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Abstract—Functional electrical stimulation (FES)-cycling is
an effective method of rehabilitation for people with neuromus-
cular disorders. Muscle stimulation and electric motor inputs
are designed to complement the rider’s volitional pedaling, but
open challenges remain in the analysis of the stability and
robustness of the human-machine system under the influence
of switching between muscle and motor inputs. Discontinuous
switching between muscle stimulation inputs and motor input
motivates the use of a hybrid systems analysis, reducing gain
conditions compared to a switched systems analysis and yielding
robustness to disturbances. In this paper, repetitive learning
control (RLC)-based feedforward terms for each muscle group
and electric motor are designed to improve cadence tracking
and reduce high-gain feedback terms that can cause chattering
effects. Muscle stimulation limits are systematically considered
for the safety and comfort of the rider, and a cadence controller
is designed integrating RLC and robust control terms to account
for input saturation. A passivity-based analysis ensures the
hybrid system is flow output strictly passive from the rider’s
volitional effort to the tracking error output. Moreover, the po-
sition and cadence tracking errors are shown to asymptotically
converge based on a Lyapunov-like stability analysis.

Index Terms—Functional Electrical Stimulation (FES),
Repetitive Learning Control, Hybrid Systems, Passivity

I. INTRODUCTION

Functional electrical stimulation (FES)-induced cycling is
an effective rehabilitation method for individuals with spinal
cord injuries, cerebral palsy, hemiparesis secondary to stroke,
and a variety of other conditions [1]–[3]. Continuous high-
gain stimulation during the exercise can lead to premature
fatigue. Thus, motivation exists to reduce high-gain and
high-frequency control for muscle activation via FES, when
possible, and to replace FES input with electric motor input
in regions of the crank cycle called kinematic deadzones
(KDZs), where stimulation is kinematically ineffective [4].
Furthermore, because high levels of stimulation can be
uncomfortable for the rider even before fatigue buildup,
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stimulation intensity should be capped at some rider-defined
threshold, and the motor controller should be designed to
provide supplementary assistance when the muscle input is
saturates [5]. However, explicitly accounting for the muscle
input saturation poses technical challenges in the control
design stability analysis, potentially leading to uniformly
ultimately bounded results that are typical for saturated
systems.

Due to the periodic nature of many rehabilitative tasks such
as FES-cycling, learning control techniques such as iterative
learning control (ILC) or repetitive learning control (RLC)
are well-suited for closed-loop FES control. Learning-based
inputs can be included as feedforward terms in the control
input to compensate for the periodic cycling dynamics re-
ducing high-gain, high-frequency feedback terms. ILC-based
controllers typically require the initial conditions to be reset
at the start of each iteration and have been used in upper-limb
exercises [6]–[8]. Although ILC can be used for cycling as
in [9], RLC-based designs (that do not require state resetting
conditions) are more fitting for the continuous operation of
a cycle since the position of the cycle crank naturally resets
after each revolution. Several works investigate the use of
RLC in FES-cycling control [10]–[12]. Recent work in [12]
develops separate RLC-based feedforward terms for each
of the stimulated muscle groups and the electric motor to
track a periodic cycle cadence trajectory using a switched
systems approach, but only considers unsaturated muscle
control inputs that could produce unsafe or uncomfortable
stimulation levels. Moreover, the control design and analysis
in [12] does not account for the rider’s volitional input during
cycling. The addition of stimulation limits and volitional
input complicates the stability analysis of the learning-based
control approach, requiring the consideration of the case
when some combination of muscle groups hit their saturation
limit. In addition, it is unclear if embedding learning inputs
into a saturated control input can break down traditional
asymptotic tracking results.

