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Abstract— Data-driven methods for predictive control rely
on input-output data to give a Hankel matrix representation of
the space of trajectories. They are poorly suited to situations
where both process noise and measurement noise dominate the
behaviour whereas Kalman filters optimally estimate system
states in this scenario. We derive a data-driven Kalman filter
formulation based on the dynamic evolution of Hankel matrix
output predictions. This leads to an extended state space model
that describes the evolution of both the future inputs and
outputs. By applying measurement feedback one arrives at
a Kalman filter for the system. The Kalman filter design is
performed purely on the basis of the input and output signals
and without the need for a specific state-space representation. A
benchmark simulation illustrates that the resulting prediction-
based control significantly out-performs predictive controllers
based on current data-driven methods.

I. INTRODUCTION

Data-driven predictive control uses a past data character-
isation of a system’s input-output dynamics to determine a
future control input sequence. Most of the current work is
based on the Willems’ fundamental lemma [1], [2] which
provides a linear characterisation of all input-output se-
quences compatible with the system dynamics. This has
been effectively used to develop predictive control methods
using past data sequences. Examples of such methods are
DeePC [3], γ-DDPC [4], [5], and GDPC [6]. See [7] for
a comparative review. One aspect of these methods is the
use of regularisation to trade-off between the matching of
initial conditions and the control performance. Subspace
Predictive Control (SPC) [8] can be derived in terms of the
same Hankel matrices but does not use regularisation for the
control design.

In the case where the past data is corrupted by noise, the
characterisation of the system dynamics becomes inaccurate
resulting in regression formulations that have an error-in-
variables structure. Maximum likelihood approaches to pre-
dictive control in this case are considered in [9], [10].

Data-driven predictive control methods are not “model-
free”, but rather use matrices formed from past data to
parameterise the model. We refer to this class of linear time-
invariant (LTI) models as Signal Matrix Models (SMM).

This paper develops a method of creating Kalman fil-
ters [11] directly from past data using SMMs. The use of
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Kalman filters allows us to extend the domain of current
data-driven predictive control methods to the inclusion of
unknown stochastically driven inputs. In this work we con-
sider that noise-free past data is used in the SMM. This is
of course not true in practice and this assumption amounts
to the use of an inaccurate model of the dynamics. If the
noise effects in the past data are small (or made small by
good experiment and input design) the SMM model will be a
close approximation to the dynamics. For sample complexity
guarantees in a similar framework see [12]. In the noisy
case one can “clean” the data via Hankel matrix de-noising
techniques [13]. Our theoretical work applies to the noise-
free model data case, but we carry out a simulation study in
Section IV using noisy model data.

The characterisation of data-driven predictive control in
terms of Kalman filtering has been considered in [14].
This work uses averaged past trajectories to formulate a
extended Kalman filter form of prediction update. The EKF
formulation is nonlinear making it difficult to characterise
and design. Another approach using maximum likelihood
is considered in [15], where the state-space is prespecified
in terms of an initial state but the A, B, C, and D matri-
ces themselves are unknown. A more comprehensive and
similarly motivated approach is given in [16] where a time-
varying Kalman filter is used in the context of a stochastic
data-driven predictive control problem. This work considers
a more stochastic formulation with noise in the past data
SMM matrices as well as the current measurements. The
associated predictive control problem considers stochastic
chance constraints and uses an expected cost formulation.

The approach in the current paper is more deterministic in
the assumptions on the SMM. Stochasticity in our problem
arises only from measurement and process noise. In contrast
to [15] we avoid the definition of the state-space itself. Any
important internal variables should be able to be measured
(simulated) or reconstructed from input-output data, so that
they can be predicted, monitored, or potentially constrained
in a predictive control problem.

Our method is based on a reformulation of the signal
constraints in Willems’ lemma that gives a decoupling of
the initial condition matching and predictive control parts of
the problem [17]. We have developed a similar Kalman filter
for stochastic predictive control problems in [18].

A. Notation

Gaussian distributions with mean µ and covariance Σ are
denoted by N (µ,Σ). The expectation of a random vector
x is E {x} and its covariance matrix is cov(x). A matrix X
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has a range space range(X). The Kronecker product between
matrices X and Y is denoted by X⊗Y . Symmetric matrices of
dimension n are denoted Sn, with positive definite (positive
semidefinite) matrices denoted by Sn

++ (Sn
+). The weighted

l2-norm of a vector x∈Rn is ∥x∥P =(xT Px)1/2 with P∈ Sn
++.

