2024 IEEE 63rd Conference on Decision and Control (CDC)
December 16-19, 2024. MiCo, Milan, Italy

Real-Time-Feasible Collision-Free Motion Planning For Ellipsoidal
Objects

Yunfan Gao!-2, Florian Messerer?, Niels van Duijkerenl, Boris Houska®, Moritz Diehl®*

Abstract— Online planning of collision-free trajectories is a
fundamental task for robotics and self-driving car applica-
tions. This paper revisits collision avoidance between ellipsoidal
objects using differentiable constraints. Two ellipsoids do not
overlap if and only if the endpoint of the vector between
the center points of the ellipsoids does not lie in the inte-
rior of the Minkowski sum of the ellipsoids. This condition
is formulated using a parametric over-approximation of the
Minkowski sum, which can be made tight in any given direction.
The resulting collision avoidance constraint is included in an
optimal control problem (OCP) and evaluated in comparison
to the separating-hyperplane approach. Not only do we observe
that the Minkowski-sum formulation is computationally more
efficient in our experiments, but also that using pre-determined
over-approximation parameters based on warm-start trajecto-
ries leads to a very limited increase in suboptimality. This gives
rise to a novel real-time scheme for collision-free motion plan-
ning with model predictive control (MPC). Both the real-time
feasibility and the effectiveness of the constraint formulation
are demonstrated in challenging real-world experiments.

I. INTRODUCTION

Collision-free motion planning for robotic systems re-
ceives significant attention in real-world applications. Solving
optimal control problems (OCPs) sufficiently fast enables a
model predictive control (MPC) scheme to promptly replan
online and react to the environment in a timely manner. The
constraint formulation in OCPs, in particular collision avoid-
ance constraints, greatly impacts computational efficiency.

A substantial body of work has investigated differentiable
collision avoidance constraints for non-circular objects. The
authors of [1] address the collision avoidance between a
circle and an ellipsoid by offline predetermining an ellipsoid
that covers the collision region with minimally enlarged
semi-axes. The enlarged ellipsoid, however, does not provide
a tight bound of the collision region in every direction. With
respect to polytopic objects, the authors of [2] use duality
theory to formulate collision-avoidance constraints. The im-
pact of shape representation on computational efficiency is
investigated in [3]. The authors conclude that a vertex-based
representation of polyhedra results in shorter solution times

than a half-space-based representation. Additionally, in [4],

I Robert Bosch GmbH, Corporate Research, Stuttgart, Germany
{yunfan.gao, niels.vanduijkeren}@de.bosch.com

2 Department ~ of Microsystems Engineering (IMTEK),
University of Freiburg, Germany {florian.messerer,
moritz.diehl}@imtek.uni-freiburg.de

3 School of Information Science and Technology, ShanghaiTech Univer-
sity, Shanghai, China borish@shanghaitech.edu.cn

4 Department of Mathematics, University of Freiburg, Germany

The research that led to this paper was funded by Robert Bosch GmbH.
This work was also supported by DFG via Research Unit FOR 2401, project
424107692 and 525018088, by BMWK via 03EI4057A and 03EN3054B,
and by the EU via ELO-X 953348.

979-8-3503-1632-2/24/$31.00 ©2024 IEEE

the authors smoothen rectangle obstacles progressively by
p-norms over the OCP prediction horizon.

In this paper, we focus on collision avoidance between
ellipsoidal objects. Ellipsoids are a helpful geometric object
in collision-free motion planning, not only to approximate
robot shapes, but also to model uncertainties for point ob-
jects [5]. Ellipsoidal calculus has been investigated in many
different areas, e.g., ellipsoid packaging [6] and collision
detection in computer graphics [7]. The distance computation
between non-overlapping ellipsoids is a convex optimization
problem. In the 2D case, the distance can be computed by
solving a polynomial equation [8]. The optimization problem
of signed-distance computation for overlapping ellipsoids
is non-convex. The authors of [9] propose to compute the
signed distance by identifying the points that satisfy relaxed
Karush-Kuhn-Tucker (KKT) conditions and subsequently
evaluating the signed distance values at these points.