Hybrid systems are a generalization of switched systems
that are able to capture complex dynamics by modeling
both continuous- and discrete-time behavior [13]. Switching
between different control inputs at different points in the
crank cycle naturally motivates the use of hybrid systems
approach that has been shown to be robust to discontinuous
dynamics and reduce gain conditions in FES-cycling when
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compared to a switched systems analysis [14]. The close
physical interaction of an electric motor with a human rider
prompts a passivity-based analysis to ensure safe and compli-
ant interaction between stimulation and electric motor control
inputs and human rider. Several passivity-based approaches
have been used to design controllers for FES rehabilitation
systems and exercise machines such as [9], [11], [14], [15]
and [15]. While motorized FES-cycles are modeled as a
hybrid system in recent works such as [14], [16], [17], results
in [14] and [16] do not develop adaptive or learning control
inputs. Thus, this paper fills a significant gap for the design of
learning-based controllers for hybrid systems in the context
of safe human-machine interaction.

Inspired by the control scheme in [12], an RLC-based
control law is developed and analyzed in this paper using a
hybrid passivity-based approach. Motivated to ensure rider
comfort and safety, stimulation limits are enforced in the
developed saturated FES controller. The electric motor input
is designed to provide assistance both in the KDZs and
when the FES input saturates. Despite discrete changes to the
torque input to the system due to discontinuous switching be-
tween muscle and motor control inputs, the error trajectories
evolve continuously prompting a hybrid systems analysis. A
passivity-based analysis shows the developed adaptive control
scheme is flow output strictly passive from the rider’s voli-
tional input to the tracking error output, and in the absence
of the rider’s volition, a Lyapunov-like stability analysis
guarantees asymptotic stability of the position and cadence
tracking errors and robustness to unmodeled disturbances
despite potential FES input saturation with reduced gain
conditions than would be achieved with a switched systems
approach.

II. DYNAMIC MODEL

The single degree-of-freedom cycle-rider system can be
modeled as [4]:

M (q) q̈ + V (q, q̇) q̇ +G (q) + P (q, q̇) + bcq̇ + τvol (t)

= BMum (t) +BEue (t) ,
(1)

where q : R≥0 → Q denotes the measurable angle of the
cycle’s crank, q̇ : R≥0 → R denotes the calculable angular
velocity, q̈ : R≥0 → R denotes the unmeasurable angular
acceleration of the crank, and Q ⊆ R denotes the set of
all possible crank angles. The combined inertial effects of
both the cycle and rider is denoted as M : Q → R>0.
The centripetal-Coriolis forces, gravitational forces, passive
viscoelastic tissue forces of the rider, viscous damping coeffi-
cient of the cycle, and torque due to the volitional efforts of
the rider are denoted as V : Q × R → R, G : Q → R,
P : Q × R → R, bc ∈ R>0, and τvol : R≥0 → R,
respectively. The terms on the right-hand side of (1) represent
the torque applied about the crank axis by the FES-induced
lower-limb muscle contractions and the electric motor, re-
spectively, where BM , BE ∈ R≥0 are lumped, switched
control effectiveness terms for the muscle stimulation and

electric motor, respectively, um : R≥0 → R is the stimu-
lation input applied to each of the six muscles m ∈ M,
where M , {QuadL, QuadR, GlL, GlR, HamL, HamR},
representing the left (L) and right (R) quadriceps (Quad),
gluteal (Gl), and hamstring (Ham) muscle groups, and ue :
R≥0 → R is the motor current control input. The terms BM
and BE are defined as [4]

BM ,
∑
m∈M

Bm (q, q̇) kmσm (q) , (2)

BE , Bekeσe (q) , (3)

respectively, where the uncertain and nonlinear muscle con-
trol effectiveness for each stimulated muscle Bm : Q ×
R→ R≥0 relates the stimulation input to output torque, the
unknown motor control torque constant Be ∈ R≥0 relates the
motor’s input current to its output torque, σm ∈ {0, 1} and
σe ∈ [0, 1] denote subsequently defined switching signals,
and km ∈ R>0 and ke ∈ R>0 are constant control gains
developed for each muscle group and the electric motor,
respectively.