II. BACKGROUND AND PROBLEM FORMULATION

A. Model assumptions

We assume that the system to be estimated and controlled
is a finite (nx) dimensional discrete-time, strictly causal,
linear time-invariant system, G, represented by a state-space
formulation with input, u(k) ∈ Rnu , and output, y(k) ∈ Rny ,

x(k+1) = Ax(k) + Bu u(k) + Bw w(k), (1)
y(k) = C x(k) + v(k), (2)

where w(k) ∈ Rnw , and v(k) ∈ Rny , are process (or distur-
bance) and measurement noises respectively. We assume the
noises to be independent and drawn from normal distribu-
tions of known variances,

w(k) ∼ N (0,Σw), v(k) ∼ N (0,Σv), (3)

In contrast to the state-space representation above, our
characterisation of G is based on the Willems’ lemma.
We have a length-K, trajectory {ud(k),wd(k),yd(k)}, k =
1, . . . ,K. The d superscript denotes the data used for charac-
terising the sytem. In the SMM construction step we assume
that wd(k) is available. In the online application of the
Kalman filter the disturbance signal, w(k), is not available.

We consider a contiguous, length-T , sequence of inputs
and outputs. This is partitioned into Tp immediate past time
points and Tf future time points, with T = Tp + Tf. The
sequence of immediate past inputs and outputs are considered
as a vector and denoted by,

up(k) =

u(k−Tp)
...

u(k−1)

 and yp(k) =

y(k−Tp +1)
...

y(k)

 . (4)

The immediate future inputs and outputs are then

uf(k) =

 u(k)
...

u(k+Tf −1)

 and yf(k) =

 y(k+1)
...

y(k+Tf)

 . (5)

Note that in forming these signal vectors yp and yf are one
time step advanced compared to the up and uf.

The past horizon Tp must be large enough to completely
characterise the effects of all past inputs on the future
input-output mapping. This requires that the input, ud, is
persistency exciting of order at least Tp(nu + nw)+ nx and
that nyTp ≥ nx. We will also assume that the data-length, K,
satisfies K ≥ 2T (ny +nu +nw)+T . These conditions can be
weakened but are easily satisfied and provide adequate data
for Kalman filtering and predictive control.

B. Willems’ lemma

The basis for most data-driven predictive control is found
in Willems’ lemma. This will be stated here in terms of a
generic input ud, but in the Kalman filtering application we
will actually include wd in this input vector.

We define Hankel matrices, of dimension (nuT )×M and
dimension (nyT )×M,

Hu =


ud(1) ud(2) · · · ud(M)
ud(2) ud(3) · · · ud(M+1)

...
...

...
ud(T ) ud(T +1) · · · ud(M+T −1)

 ∈RnuT×M,

and

Hy =


yd(2) yd(3) · · · yd(M+1)
yd(3) yd(4) · · · yd(M+2)

...
...

...
yd(T +1) yd(T +2) · · · yd(M+T )

 ∈ RnyT×M.

If all of the K available input-output signal data are used
then M = K − T . The matrix Hu has full row rank by the
persistency of excitation assumption. Generically Hy also has
full row rank (equal to nyT ).

Lemma 1 (Willems’ Fundamental Lemma): Under the
above assumptions on data length and persistency of
excitation, the length-T input-output pair (u,y) is a nominal
trajectory of the system G (i.e. w(k) = 0 and v(k) = 0), iff
there exists g ∈ RM such that,[

u
y

]
=

[
Hu
Hy

]
g. (6)

See Theorem 1 in [1] and Lemma 2 in [2]. See [19] for
the necessity of the persistency of excitation assumption. By
Willems’ lemma, the stacking of these matrices has rank
equal to nuT +nx. Furthermore the if and only if nature of
the result characterises all of the possible system responses
in terms of g ∈ RM .

To apply the characterisation in (6) to estimation and
control we partition the Hu and Hy SMM matrices commen-
surately with the past and future time windows given in (4)
and (5),

Hu =

[
Hup

Huf

]
, with Hup ∈ R(nuTp)×M,Huf ∈ R(nuTf)×M,

and

Hy =

[
Hyp

Hyf

]
, with Hyp ∈ R(nyTp)×M,Hyf ∈ R(nyTf)×M.

The assumptions in Section II-A imply that the rank and
excitation assumptions in Lemma 1 also apply to Hu.