To detect the overlapping of ellipsoids, the authors of [9],
[10], and [7, Section 11.9.2] shrink or grow the two ellipsoids
until they share exactly one point. The scale factor being
greater than one indicates that the intersection is an empty
set. Although this condition is useful in overlapping detec-
tion, it is not differentiable. Differentiable collision avoidance
constraints are formulated in [6], [11], [12] by ensuring the
existence of a separating hyperplane [13, Theorem 11.3]. To
simplify the constraint formulation, the authors of [6] trans-
form one of the two ellipsoids into a unit circle (or sphere)
via an affine transformation. The collision-free condition can
be ensured by imposing that the distance from the circle
center to the scaled ellipsoid is no smaller than one.

In the present paper, we ensure collision avoidance by
using a different necessary and sufficient condition for two
ellipsoids not to overlap. The condition requires the endpoint
of the vector between the center of the two ellipsoids to be
located outside or on the boundary of their Minkowski sum
centered at the origin. We numerically formulate this condi-
tion via a parametric over-approximation of the Minkowski
sum, which can be made tight in any direction. By leaving
the parameter of the over-approximation as an optimization
variable, we achieve collision avoidance without introducing
extra separation distance. For the resulting formulation, we
observe a better computational performance compared to the
separating-hyperplane approach.

Furthermore, we facilitate real-time capability by comput-
ing the over-approximation parameters based on the latest
OCP solution and keeping their values fixed while solving the
OCP. This gives rise to suboptimality, but values for the fixed
parameters resulting in minor suboptimality can be obtained

5108

with little computational effort. Thereby, the computational
complexity is reduced without compromising the capability
of the robot navigating through cluttered environments.
The OCP formulation is evaluated in a model predictive
control (MPC) scheme both in simulation and on a physical
differential-drive robot. We show that planning collision-free
trajectories using the proposed constraint formulation is real-
time feasible. The main contributions of this work are:

1) A computationally efficient formulation of differen-
tiable collision-avoidance constraints for ellipsoidal
objects. Non-conservative collision avoidance can
be achieved despite the over-approximation of the
Minkowski sum of ellipsoids.

2) Improvement of real-time feasibility at an insignificant
cost of robot motion inefficiency by updating the over-
approximation parameters outside the OCP.

3) Experimental validation in an environment cluttered
with virtual ellipsoidal obstacles.

Notation: In this paper, when referring to collision avoid-
ance, we allow that two sets fouch, but the interior of the two
sets must not intersect. The interior of a set B is denoted by
int B. The sequence of natural numbers for an interval [a, b]
is denoted by N[, 1. An ellipsoid in R" is a set of the form

E(t,M) ={reR"(r-)M ' (r-1) < 1}, (1)
where r € R" is the center of the ellipsoid and M € S, is a
positive-definite matrix.

II. MOTION PLANNING PROBLEM STATEMENT

In the following, we describe the problem set-up and define
the OCP we want to solve.

A. Robot System Dynamics

Let x € R™ and u € R™ be the robot system state and
the control input respectively. The discrete (or discretized)
system dynamics take the form

Xt = Yi (Xx,uk), k € Njo, v-1]. 2

Due to the physical limitations of the system and control
design objectives such as recursive feasibility, the trajecto-
ries are subject to state-input constraints gy (xx,ux) <0 and
terminal constraints g (xy) < 0. The functions ¥, gk, and
gn are twice continuously differentiable in all arguments.
B. Robot Shape Modeling

The robot shape is modeled by an ellipsoid & (0,G).
The system state x; contains information on the center
position p. : R"™ - R™, where n,, € {2,3} is the dimension
of the physical world. The mapping from the robot state to
the rotation matrix is denoted by R :R"™ —R™*"_ Given
the robot state xi, the space occupied by the robot is a
rotation and translation of the ellipsoid & (0,G), which is
given by & (pc(xk), R(xx)GR(xx)T). To simplify notation,
let G(Xk) = R(xk)GR(xk)T.
C. Obstacle Avoidance

Consider a set of ellipsoidal obstacles: {& (71, M),
&E(t2, M), ,E (ty,,, Mp,,)}. We aim to ensure that for each
time index k€Njo] and each obstacle m € Ny, |, the
interior of the robot and the interior of the obstacle do

not intersect. Let [(xg,ux) and Iy (xx) be the stage cost
and terminal cost functions, which are twice continuously
differentiable. Let Xy be the current robot state. The discrete-
time optimal control problem (OCP) is formulated as follows:

N-1
min Zlk (k> ur) +In (xN)
X053 XN »

(3a)
up, s UN-1 k=0
S.t. X0 = X0, (3b)
X+l =Yk (X, ur), k € Njon-17, (3¢)
0> gk (xk,uk), k € Nyo N1, (3d)
0>gn(xn), (3e)
@ =int (& (pe(xk), G (xx))) Nint (& (tms M)
k € Njo,n],m € N1 5,]- (3)

III. COLLISION AVOIDANCE CONSTRAINT
FORMULATION

In this section, we first present the preliminary knowledge
related to the proposed constraint formulation and then derive
the Minkowski-sum-based constraint formulation.

A. Preliminaries

Supporting functions are an important tool for the analysis
of convex sets. Minkowski sums of ellipsoids have been
analyzed in many contexts, in particular reachable sets for
dynamic systems and robust optimization [14]. Here we
present the preliminary knowledge of the supporting function
and the Minkowski sum related to our constraint formulation.

Definition 1 (Supporting function and supporting halfspace).
Given a closed convex set 8 ¢ R", the supporting function
V(n; B) and the supporting halfspace H (1; B) for a direction
n € R"\ {0} are given by

V(p;B) = rgleaé(nTb, (4a)
Hm;B):={beR"n"b <V(;8)}. (4b)

For an ellipsoid & (0, M), the supporting function can be
expressed in closed form [14, Example 2.10]:

V(7,6 (0,M)) =+n" Mn. ®)

Definition 2 (Minkowski sum). The Minkowski sum of two
sets B C R" and D c R” is defined as

BdD :={b+d|beBandde D}. (6)

Lemma 1. The Minkowski sum of the two ellipsoids can be
over-approximated by a third ellipsoid:

M, Mz)

8(O,M1)®8(0,M2)§8(0,—+— @)

Br B2
for any 81,82 > 0 satisfying 81+, = 1.

Proof. The main idea of the proof is that for any direction
n € R™\ {0}, the value of the supporting function associated
with the right-hand side of (7) is greater than or equal to its
counterpart of the left-hand side. Therefore, the supporting
halfspace of the left-hand side is a subset of its counterpart
of the right-hand side. Since a closed convex set can be
represented by the intersection of its supporting halfspaces,

5109

~v=-1.60 v=0.24 ~v=1.60
3.0
E(tg, M)
2.0 \
4

< 0.0
S

-1.01

-2.01

E(ty, M) Minkowski sum

-3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
Py (m) Py (m)

(a) Minkowski sum (colored in green) of two ellipsoids (colored in blue)
and different over-approximations (colored in orange). The solid black line
depicts the boundary of the supporting halfspace of the Minkowski-sum,
which coincides with the over-approximation counterpart for y = 0.24. The
intersections between the ellipsoid &(#,, M») and the Minkowski sum (and
its over-approximations) are irrelevant.

— over-approximation v=1.60 v=-1.60
— Minkowski sum v=0.24

T3 N

) —

g I ‘ ‘ ‘ ‘
-2.0 -1.0 0.0 1.0 2.0

~

(b) The over-approximation for y = 0.24 achieves the minimum value of the
supporting function (the same value as the Minkowski sum counterpart).

Fig. 1: Illustrative example

Lemma 1 can be derived (see the detailed proof in [14,
Theorem 2.4]).]

Lemma 2. Given one direction n € R"\ {0}, there ex-
ists 7,85 > 0 satisfying]+ 45 =1 such that the over-
approximation is tight in the direction of 7:
M, M
V(U;S(O,—:+ f))=V(n;8(O,M1)®8(0,Mz))- (8)
By B
Proof. We refer to [15, Theorem 4.1] for the proof. O

An illustrative example demonstrating the tightness of
over-approximations is shown in Fig. 1.