The system in (1) has the following properties [4]:

Property 1. The unknown terms in (1) can be bounded as
cm ≤ M ≤ cM , |V | ≤ cV |q̇|, |G| ≤ cG, and |P | ≤ cP1 +
cP2 |q̇|, for all q ∈ Q and q̇ ∈ R, where cm, cM , cV , cG,
cP1, cP2 ∈ R>0 are known constants.

Property 2. The first time derivative of the inertial and
centripetal-Coriolis terms satisfy 1

2Ṁ (q)− V (q, q̇) = 0, for
all q ∈ Q and q̇ ∈ R.

Property 3. The muscle control effectiveness Bm and the
motor control effectiveness Be can be bounded as cbm ≤
Bm ≤ cBm for each m ∈ M, q ∈ Q, q̇ ∈ R, and cbe ≤
Be ≤ cBe , respectively, where cbm , cBm , cbe , cBe ∈ R>0 are
known constants.

III. CONTROL FORMULATION

A. Control Objective
The control objective is for the cycle crank to track a

smooth desired trajectory qd : R≥0 → R. It is assumed
that the desired trajectory is selected such that the crank
position and its first two time derivatives are bounded as
|qd (t)| ≤ q̄d, |q̇d (t)| ≤ ¯̇qd, and |q̈d (t)| ≤ ¯̈qd for all
t ∈ R≥0, where q̄d, ¯̇qd, ¯̈qd ∈ R>0 are known positive
constants. The desired trajectory is designed to be periodic
in the sense that qd (t) = qd (t− T ), q̇d (t) = q̇d (t− T ), and
q̈d (t) = q̈d (t− T ), where T ∈ R>0 is the known constant
time period. To quantify the tracking performance, an integral
position error term e0 : R≥0 → R is defined as

e0 ,

tˆ

0

(qd (ϕ)− q (ϕ)) dϕ. (4)

The measurable auxiliary error signals e1 : R≥0 → R and
r : R≥0 → R are defined as

e1 , ė0 + α0e0, (5)
r , ė1 + α1e1, (6)
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respectively, where α0, α1 ∈ R≥0 are user-defined constants.
To aid in the subsequent development, auxiliary signals

Wd : R≥0 → R and Nd : R≥0 → R are defined as

Wd (t) ,
∑
i∈I

(Mi (qd) q̈d + Vi (qd, q̇d) q̇d +Gi (qd)) , (7)

Nd , cP1 + (cP2 + bc) q̇d, (8)

respectively, where I , {M, e}. Because of the bound-
edness of the desired trajectory, (7) can be bounded as
‖Wd (t)‖ ≤ βr where βr ∈ R>0 is a known positive
constant. Furthermore, (7) is periodic in the sense that
Wd (t) =

∑
i∈I sat βi (Wd,i (t− T )), where βi ∈ R>0,∀i ∈

I, are selectable bounding constants satisfying βr < βi. The
auxiliary signal in (8) can be upper-bounded by |Nd| ≤ Nd,
where Nd ∈ R>0 is a known positive constant.

Taking the time derivative of (6), pre-multiplying by
M , substituting (1), and performing algebraic manipulation
yields the open-loop error system

Mṙ = −V r + χ+ τvol (t)−BMum (t)

−BEue (t) +Wd +Nd − e1, (9)

where the auxiliary signal χ : R≥0 → R is defined as

χ , M (q) (q̈d + (α0 + α1) ė1)−Mα2
0ė0

+V (q, q̇)
(
q̇d − α2

0e0 + (α0 + α1) e1
)

+G (q)

+P (q, q̇) + bcq̇ −Wd −Nd + e1. (10)

Using Property 1 and the Mean Value Theorem, χ can be
upper-bounded as χ ≤ ρ (‖z‖) ‖z‖, where ρ (·) : R≥0 →
R≥0 is a known positive, strictly increasing, radially un-
bounded function, and the error signal vector z ∈ R3 is
defined as z , [e0, e1, r]

> [18, Appendix A].