This allows us to express (6) in the form,
up
yp
uf
yf

 =


Hup
Hyp
Huf
Hyf

g (7)
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This characterisation is directly used to specify the dynamics
in DeePC. The γ-DDPC and GDPC methods use modified
versions with a lower dimensional representation than that
parametrised by g ∈ RM . This is also true of our work.

C. A minimal data-driven characterisation

We introduce a characterisation that is equivalent to (7),
up
yp
uf
yf

 =


Lup 0 0
Lyup Lyp 0
Suu Suy Luf
Syu Syy Lyuf


xu

xy
z

 , (8)

where xu ∈ RnuTp , xy ∈ Rnx , and z ∈ RnuTf . A complete
derivation is given in [17]. The matrix in (8) is lower
triangular and full column rank. It also holds that Lup, Lyp,
and Luf are also lower triangular matrices. The basis for
this derivation is the use of an LQ decomposition of the
past matrices and an LQ decomposition the future matrices,
constrained to be in the null-space of the past matrices.

The major benefit of this characterisation is that for all up,
yp sequences generated by the system, (8) specifies unique
xu, xy vectors. Furthermore, as Luf is full rank (see [17]), z
specifies all of the available degrees of freedom in using
a future input, uf, to produce a future output, yf. The
contribution of the past input and output to the future signals
is captured in the S matrices.

The separation of the SMM into xu and xy (determined by
up and yp) and z (determining the future output yf that can be
controlled by a future input uf) is exploited in [17] to separate
the estimation of initial conditions from the predictive control
of the future trajectories. Here we will use it to develop a
Kalman filter.

III. KALMAN FILTERING

Data-driven predictive control essentially solves memo-
ryless problems at each time-step. Given immediate past
sequences up(k) and yp(k), the optimal future input sequence,
uf(k), is found via optimisation. The calculation of uf(k+1)
(and the associated yf(k+1)) at the next time step does not
make any use of the previous solution. The uses information
from only the previous length-Tp input-output measurements.
A Kalman filter on the other hand uses information from
the entire past history in predicting future outputs. Another,
perhaps more valuable, advantage is that the effect of any
unmeasured process noise w(k) on the output is also esti-
mated.

A. Derivation of a state-space predictor

The derivation starts from the observation that at the
k + 1 time step the variables xu(k + 1) and xy(k + 1) can
be calculated in terms of xu(k), xy(k), and the input, u(k).
More precisely, we will derive a representation of the form,

xu(k+1) = Auu xu(k) + Auy xy(k)+Buu u(k), (9)

and

xy(k+1) = Ayu xu(k) + Ayy xy(k) + Byu u(k). (10)

To derive the matrices in (9) and (10) we define a matrix
Zup ∈ R(Tp nu)×(Tp nu) that maps the vector of past inputs, up,
to its form one time step into the future,

u(k−Tp +1)
...

u(k−1)
0

 = Zup


u(k−Tp)

...
u(k−2)
u(k−1)


The matrix Zyp ∈R(Tp ny)×(Tp ny) performs the analogous shift
for the past output vectors, yp. Define a matrix Πu,k that maps
u(k) onto the most recent part of the past input vector up(k).

Πu,k =
[
0 · · · 0 1

]T ⊗ Inu .

This gives the relationship,

up(k+1) = Zup up(k)+Πu,k u(k). (11)

Substituting up = Lup xu from the first row of (8) leads to,

Auu = L−1
up ZupLup, Auy = 0, and Buu = L−1

up Πu,k.

To derive the matrices in (10) we define a matrix Πy,k
analogously to Πu,k,

Πy,k =
[
0 · · · 0 1

]T ⊗ Iny .

We can now express yp(k) in the form,

yp(k+1) = Zyp yp(k)+Πy,k y(k+1). (12)

Substituting the second row of (8) into (12) gives,

Lyup xu(k+1) + Lyp xy(k+1) = Zyp yp(k) + Πy,k y(k+1).

We now substitute (9) for xu(k) in the above and rearrange
to get,

Lyp xy(k+1) =
(
ZypLyup −LyupAuu

)
xu(k)

+ ZypLyp xy(k) − LyupBuu u(k) + Πy,k y(k+1). (13)

Define a matrix, Πy,p that truncates the vector yp to its earliest
Tp −1 components,

Πy,p =
[
ITp−1 0

]
⊗ Iny .

