Simulated urban environment in Webots

Φd
i,k+h|k is the distance between the predicted location

xu,P
i,k+h of UAV i and the closest predicted set estimate

Φd
i,k+h|k =d

(
pg

(
xu,P

i,k+h

)
,Xt,P

i,k+h ∪
⋃

j∈Lt
i,k

Xt,P
i,j,k+h

\Hm
i,k(x

u,P
i,k+h)

)
When ΦX

i,k+h|k remains constant whatever ui,k:h, Φd
i,k+h|k is

used to drive UAV i toward the closest set estimate. Taking
into account Hm

i,k(x
u,P
i,k+h) avoids UAV i being attracted by

a set estimate that would be hidden by an obstacle. Finally,

Φh
i,k+h|k = ϕ

(
Xt,P

i,k+h ∪
⋃

j∈Lt
i,k

Xt,P
i,j,k+h ∩HCVS

i,k−h+1:h

)
.

accounts for the parts of Xt,P
i,k+h that were previously

occluded and favors exploration of such area.
A round-robin evaluation of the guidance law of each

UAV is considered. The first UAV evaluates independently its
control input and broadcasts it as well as information related
to its predicted FoV FP

1,k+τ , τ = 1, . . . , h. The following
UAV may then account for the information sent by the first
UAV to evaluate Xt,P

i,j,k+τ and Xt,P
i,k+τ using its own field of

view FP
2,k+τ and FP

1,k+τ , τ = 1, . . . , h...

VIII. SIMULATIONS

The simulations are performed using Webots1 to generate
the measurements collected by the UAVs. Webots is
interfaced with Matlab to evaluate all set estimates and
sequences of UAV control inputs.

A. Simulation conditions

The RoI X0 = [−250m, 250m] × [−250m, 250m] × R+

contains several buildings covering about 5 % of the area of
the ground Xg, see Figure 5. N t = 8 target cars have to be
localized. The dimension of each car is 4.6 m × 1.8 m ×
1.5 m. A cylinder Ct of radius rt = 2.5 m and height ht =
2 m contains the unknown shape of the cars. The safety
distance rs between targets and obstacles is taken equal to
3 m. The target dynamic (1) is such that the cars stay on
the road. Their speed is randomly chosen but is bounded
by a known maximal speed. The UAVs do not exploit any
knowledge related to the roads during the search. The OEM
Mi,k consists of square cells of 5× 5 m2.

A fleet of 4 identical quadcopters is considered. Their
dynamics is detailed in [3]. The CVS of each UAV provides

1https://cyberbotics.com/doc/guide/index
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Fig. 6. Example of CVS information provided by Webots: Image and
bounding boxes (left), image labels and bounding boxes (middle), and depth
map (right)

labeled images of Nr ×Nc = 360× 480 pixels and a depth-
map of the same size. The camera aperture angle is π/4 rad.
The bounds of the noise w in (5) are [w,w] = [−0.01, 0.01].
Figure 6 shows an example of the information provided by
the CVS of each UAV.

For the MPC approach of Section VII, h = 2
and only yaw angle increments are considered in U =
{−π/3,−π/6, 0, π/6, π/3}. The weights in the cost function
(31) are taken as λ = 10−5 (as in [2]) and κ = 1. The yaw
angle increments provided by the MPC algorithm serve to
deduce a reference state for a low-level PID controller also
designed to maintain a flight at a constant speed module
and at a constant altitude. To avoid collisions, the flight
height is different for each UAV, and is larger than the height
of all obstacles. Furthermore, the communication between
UAVs is assumed perfect, and no restriction regarding the
communication range is considered. The UAV speed and car
speed are chosen such as the speed ratio between the UAVs
and the targets is equal or above 5.

The CVS provides new information with a period T =
0.5 s. The estimation algorithms of Sections V and VI are
applied with the same period. Nevertheless, the guidance law
updated is set at 3 s to ensure that the UAVs have reached
their yaw angle reference provided by the MPC algorithm.

B. Results

Results are averages over 10 independent simulations
lasting 300 s of UAV flight. The video2 illustrates a typical
evolution of the sets Xt

i,j,k gathering all the possible locations
of identified targets (in green), the set Xt

i,k of possible
locations of targets still to be identified (in yellow), and
the set So

i,k representing the inner-approximation of the rs-
neighborhood of the encountered obstacles (in black). The set
HCVS

i,k (in blue), represents the points of Xg that have been
occluded at some previous time instant due by an obstacle
and were not observed up to time tk.

Figure 7 shows Mi,300 at the end of one simulation of
300 s. The perspective is the same as in Figure 5. Mi,300

provides an approximation of obstacle shapes and heights
sufficient to predict the occluded parts of the environment.