B. Control Design
To delay the onset of muscle fatigue, switching signals

allow for each muscle to only be stimulated in the region of
the crank cycle where it is able to effectively produce forward
motion of the crank [4], and high-gain high-frequency terms
are reduced in favor of RLC-based feedforward terms that
compensate for the system’s periodic dynamics. The motor
is activated in the regions where no muscle group is able
to meaningfully contribute to the tracking objective, called
the kinematic deadzones (KDZs). Limits are placed on the
stimulation level for the comfort and safety of the rider.
Because the intensity of FES to each muscle may be limited
in the stimulation region by the rider’s stimulation comfort
threshold, the motor switching signal is designed to supple-
ment the muscle input when necessary.

To limit the stimulation level preventing rider discomfort,
a maximum stimulation threshold βl ∈ R>0 for each muscle
group is selected by the rider. The stimulation intensity
applied to each muscle group um : R≥0 → R is defined
as1

um (t) , satβl (uFES) ,∀m ∈M, (11)

1The saturation function satβ (·) is defined such that satβ (Ω) , Ω for
|Ω| ≤ β and satβ (Ω) , sgn (Ω)β for |Ω| > β.

where uFES ∈ R≥0 → R is the FES control input.
Based on the subsequent analysis, the input to each muscle

group and the electric motor is defined as

uFES (t) = ue (t) , k1r + (k2 + k3ρ (‖z‖) ‖z‖) sgn (r)

+ Ŵd + k4

∥∥∥Ŵd

∥∥∥ sgn (r) , (12)

where k1, k2, k3, k4 ∈ R>0 are user-defined constants and
sgn (·) : R→ [−1, 1] is the signum function. The distributed
RLC law Ŵd : R≥0 → R is defined as

Ŵd (t) =
∑
i∈I

Ŵd,i (t) ,
∑
m∈M

Ŵd,m + Ŵd,e, (13)

which represents the sum of the RLC laws for each muscle
group and the electric motor. The RLC laws denoted for each
actuator Ŵd,m, Ŵd,e : R≥0 → R are defined as [12]

Ŵd,m (t) , σm
(

satβm
(
Ŵd,m (t− T )

)
+ kL,mr

)
, (14)

Ŵd,e (t) , σe
(

satβe
(
Ŵd,e (t− T )

)
+ kL,er

)
, (15)

where kL,i ∈ R>0,∀i ∈ I are learning control gains.
Leveraging the cyclic nature of the system, the distributed
learning control law Ŵd exploits data from time t − T ,
to continuously adjust the muscle and motor control inputs
through the feedforward learning terms in (12).

The piecewise right-continuous muscle stimulation switch-
ing signal σm ∈ {0, 1} is defined such that

σm (q) ,

{
1 q ∈ Qm,
0 q 6∈ Qm,

∀m ∈ M, where the region of the crank cycle where a par-
ticular muscle is stimulated is denoted Qm ⊂ Q,∀m ∈ M
[4]. The switching signal for the activation of the electric
motor is denoted by σe ∈ [0, 1] and is defined as

σe (q) ,


1 if q /∈ QM,
Γ if q ∈ QM and um = βl,

0 if q ∈ QM and um < βl,

∀m ∈M, where QM , ∪
m∈M

Qm,∀m ∈M and Γ ∈ (0, 1)

is defined as Γ , min (1, γ). The function γ : R≥0 → R≥0 is
the ratio between the control effort of the electric motor and
the sum of effort from each muscle group [5] and is defined
as

γ ,
∑
m∈M

(
ksσm (q)uFES

βl
− 1

)
,

where ks ∈ R>0 is a control gain that should be selected
such that ks > βl

uFES
, ∀m ∈M. The design of γ and the motor

switching signal allows for the motor to provide selectable
supplementary assistance when the muscle saturates.