We now multiply (13) by Πy,p and exploit the fact that
Πy,pΠy,k = 0 to get

Πy,pLyp xy(k+1) = Πy,p
(
ZypLyup −LyupAuu

)
xu(k)

+ Πy,pZypLyp xy(k) − Πy,pLyupBuu u(k).

For notational convenience we define Ψy,p = Πy,p Lyp. As
Ψy,p has full column rank, equal to nx, the xy(k) update
matrices in (10) are given by

Ayu =
(
Ψ

T
y,pΨy,p

)−1
Ψ

T
y,p

(
Πy,pZypLyup −Πy,pLyupAuu

)
,

Ayy =
(
Ψ

T
y,pΨy,p

)−1
Ψ

T
y,p

(
Πy,pZypLyp

)
,

and
Byu =

(
Ψ

T
y,pΨy,p

)−1
Ψ

T
y,p

(
Πy,pLyupBuu

)
.
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We can express y(k) in terms of the xu(k) and xy(k) vectors
via,

y(k) = Π
T
y,kyp(k) = Π

T
y,kLyup xu(k) + Π

T
y,kLyp xy(k).

Now define Cyu = ΠT
y,kLyup, and Cyy = ΠT

y,kLyp. Denote the

combined xu, xy vector as xuy =
[
xT

u xT
y
]T . We can now

summarise the model in state-space form,

xuy(k+1) = Ap xuy(k) + Bp u(k) (14)
y(k) = Cp xuy(k), (15)

where

Ap =

[
Auu 0
Ayu Ayy

]
, Bp =

[
Buu
Byu

]
, and Cp =

[
Cyu Cyy

]
.

Note that the state, xuy, contains more information than
required to simply determine y(k). Using the last two rows
of (8) one can also determine the input-output mapping Tf
time steps into the future. This aspect will be used for model
predictive control.

B. Kalman filter design
As (14) and (15) are in a standard state-space form all of

the usual methods for Kalman filter design can be applied.
One distinction from the standard case is that there are two
inputs to the dynamics, w(k) ∈ Rnw and u(k) ∈ Rnu . For the
purposes of deriving the model we assume that the process
disturbance sequence, wd(k), is known. In practice this might
come from historical measurements of past disturbances, or
(as in the example) a disturbance rejection requirement on a
simulation design model.

For the purposes of the model the known sequence wd(k)
is included as a component of Hu (and by extension Hup
and Huf) making Hu ∈R(nw+nu)T×M . Now by identifying the
components associated with u(k) and w(k) we can partition
the predictor Bp matrix in (14) into,

Bp =
[
Bwp Bup

]
.

This allows us to include w and v in the model of the
extended system dynamics,

xuy(k+1) = Ap xuy(k) + Bwp w(k) + Bup u(k) (16)
ymeas(k) = Cp xuy(k) + v(k). (17)

The unknown process noise w(k) enters into the update
equation for xu meaning that both xu and xy need to be
estimated.1 Denote the estimate of xuy by x̂uy and the error
in this estimate by, exuy = xuy − x̂uy.

Using a standard infinite horizon Kalman filter design,
with Kalman gain Kkf, the state-space representation of the
error dynamics (from inputs w(k) and v(k) to output exuy(k))
is,

Perr(z) =

[
Ap − Kkf Cp BwpΣ

1/2
w KkfΣ

1/2
v

Ine 0 0

]
.

Note that the dimension of the state to be estimated is nuTp+
nx.

1If u is specified exactly it is possible to derive a reduced order filter
which only updates the effect of w and v on the output.

C. Application to model predictive control

The combination of the Kalman filter and the prediction
characterisation in (8) are easily combined into a predictive
control scheme.

From the last two rows of (8) the future output predictor,
ŷf, is easily derived as,

ŷf(k) = Exu x̂u + Exy x̂y + Euf uf,

where

Exu = (Syu −LyfL−1
uf Suu),

Exy = (Syy −LyfL−1
uf Suy),

Euf = LyfL−1
uf .

To illustrate the approach we will use a simple but relatively
common quadratic control cost with output and input costs
defined by the matrices P ∈ S++ and R ∈ S+ respectively.
Input and output constraints, over the length-Tf horizon, are
specified by the sets U and Y. Algorithm 1 illustrates the
predictive control application of the Kalman filter.