B. Minkowski-sum-based Constraint Formulation

Lemma 3. Consider two ellipsoidal sets & (#;,M;) and
& (tp, M3). The interior of the two sets does not intersect
if and only if the point 7 -7, is not in the interior of the
Minkowski sum of two ellipsoids centered at the origin:

@ =int (& (t1,My)) Nint (& (£, M3)) &

t1 -t ¢int(E(0,M) @ E (0, M5)). ©)

Proof. Lemma 3 can be derived from the observation that
an ellipsoid is symmetric with respect to its center:

t1 -t eint(E(0,M)®E(0,My)), (10a)

& there exists 71, € R" such that 1+ 12 =11 - 12,
TM;'ty <1, and 7] M;' 1y < 1, (10b)

& there exists 71,75 € R" such that 7y -7} =1, - 15,
oM 't <1, and (-1) " M,' (-) <1, (10c)

< there exists 71 € R” such that TIT M, 171 < 1and
(h-t-1)" My (h-12-7) < 1, (10d)

o @=int(E(0,M)))Nint(E (¢] -2, M>)), (10e)
S o =int(&E (1, My)) Nint (& (12, Mp)) . (101)
m]

Corollary 4. Given two ellipsoidal sets & (t;,M;) and
&E (12, M), the interior of the two ellipsoidal sets does
not intersect if and only if there exists at least one over-
approximation such that the point #; -, is not in the interior
of the over-approximation.

@=int (& (11, My))Nint (& (12, Ma)) © 3 B1.55 >0:

IBT+ﬁ;:1’tl_t2¢int(8(0’]I‘g{+1’Z_§))‘ (an

Proof. Corollary 4 follows from Lemma 2 and Lemma 3. O

For computational considerations, we substitute the vari-
ables 31 and 3, by introducing a new variable y € R:

pr= 1+exp(y) and 2 = 1+exp(-y)’
The constraints on 3 and (3, are satisfied for any y € R:
1 1
1+exp(y) >0, 1 +exp(-y) >0,
1 1 1 exp(y)
+ = + =
I+exp(y) l+4+exp(-y) 1l+exp(y) 1+exp(y)
Constraint (3f) is thereby reformulated using an additional
optimization variable y,, ; for each obstacle m and every
time index k as follows:
1< (pe(xi)~1m) " ((1+exp(ymi)) G (x)

+ (1 +exp(‘7m,k)) Mm)il (Pe(xi)~tm) -

Remark 5. This formulation can be extended to zonotopes.
A zonotope can be viewed as the Minkowski sum of a set of
line segments, i.e., degenerate ellipsoids whose correspond-
ing M matrices are positive semi-definite. The constraints for
zonotope objects can thereby be formulated by taking nested
over-approximations, one on the object shape and the other
on the Minkowski sum of the two objects.

12)

13)

C. Bounds on Optimization Variable y

Numerical solvers may encounter difficulties when the
values of exp(y) and exp(-vy) are close to zero or very large.
A bound on the variable y can be imposed to improve nu-
merical robustness. In this context, we derive an appropriate
bound for y such that the optimality is unaffected.

Recall the closed-form expression for the value of the sup-
porting function with respect to an ellipsoid (5). For an over-
approximation given by (1+exp(y)) M+ (1+exp(-y)) M,
the value of y* that obtains the minimum value of the
supporting function is given by:

y* (1) :=argmin/(1+exp(y) n Min + (1+exp(-y)) 1™ Man.
The supporting function is a convex function of y given a
direction n. The optimal y*(n7) can be expressed in closed

form:
) L n'" Man
=-1lo .
y =58 ntMn
We haVe /lmin(MZ) < 77TM277 < /lmax(MZ)

Amux(M]) - 77TM177 - ﬂmin(M]) > Where /lmln and /lmax
denote the least and the largest eigenvalues. Therefore, we

(14)

5110

can impose a bound on y for numerical robustness without
compromising the optimality of the over-approximation. The
bound on 7 is given by
1 Amin (M. 1 Amax (M.
[_10g(M),_10g(M)]. (15)
2 /lmax(Ml) 2 /lmin(Ml)

IV. REAL-TIME NUMERICAL OPTIMIZATION

In this section, we present several approaches to improve
the numerical properties and facilitate real-time applications.