Substituting (11) and (12) into the open-loop error system
in (9) and performing algebraic manipulation yields the
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closed-loop error system

ṙ = M−1
(
−V r + χ+ τvol (t)−BM satβl

(
k1r

+ (k2 + k3ρ (‖z‖) ‖z‖) sgn (r)

+ Ŵd,m (t) + k4

∥∥∥Ŵd,m

∥∥∥ sgn (r)
)

−BE
(
k1r + (k2 + k3ρ (‖z‖) ‖z‖) sgn (r)

+ Ŵd,e (t) + k4

∥∥∥Ŵd,e

∥∥∥ sgn (r)
)

+ W̃d + Ŵd +Nd − e1
)
, (16)

where the repetitive learning estimation error W̃d ∈ R is
defined as W̃d , Wd − Ŵd. Because of the periodicity
and boundedness of Wd, Wd (t) =

∑
i∈I satβi (Wd,i (t)) =∑

i∈I satβi (Wd,i (t− T )). Thus, by using (13) and the RLC
laws in (14) and (15),

W̃d =
∑
i∈I

satβi (Wd,i (t− T ))

−
∑
m∈M

σm

(
satβm

(
Ŵd,m (t− T )

)
+ kL,mr

)
− σe

(
satβe

(
Ŵd,e (t− T )

)
+ kL,er

)
. (17)

IV. HYBRID SYSTEM

With different combinations of muscle and motor inputs
at different points in the crank cycle, the torque input to the
system discretely changes. Despite these discrete changes, the
error trajectories evolve continuously. This combination of
discrete- and continuous-time dynamics motivates the use of
a hybrid systems approach to model and analyze the system.

A. Hybrid System Preliminaries

A hybrid plant HP , (CP , FP , DP , GP ) with state ξ ∈
X ⊂ Rn , flow input νc ∈ Rm, and jump input νd ∈ Rm is
structured as

HP :

{
ξ̇ ∈ FP (ξ, νc) (ξ, νc) ∈ CP
ξ+ ∈ GP (ξ, νd) (ξ, νd) ∈ DP ,

(18)

where FP : Rn×Rm ⇒ Rn represents the flow map, CP ⊂
Rn × Rm denotes the flow set, GP : Rn ⇒ Rn denotes the
jump map, and DP ⊂ Rn denotes the jump set. A solution
to HP is a function (t, j) → φ (t, j) defined on a hybrid
time domain domφ ⊂ R≥0 × N, where continuous time is
denoted t ∈ R≥0 and j ∈ N represents the discrete jump
variable where j indicates the jth instance that φ jumps. A
solution φ to HP is considered maximal if there is no other
solution ψ to HP such that domφ ⊂ domψ and φ (t, j) =
ψ (t, j) ,∀ (t, j) ∈ domφ.

B. Cycle-Rider Hybrid Plant

The closed-loop error system in (16) can be modeled
by a hybrid plant HP = (CP , FP , DP , GP ) with state
ξ = [z, σI , QL, τ ]

> ∈ X , where σI ∈ {0, 1}6×[0, 1] denotes
the vector of switching signals σi, for all i ∈ I, the state
τ ∈ R≥0 denotes a timer variable, and the state space X is
defined as X , R4 × {0, 1}6 × [0, 1] × R≥0. An auxiliary
function QL : R≥0 → R is defined as

QL ,
∑
i∈I

tˆ

t−T

(
satβi

(
Wd,i (ϕ)

)
− satβi

(
Ŵd,i (ϕ)

))2

dϕ,

and is included to aid in the following passivity analysis by
helping to incorporate the repetitive learning error into the
hybrid system.

The flow set CP ⊂ X is defined as CP (ξ, νc) ,
{(ξ, νc) ∈ X × R : τ ∈ [0, τd]} , where τd represents the
dwell-time the system must reach before switching. The
timer variable τ evolves continuously with time, and resets
to zero when the dwell-time τd is reached. In practice,
τd corresponds to the sampling frequency. The function
FP : X ⇒ X represents the continuous-time dynamics of
the system and is defined as

FP (ξ, νc) ,


ė0
ė1
ṙ
σ̇I
Q̇L
τ̇

 ∈


e1 − α0e0
r − α1e1
FCL (ξ, ν)

0
FQ (ξ, ν)

1

 , (19)

where FCL : X ⇒ R represents the closed-loop error system
in (16) and FQ : X ⇒ R is the time derivative of the auxiliary
function QL which can be written as

FQ (ξ, νc) =
∑
i∈I

((
satβi (Wd,i (t))− satβi

(
Ŵd,i (t)

))2
− (satβi (Wd,i (t− T )) −satβi

(
Ŵd,i (t− T )

))2)
.