Algorithm 1 Predictive control: SMM-based
Kalman filter

Input: ymeas(k)
Output: u(k)

for every time step, k = 1, . . . do
Kalman filter measurement update:

x̂uy(k) = (I −KkfCp) x̂uy(k) + Kkf yp,meas(k)

Predictive control step: Solve:

minimise
uf,yf

∥yf∥P + ∥uf∥R,

subject to: yf =
[
Exu Exy

]
x̂uy(k) + Euf uf,

uf ∈ U, yf ∈ Y

u(k) =
[
Inu 0 · · · 0

]
uf.

Kalman filter state update:

x̂uy(k+1) = Ap x̂uy(k) + Bup u(k)

end for

IV. SIMULATION EXAMPLE

To illustrate the application of the data-driven Kalman
filter we will apply it to a prediction problem for the
longitudinal dynamics of the Boeing 747 aircraft2. This
example is something of a benchmark in the MPC literature
and has previously been used in [7] for comparing data-
driven predictive control methods to more standard system
identification and model predictive control approaches.

A simplified model of the longitudinal dynamics are given
by a 4-state model, with two inputs, throttle, u1, and elevator
angle, u2 [deg]. The outputs are the longitudinal velocity,
y1 [ft/s], and climb rate, y2 [ft/s]. The operating conditions

2MATLAB code running this comparison is publicly available at:
https://doi.org/10.3929/ethz-b-000693730. Simulations of
N4SID-Kalman and GDPC use code provided by P. Verheijen.
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are an altitude of 40,000 ft. and a horizontal velocity of
V = 774 ft/s (Mach 0.8). Under these conditions the aircraft
has a lightly damped phugoid mode coupling the longitudinal
speed and altitude in an oscillatory manner.

The states are defined as the longitudinal velocity, x1 [ft/s],
the downward velocity, x2 [ft/s], the pitch angular velocity,
x3 [deg/s], and the pitch angle, x4 [deg]. The continuous-time
state-space representation is given by,

A =


−0.003 0.039 0 −0.322
−0.065 −0.319 7.74 0

0.02 −0.101 −0.429 0
0 0 1 0

 ,

B =


0.010 1
−0.18 −0.04
−1.16 0.598

0 0

 ,

C =

[
1 0 0 0
0 −1 0 7.74

]
, and D =

[
0 0
0 0

]
.

Although not considered in [7], the effect of turbulence
is critical to the safe operation of the aircraft. This is
modeled with the Dryden gust model [20] which specifies the
horizontal and vertical wind velocity disturbances in terms
of their spectral content. As these velocities are also states
of the system the disturbance input term is

Bw =


−1 0
0 −1
0 0
0 0

[
wh,gust
wv,gust

]
,

where the appropriate horizontal and vertical gust spectra are
given by the transfer function models,

wh,gust = σu,gust
√

2Lu/(V π)
1

1+(Lu/V )s
w1,

wv,gust = σv,gust
√

2Lv/(V π)

(
1+

(
2
√

3Lv/V
)

s
)

(1+2(Lv/V )s)2 w2.

For the simulation we choose the gust intensities correspond-
ing to moderate turbulence at an altitude of 40,000 ft.. The
intensities are σu,gust = 10, σv,gust = 10 and the turbulence
length scales are Lu = 1750 ft. and Lv = Lu/2. Figure 1
illustrates typical gust velocities and their effect on the open-
loop aircraft dynamics. The phugoid mode is evident in the
uncontrolled response. For context note that the allowable
operating range for the control study in [7] is −25 ≤ y1 ≤ 25
ft/s. and −15 ≤ y2 ≤ 15 ft/s.. It’s clear that these moderate
gusts far exceed the aircraft’s desired operational envelope.
Control action is required to suppress the gust response in
this scenario.

For the prediction and control problem we apply a zero-
order hold equivalence transformation using a sample period
of 0.1 s. The SMM is created from a noisy experiment of
length K = 2500 and we choose Tp = 30 and Tf = 20 for the

0 50 100 150 200 250
-4

-2

0

2

4

0 50 100 150 200 250
-30

-20

-10

0

10

20

30

-40

-20

0

20

40

60

Fig. 1. Representative gust velocities and resulting aircraft velocities.

SMM and Kalman filter implementations. The measurement
and process noises have covariances,

Σv = 0.252I2 and Σw = I2.

Note that this choice of Σw reproduces the necessary Dryden
gust spectra for the wind disturbance velocities.