A. Fixed Parameterization of Over-approximation

It can be seen from Corollary 4 that for any over-
approximation of the Minkowski-sum of two ellipsoids
& (t1,M,) and & (tp, M), the point ¢ - t, not being in the
interior of the over-approximation is a sufficient condition
for the interior of the two ellipsoidal sets not to intersect.
Therefore, solving the OCP where the over-approximation,
i.e., the value of y, is fixed still yields a collision-free
trajectory. Meanwhile, fixing y reduces the nonlinearity of
the collision-avoidance constraint (13). This comes at the
cost of obtaining a suboptimal solution. The degree of
suboptimality depends on the proximity of the fixed over-
approximation to the optimal over-approximation.

One option to determine the fixed over-approximation is
to take the one that minimizes the corresponding supporting
function in the direction of the robot center (given the solu-
tion of the last time step) to the obstacle center. Recall that
for any given non-zero direction, a closed-form expression
exists for the value of y achieving the minimum projection
length (14). For each obstacle m and each time index k, we
compute the parameter y,, x for the fixed over-approximation

as follows:
77TMm77)

1
’?m,k = _IOg(~
2 TGO =pe (xi) -t

Note that the computation merely consists of several matrix-
vector multiplications and one logarithm operation. The com-
putation effort is therefore negligible compared to solving the
OCPs.

B. Regularization

(16)

The Gauss-Newton Hessian approximation is widely used
in solving quadratic programming (QP) subproblems in the
sequential quadratic programming (SQP) method [12, Sec-
tion 10.3]. It is computationally efficient as it depends only
on the first-order derivatives of the objective function. The
constraint-related Hessian information is disregarded. Given
that the objective function (3a) does not depend on the
optimization variables vy, the Hessian blocks associated with
these variables are zero. Overly optimistic Newton steps are
avoided through regularization of these Hessian blocks.

V. SIMULATION AND REAL-WORLD EXPERIMENTS

We solve the OCPs with an SQP-type solver in
acados [16] and use HPIPM [17] as the QP solver. The
simulation experiments are conducted on a laptop with an
Intel i7-11850H processor and 32GB of RAM. The real-
world experiments are carried out on a Neobotix MP-500
differential-drive robot. Its onboard computer is equipped
with an Intel i7-7820EQ processor and 16GB of RAM.

TABLE I: OCP parameters

Name Unit Symbol Value
Prediction horizon S T 2.0
Discretization intervals - N 20
Robot axis length m (0.4,0.7)
Number of obstacles - nm 4

A. System Dynamics, Cost Function, and Constraints

Consider a differential-drive robot modeled in a two-
dimensional physical space. The robot is centered at (py., py)
with heading 6. Forward and angular velocities are denoted
by v and w, respectively:

x::[Px Py 0 v w]TERS.

The control input u consists of forward acceleration a
and angular acceleration a, ie., u:=| a «]T € R%. The
continuous-time equations of motion are

X = [veos(d) vsin(d) w a «]T. a7
In each discretization interval, the control input is modeled
as zero-order hold. The system is discretized by numerical
integration (explicit Runge-Kutta integrator of order four).
The objective of the OCP is to track given state and input

: . ref ref ref ref
reference trajectories (xo ,...,xN) and (”0 ,...,uNil). The

stage costs and terminal costs are the weighted squared
reference-tracking errors. The robot is subject to affine con-
straints on v, w, a, and « due to actuator limits. The terminal
constraint requires the robot to be stationary at the terminal
state, i.e., -€, <v <€, and -€, < w < €,, where €, and €,
are small positive values.

B. Simulation Experiments

Experiment Setting: The Theta* algorithm [18] is em-
ployed to determine a path from a given initial position to the
goal position. The generated reference path is collision-free
for point objects, but not for an ellipsoidal robot (see Fig. 2a).
At every time instant of the MPC simulation, we segment
one part of the path based on the current robot position. The
segmented path is then fitted by a spline. A time-optimal
reference trajectory, which takes into account the system
limitations of the robot, is subsequently generated [19]. The
OCP parameters are collected in Table I.

At the first time step of the MPC simulation, the state
variables are initialized by the reference trajectories. The
initial guess of the control variables, as well as the additional
optimization variables introduced by the collision avoidance
constraints, namely, vy,, x, are set to zeros. In subsequent
time steps, the optimization process is warm-started using
the solution from the previous time step.