The metrics considered to evaluate the performance of
the proposed algorithm are the area explored Φ(Xg

k) =

ϕ(
⋃k

t=1

⋃
ℓ∈Ni,t

Pg
ℓ,t(Y

g
ℓ,t)), the Unexplored Area (UA)

ϕ(Xt
i,k), the Occluded Area (OA) ϕ(Xt

i,k ∩ HCVS
i,k ),

2https://nextcloud.centralesupelec.fr/s/eYD2CDgr5qxpee3

Fig. 7. Illustration of Mi,300. The blue squares are the unexplored cells.
The red rectangles are the occupied cells with their estimated height.

the average area of target set estimates Φ(X t
i,k) =∑

j∈Lt
i,k

ϕ(Xt
i,j,k)/card(Lt

i,k), and the localization error

e(X t
i,k) =

∑
j∈Lt

i,k
||xt,g

j,k − c(Xt
i,j,k)||/card(Lt

i,k) between
the actual target location and the barycenter of its set
estimate.

The evolution of these metrics is shown in Figure 8.
Φ
(
Xg

k

)
(in purple) is the area of the map proved to be

ground. Since around 5% of Xg is occupied by obstacles,
the maximum value of Φ

(
Xg

k

)
is 95%. After 300 s, Φ

(
Xg

k

)
reaches 94 %, meaning that the fleet has explored nearly
all the RoI. The remaining 1 % corresponds to parts of Xg
located around buildings at the border of the RoI.

Φ(X t
i,k) (in green) stabilizes around 0.23% of ϕ (Xg)

with a standard deviation of 0.14%. This corresponds to
the surface of a disc with radius between 8.3 m and
17.2 m. The area is quite large: As targets cannot be
permanently observed, the uncertainty of their estimated
location increases. Nevertheless, as seen in Figure 8-B, the
localization error e

(
X t

i,k

)
(in red) is about 1.0m ± 0.3m.

Thus, despite knowing only the target maximal speed, the
UAV fleet manages to accurately localize the identified
targets.

The area ϕ(Xt
i,k) (in orange in Figure 8-A) of the set

estimate Xt
i,k containing the locations of targets still to be

detected, decreases and reaches 19.1% ± 2.6%. At the end
of the simulation, almost 60 % of Xt

i,k belong to HCVS
i,k (in

blue), and thus correspond to a portion of Xt
i,k that cannot

be eliminated because of the presence of obstacles. This
part of Xt

i,k continues to grow until observed from another
point of view. These results illustrate the limitations of the
criterion (31) in the design of a guidance law that would
bypass obstacles to observe previously occluded regions.

To evaluate the benefits provided by the OEM in the design
of the guidance law and the components of the cost function
(31), the results of the proposed approach are compared to
those obtained when κ = 0 in (31) (the occluded parts are
not considered) and to those in [3] (the map is not exploited
in the MPC algorithm), see Table I. Exploiting the OEM
in the design of the guidance laws improves the exploration
performance compared to [3]. Moreover, accounting for the
previously occluded parts in (31) (κ = 1) improves the
reduction of ϕ(Xt

i,k) and results in a better exploration of
the environment since ϕ(Xt

i,k ∩ Xh
i,k) is also reduced.
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Fig. 8. Mean value with standard deviation of Φ(Xg
k)/ϕ(Xg) (purple),

Φ(X t
i,k)/ϕ(Xg) (green), ϕ(Xt

i,k)/ϕ(Xg) (orange), ϕ(Xt
i,k∩HCVS

i,k )/ϕ(Xg)

(blue) and e(X t
i,k) (red).

[3] Here
(κ = 0) (κ = 1)

ϕ(Xt
i,k) (%) 25.5± 2.7 20.9± 2.8 19.1 ± 2.6

ϕ(Xt
i,k ∩HCVS

i,k ) (%) 16.8± 1.9 12.8± 2.1 11.2 ± 1.8

TABLE I
PERFORMANCE COMPARISON (AVERAGE OVER 10

INDEPENDENT SIMULATIONS)

IX. CONCLUSION

This paper proposes an approach to search and track
ground targets evolving in an unknown but structured
environment using a fleet of cooperating UAVs. Information
provided by a CVS are exploited by a set-membership
estimator to get sets containing the location of detected
targets, a set containing the locations of targets still to detect,
and a set proved to contain no target.

In the proposed approach, each UAV builds an OEM of the
environment in parallel with the target search, to approximate
the obstacles present in the environment. The map is used
in a MPC algorithm to design guidance laws for the UAVs.
The portion of the environment that has been occluded in
the past is also used to favor the exploration of these areas.

The proposed approach, evaluated in a simulated urban
environment, yields better search and tracking performance
than a variant where no map is used. Future work will
consider adaptations to more complex environments such as
urban canyons, requiring to avoid obstacles.
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and tracking people with cooperative mobile robots,” Autonomous
Robots, vol. 42, no. 4, pp. 739–759, 2018.

[6] P. M. Dames, “Distributed multi-target search and tracking using the
PHD filter,” Autonomous robots, vol. 44, no. 3, pp. 673–689, 2020.

[7] A. A. Meera, M. Popovic, A. Millane, and R. Siegwart, “Obstacle-
aware adaptive informative path planning for uav-based target search,”
in Proc. IEEE ICRA, pp. 718–724, 2019.