To assess the Kalman filter we will consider the gust
disturbance scenario in Figure 1. In addition to the gust
disturbances, a reference step change (to y = [10 0]T ) is
commanded at t = 3.0 seconds. A random input is used for
the first 3 seconds. A Monte Carlo study, using 30 simulation
runs, is used to compare four control schemes:

• SMMPC. The signal matrix model predictive controller
described in [17]. In this noise scenario it is equivalent
to SPC [8].

• GDPC. A regularised data-driven predictive control
scheme (GDPC [6]).

• N4SID-Kal. Subspace identification (N4SID) using the
nominal state dimension (nx = 4) and a Kalman filter
with MPC.

• SMM-Kal. The SMM-based Kalman filter with MPC
given in Algorithm 1.

For each simulation noisy measurement data is used to create
a new SMM model. The theoretical results given in [17] are
no longer valid, but the comparison is more representative
of the practical application. For the SMM-Kalman method
we assume that w(k) is known at the modeling stage. The
closed-loop simulations have both output measurement noise
and unmeasured process noise.

Figures 2 and 3 show the mean and standard deviation of
the output response and corresponding actuation trajectories.
Figure 4 gives box plots of a several performance indices.

The data-driven methods, SMMPC and GDPC, perform
similarly and poorly. This is not surprising as neither contain
any characterisation of the effect of the gust disturbance.
The past output, yp, depends on both up and the past dis-
turbance, wp. Attempting to match yp using only up leads to
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Fig. 2. Step and gust disturbance response. Output trajectories, mean response (solid), ±1 standard deviation (shaded)

0 10 20 30

Time [s]

-15

-10

-5

0

5

10

15

20

25
SMMPC

u1: throttle
u2: elevator

0 10 20 30

Time [s]

-15

-10

-5

0

5

10

15

20

25
GDPC

u1: throttle
u2: elevator

0 10 20 30

Time [s]

-15

-10

-5

0

5

10

15

20

25
N4SID - Kalman - MPC

u1: throttle
u2: elevator

0 10 20 30

Time [s]

-15

-10

-5

0

5

10

15

20

25
SMM - Kalman - MPC

u1: throttle
u2: elevator

Fig. 3. Step and gust disturbance response. Input trajectories, mean response (solid), ±1 standard deviation (shaded

errors in the predicted future output. The degree of freedom
introduced by regularisation in GDPC does not appear to
be able to compensate for this. The more classical N4SID
identification and Kalman filter method should, in principle,
be able to compensate for process disturbances. However
it appears that the model identified by N4SID in these
circumstances is not sufficiently accurate to allow this. The
SMM-based Kalman filter is effectively able to compensate
for the unmeasured process noise and performs well.

The actuation trajectories in Figure 3 show that SMMPC
and GDPC controllers are essentially not responding to the
disturbance. The N4SID based controller is responding to
the disturbance but the resulting controller performs poorly.
The SMM-based Kalman filter uses additional input energy
to effectively control the disturbed system.

V. CONCLUSIONS

The inclusion of a Kalman filter in the data-driven pre-
dictive control framework makes it easier to apply to a wide
range of control formulations, particularly when unmeasured
process noise also drives the dynamics. When the measure-
ment and process noise covariance matrices can be estimated
the Kalman filter optimally trades off between the two. This
feature has largely been absent from prior data-driven control
formulations.

Because the Kalman filter, by its recursive nature, averages
over all of the past data, it is not necessary to choose a large
value of Tp in order to achieve adequate noise averaging in
the implementation. Smaller values of Tp reduce the degree
of persistency of excitation needed in defining the SMM
matrices. This is advantageous if the user is forced to rely
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Fig. 4. Performance indices boxplots (Integral square error, Integral absolute error, Input energy)

on historical data which may have limited persistency of
excitation.

Over finite horizons the Kalman filter dynamics interact
with the control dynamics generating potentially significant
transients that are not accounted for when the MPC design
is performed independently of the Kalman filter design. The
fact that the Kalman filter and MPC problems are strongly
interdependent, and that they are both state based, makes it
difficult to design them independently. This issue is avoided
in the SMM-based Kalman filter formulation given here as
the Kalman filter design is carried out with the objective of
minimising the prediction errors in the future input-output
mapping. This objective is well suited to control over a future
horizon.

The quality of the estimates and the subsequent control
depend on the input-output trajectory used to define the
SMMs. Noise in this trajectory will make the model high
order and reduce its predictive accuracy. Good character-
isation experiment design is required to give good data-
driven control results. This suggests that the experiment de-
sign considerations used in system identification are equally
applicable to the data-driven control application.
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