MPC Simulation Results: Figure 2 displays the simulated
robot trajectory when we optimize the over-approximations
within the OCP and iteratively solve QP subproblems until
convergence. The robot safely navigates through narrow pas-
sages (see Fig. 2b) and reaches the goal position (see Fig. 2a).
It is noteworthy that certain sections of the path feature
exceptionally narrow passages. At around eleven seconds in
the simulation, the available free space on either side of the
robot is only a few centimeters.

5111

6.0

reference path — sim traj

1.0 m=2 m=4
G /\ 4
= .
< | . N L4

2.0 7

m=1 m=3
0.0 T T T
0.0 2.0 4.0 6.0 8.0 2.5 3.0

Py (m)

(a) The robot would crash into the obstacles if

it stayed on the reference path. passages.

(b) The robot safely travels through the narrow

I
=

0.2

0.0

Distance to Obstacle (m)

10.0 15.0

Time (s)

3.5 4.0 4.5 0.0 5‘,()
P (m)

(c) Distance to the obstacles over time.

Fig. 2: MPC simulation results. The over-approximations are optimized within the OCPs. The solid-line ellipsoids depict the differential-drive robot at
different time steps, and the ellipsoids colored in brown depict the obstacles to avoid.

Optimal over-approximation

optimal 7y fixed %
. . N . N . N total | |
=== optimal -== fixed 7 — fixed 4 === fixed 7

= 100 = 100
@ @« oCP1 | |
&80 &
g g 100 10' 102
= 60 3 Fixed over-approximation
g 40 g |)
= = total F 1
:
5 : / } ! Z 0 ! ! ! ! ocP| E— |
&~ 10° 10" 102 103 &~ 10~ 107! 10! 10°) N

Computation time (ms) Relative additional cost (%) 10° 10! 10?

Computation time (ms)

Fig. 3: Computation time for solving OCPs in
MPC simulation. The time for computing the
value of ¥ and 7 is excluded. The maximum
number of iterations is sufficiently big for the
SQP to converge.

Suboptimality: We evaluate the suboptimality resulting
from fixing the parameterization of the over-approximations
in OCPs as discussed in Sec. IV-A. While running the MPC
simulation with the over-approximations being optimized, we
solve another OCP with the fixed over-approximations. The
relative additional cost is the increase in the optimal objective
due to the fixed over-approximations divided by the optimal
objective value for the optimal over-approximations.

We also evaluate the suboptimality induced by the fixed
separating hyperplanes, which also retain collision-freeness.
To this end, let 7 € R™ parameterize the separating hyper-
plane. The collision-avoidance constraint is formulated by
1" (Pe(x1)~tm) - " Mun - V07 G (xi)n > 0 and nTn < 1.
We determine the fixed hyperplane 7; by finding the two
points, one in each ellipsoid, the vector between which
describes the shortest vector between the two ellipsoids. The
hyperplane perpendicular to this vector is chosen as the fixed
hyperplane. The suboptimality induced by fixing the sepa-
rating hyperplanes is notably greater than the suboptimality
due to fixing the over-approximation parameters, as can be
seen in Fig. 4. For fixed separating hyperplanes, the median
and the worst-case increase in the cost is 1.36% and 335%
respectively. In contrast, for fixed over-approximations, where
the 7 values are computed using (16), the resulting median
and worst-case increase is 0.11% and 9.2% respectively.

Besides the cost comparison, we evaluate the closed-loop
MPC in simulation. Determining the value of the over-
approximation parameter y using (16) enables the robot to
safely travel through the narrow passages and reach the target
position. The minimum distances to the four obstacles are

Fig. 4: Relative additional cost due to fixing the
over-approximation parameters y and fixing the
separating hyperplane parameters 77. The lines
show the percentage of OCPs whose relative
additional cost exceeds certain values.

Fig. 5: Computation time in real-world experi-
ments (maximum two QP iterations). The white
circle is the median. The black bar goes from
the lower to the upper quartile.

TABLE II: Minimum distance to obstacles in MPC simulation. The param-
eters for the over-approximations are updated outside the OCPs using (16)
and fixed in the OCPs.

Obstacle Index
Distance (um)

m=4
1574.9

m=3
67.3

m=2

171.2

m=1
2007.5

TABLE III: Computation time for solving OCPs in MPC simulation. The
time for computing the value of 7 and 77 is excluded. The maximum number
of SQP iterations is two.