[8] Y. Ji, Y. Zhao, B. Chen, Z. Zhu, Y. Liu, H. Zhu, and S. Qiu,
“Source searching in unknown obstructed environments through
source estimation, target determination, and path planning,” Building
and Environment, vol. 221, pp. 109266–109306, 2022.

[9] J. A. Placed, J. Strader, H. Carrillo, N. Atanasov, V. Indelman,
L. Carlone, and J. A. Castellanos, “A survey on active simultaneous
localization and mapping: State of the art and new frontiers,” IEEE
Trans. Robotics, vol. 39, no. 3, pp. 1686–1705, 2023.

[10] J. Ibenthal, L. Meyer, H. Piet-Lahanier, and M. Kieffer, “Localization
of Partially Hidden Moving Targets Using a Fleet of UAVs via
Bounded-Error Estimation,” IEEE Trans. Robotics, vol. 39, no. 6,
pp. 4211–4229, 2023.

[11] L. Zhao, R. Li, J. Han, and J. Zhang, “A distributed model predictive
control-based method for multidifferent-target search in unknown
environments,” IEEE Trans. Evol. Comput., vol. 27, no. 1, pp. 111–
125, 2022.

[12] B. Zhang, X. Lin, Y. Zhu, J. Tian, and Z. Zhu, “Enhancing Multi-UAV
Reconnaissance and Search Through Double Critic DDPG With Belief
Probability Maps,” IEEE Trans. Intelligent Vehicles, vol. 9, no. 2,
pp. 3827–3842, 2024.

[13] Y. Liu, Q. Wang, H. Hu, and Y. He, “A novel real-time moving target
tracking and path planning system for a quadrotor UAV in unknown
unstructured outdoor scenes,” IEEE Trans. Syst. Man. Cybern., vol. 49,
no. 11, pp. 2362–2372, 2018.

[14] D. Liu, W. Bao, X. Zhu, B. Fei, Z. Xiao, and T. Men, “Vision-aware
air-ground cooperative target localization for UAV and UGV,” Aerosp.
Sci. Technol., vol. 124, pp. 107525–107540, 2022.

[15] T. M. Di Gennaro and J. Waldmann, “Sensor Fusion with
Asynchronous Decentralized Processing for 3D Target Tracking with
a Wireless Camera Network,” Sensors, vol. 23, no. 3, pp. 1194–1228,
2023.

[16] X. Luo, Y. Wu, and L. Zhao, “YOLOD: A target detection method for
UAV aerial imagery,” Remote Sensing, vol. 14, no. 14, p. 3240, 2022.

[17] P. Jiang, D. Ergu, F. Liu, Y. Cai, and B. Ma, “A Review of
Yolo algorithm developments,” Procedia computer science, vol. 199,
pp. 1066–1073, 2022.

[18] Z. Fan, Y. Zhu, Y. He, Q. Sun, H. Liu, and J. He, “Deep learning
on monocular object pose detection and tracking: A comprehensive
overview,” ACM Computing Surveys, vol. 55, no. 4, pp. 1–40, 2022.

[19] B. Allik, “Tracking of multiple targets across distributed platforms
with fov constraints,” in Proc. IEEE CDC, pp. 6044–6049, 2019.

[20] Y. Hou, J. Zhao, R. Zhang, X. Cheng, and L. Yang, “UAV Swarm
Cooperative Target Search: A Multi-Agent Reinforcement Learning
Approach,” IEEE Trans. Intelligent Vehicles, vol. 9, no. 1, pp. 568–
578, 2023.

[21] A. Symington, S. Waharte, S. Julier, and N. Trigoni, “Probabilistic
target detection by camera-equipped UAVs,” in Proc. IEEE ICRA,
pp. 4076–4081, 2010.

[22] L. Madhuanand, F. Nex, and M. Y. Yang, “Self-supervised monocular
depth estimation from oblique UAV videos,” ISPRS journal of
photogrammetry and remote sensing, vol. 176, pp. 1–14, 2021.

[23] S. Minaee, Y. Boykov, F. Porikli, A. Plaza, N. Kehtarnavaz, and
D. Terzopoulos, “Image segmentation using deep learning: A survey,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 44, no. 7, pp. 3523–3542,
2021.

[24] O. Faugeras, Three-dimensional computer vision: a geometric
viewpoint. MIT press, 1993.

[25] I.-F. Kenmogne, V. Drevelle, and E. Marchand, “Cooperative
localization of drones by using interval methods,” Acta Cybernetica,
pp. 1–16, 2019.

[26] P. D. Christofides, R. Scattolini, D. M. De La Pena, and J. Liu,
“Distributed model predictive control: A tutorial review and future
research directions,” Comput Chem Eng, vol. 51, pp. 21–41, 2013.

[27] L. Reboul, M. Kieffer, H. Piet-Lahanier, and S. Reynaud, “Cooperative
guidance of a fleet of UAVs for multi-target discovery and tracking
in presence of obstacles using a set membership approach,” IFAC-
PapersOnLine, vol. 52, no. 12, pp. 340–345, 2019.

5101