Time (ms) optimal y fixed y optimal n fixed 77
median 1.53 1.24 1.74 1.16
90% 1.72 1.44 222 1.32
worst 2.01 1.73 2.57 1.50

summarized in Table II.

Computation Time: We assess the solution time for the
OCPs including the Minkowski-sum-based constraint for-
mulation together with a comparison to the separating-
hyperplane approach. When the maximum number of itera-
tions is sufficiently large to allow the SQP to fully converge,
the Minkowski-sum-based formulation overall performs bet-
ter than the separating-hyperplane approach (see Fig. 3).
Fixing over-approximation parameters ¥ and fixing the sepa-
rating hyperplanes 7j allow a significant decrease in the com-
putation time. The median computation times of the optimal
over-approximations and the fixed over-approximations are
81.9ms and 5.6 ms respectively.

It is not uncommon that the optimization process is termi-
nated in early QP iterations for real-time capability [20]. Here
we evaluate the computation time when solving the OCPs for
maximum two iterations. The results are reported in Table III.
Fixing the over-approximations results in a decrease in the

5112

1.0
-1.04
Z 3.0
5.0 reference path
— optimal ¥
— fixed ¥
-7.0

70 50 30 -10 10 30 50

e (m)
Fig. 6: Robot trajectory in real-world experiments. The blue solid-line
ellipsoids depict the differential-drive robot at different time instants. The
brown ellipsoids are the obstacles.

computation time by approximately 19%. While early ter-
mination greatly enhances real-time feasibility, the solutions
are often not optimal and occasionally violate the constraints.
In consequence, safety margins need to be incorporated to
ensure collision-free motions in practice.

C. Real-World Experiments

Experiment Setting: The MPC is implemented as a Nav2
controller plugin written in C++ [21]. The controller operates
at a frequency of 20 Hz. The maximum number of SQP itera-
tions is set to two. As in simulation, the reference trajectory
is provided by a time-optimal path tracking module. Four
virtual ellipsoidal obstacles are positioned in proximity to the
path (see Fig. 6). The obstacles are slightly more separated
than in simulation. The MPC has the knowledge of the
ground-truth location of the obstacles while the path-tracking
module that generates the reference trajectory is unaware of
the obstacles. The robot dynamics, in particular the robot
motor controller, is not modeled in the (17), resulting in
plant-model mismatch. A safety margin of 0.01 is added to
the left-hand side of the collision-avoidance constraint (13).

Results: The robot trajectory in the real-world experiments
is plotted in Fig. 6. For both the optimal and the fixed over-
approximation approaches, the robot safely follows the refer-
ence path, adjusting its trajectory when potential collisions
are imminent. The two trajectories are barely distinguishable.
Only in some small sections along the path, the fixed over-
approximation approach yields a slightly larger distance to
the obstacle compared to the optimal case (see the zoomed-
in region). In the absence of collision risks, the robot adheres
to the reference path. The robot completes three cycles along
the reference path. The trajectories of different cycles overlay.

The computation time is reported in Fig. 5. The total
computation time includes the durations for solving the OCP,
generating the reference trajectory, and computing the value
of ¥ for fixed over-approximation parameterization (16). The
median of the total computation time is 9.27ms for the
optimal over-approximations and 8.10ms for the fixed case.
The computation manages to complete within the controller
frequency, i.e., 50 ms, for our test cases.

VI. CONCLUSIONS

This paper presented a constraint formulation for collision-
free motion planning for ellipsoidal objects, achieving non-

conservative collision avoidance through a parametric over-
approximation of the Minkowski sum of ellipsoids. Updating
the over-approximation parameters online and fixing their
values in the OCPs leads to significant computation time sav-
ings while retaining the capability of navigation through nar-
row passages. The effectiveness of the constraint formulation
is demonstrated in simulation and on an actual differentiable-
drive robot. Future work might aim at analyzing the degree
of suboptimality caused by the fixed over-approximations and
evaluating the method for dynamic obstacles.

REFERENCES

[1] B. Brito, B. Floor, L. Ferranti, and J. Alonso-Mora, “Model predictive
contouring control for collision avoidance in unstructured dynamic en-
vironments,” IEEE Robotics and Automation Letters, vol. 4, pp. 4459—
4466, Oct. 2019.

[2] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision
avoidance,” IEEE Trans. on Control Systems Technology, vol. 29,
pp. 972-983, May 2021.

[3] C. Dietz, S. Albrecht, A. Nurkanovié, and M. Diehl, “Efficient collision
modelling for numerical optimal control,” in Eur. Control Conf. (ECC),
IEEE, June 2023.

[4] R. Reiter, K. Baumgirtner, R. Quirynen, and M. Diehl, “Progressive
smoothing for motion planning in real-time NMPC,” in Eur. Control
Conf. (ECC), IEEE, June 2024.

[5]1 Y. Gao, F. Messerer, J. Frey, N. van Duijkeren, and M. Diehl,
“Collision-free motion planning for mobile robots by zero-order robust
optimization-based MPC,” in Eur. Control Conf. (ECC), IEEE, June
2023.

[6] E. G. Birgin, R. D. Lobato, and J. M. Martinez, “Packing ellipsoids
by nonlinear optimization,” J. of Global Optim., vol. 65, pp. 709-743,
Dec. 2015.

[7]1 P.J. Schneider and D. Eberly, Geometric Tools for Computer Graphics.
USA: Elsevier Science Inc., Sept. 2002.

[8] D. Eberly, “Distance between ellipses in 2d,” Mar. 2008.

[9] S. Iwata, Y. Nakatsukasa, and A. Takeda, “Computing the signed
distance between overlapping ellipsoids,” SIAM J. on Optim., vol. 25,
pp. 2359-2384, Jan. 2015.

[10] S. Alfano and M. L. Greer, “Determining if two solid ellipsoids
intersect,” J. of Guidance, Control, and Dynamics, vol. 26, pp. 106—
110, Jan. 2003.

[11] J. Kallrath and S. Rebennack, “Cutting ellipses from area-minimizing
rectangles,” J. of Global Optim., vol. 59, pp. 405-437, Dec. 2013.

[12] J. Nocedal and S. J. Wright, Numerical optimization. Springer series
in operations research and financial engineering, New York, NY:
Springer, second ed., 2006.

[13] R. T. Rockafellar, Convex Analysis. Princeton University Press, Dec.
1970.

[14] B. Houska, Robust Optimization of Dynamic Systems. PhD thesis, KU
Leuven, 2011.

[15] A. A. Kurzhanskiy and P. Varaiya, “Ellipsoidal techniques for reach-
ability analysis of discrete-time linear systems,” IEEE Trans. on
Automatic Control, vol. 52, pp. 26-38, Jan. 2007.

[16] R. Verschueren, G. Frison, D. Kouzoupis, J. Frey, N. v. Duijkeren,
A. Zanelli, B. Novoselnik, T. Albin, R. Quirynen, and M. Diehl, “aca-
dos—a modular open-source framework for fast embedded optimal
control,” Math. Program. Computation, vol. 14, pp. 147-183, Oct.
2021.

[17] G. Frison and M. Diehl, “HPIPM: a high-performance quadratic
programming framework for model predictive control,” [FAC-
PapersOnLine, vol. 53, no. 2, pp. 6563-6569, 2020.

[18] K. Daniel, A. Nash, S. Koenig, and A. Felner, “Theta*: Any-angle path
planning on grids,” J. of Artificial Intelligence Res., vol. 39, pp. 533—
579, Oct. 2010.

[19] J. E. Bobrow, S. Dubowsky, and J. S. Gibson, “Time-optimal control
of robotic manipulators along specified paths,” The Int. J. of Robotics
Res., vol. 4, no. 3, pp. 3-17, 1985.

[20] M. Diehl, H. G. Bock, and J. P. Schldder, “A real-time iteration scheme
for nonlinear optimization in optimal feedback control,” SIAM J. on
Control and Optim., vol. 43, pp. 1714-1736, Jan. 2005.

[21] S. Macenski, F. Martin, R. White, and J. Ginés Clavero, “The marathon
2: A navigation system,” in IEEE/RSJ Int. Conf. on Intelligent Robots
and Systems (IROS), Oct. 2020.

5113