The state changes according to the jump map when
it is in the jump set DP ⊂ X defined as DP ,
{(ξ, νd) ∈ X : τ = τd} . The states e0, e1, r, and QL evolve
in continuous time and do not change when jumps occur.
The jump map and jump set model the discrete changes in
torque that the system may experience due to the crank angle
transitioning between muscle control effectiveness regions
and the activation of the electric motor. Thus, the jump map
GP : X ⇒ X is defined as

GP (ξ, νd) ,


e+0
e+1
r+

σ+
I

Q+
L

τ+

 ∈


e0
e1
r
GI
QL
0

 , (20)

where the outer semicontinuous Krasovskii regularization of
the switching rules σm and σe is denoted by GI : X ⇒
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{0, 1}6 × [0, 1]. The components of GI ,∀i ∈ I are defined
as

Gm ,


1 q ∈ Qm
{0, 1} q ∈ ∂Qm
0 otherwise,

∀m ∈M, and by

Ge ,


σe q ∈ Qe
{0, σe} q ∈ ∂Qe
0 otherwise,

for the electric motor, where the electric motor region Qe ⊆
Q is defined as Qe , {q ∈ Q : σe > 0}. These definitions
represent the discrete changes in torque that the system
may experience due to the crank angle transitioning between
control effectiveness regions.

To facilitate the subsequent analysis, the Krasovskii regu-
larization of the flow map in (19) is evaluated as

F rP (ξ, νc) ∈


e1 − α0e0
r − α1e1
F rCL (ξ, ν)

0
FQ (ξ, ν)

1

 , (21)

where F rCL : X ⇒ R is defined as

F rCL (ξ, νc) ,M
−1
(
−V r + χ+ τvol (t)−BM satβl

(
k1r

+ (k2 + k3ρ (‖z‖) ‖z‖) SGN (r) + Ŵd,m (t)

+ k4

∥∥∥Ŵd,m

∥∥∥SGN (r)
)
−BE

(
k1r

+ (k2 + k3ρ (‖z‖) ‖z‖) SGN (r) + Ŵd,e (t)

+ k4

∥∥∥Ŵd,e

∥∥∥SGN (r)
)

+ W̃d + Ŵd

+Nd − e1
)
, (22)

where SGN (r) , co {sgn (r)} denotes the closed convex
hull of sgn (r).

V. PASSIVITY AND STABILITY ANALYSIS

This section outlines the passivity and stability properties
of the hybrid cycle-rider system and the developed RLC-
based control input. Theorem 1 shows that the hybrid plant in
(18) is flow-output strictly passive from the rider’s volitional
input to the system’s output. Theorem 2 demonstrates that
the designed input in (12) with the RLC law in (13) ensure
asymptotic convergence of the cadence tracking errors. More-
over, the stability analysis of the Krasovskii regularization of
the closed-loop system yields robustness to perturbations al-
lowing for less conservative gain conditions when compared
to a switched systems analysis.

To facilitate the subsequent analysis, let the set Ms ⊆M
represent the set of muscles that are saturated at a particular
time, let Mu ⊆ M represent the remaining unsaturated
muscles defined as Mu , M\Ms. The complete set of

unsaturated actuators can be defined as U , {Mu, e}, and
the RLC law Ŵd,u : R≥0 → R is defined as

Ŵd,u (t) ,
∑
i∈U

Ŵd,i (t) . (23)

The combined control effectiveness term for the unsaturated
actuators is Bu ,

∑
m∈Mu

Bmkmσm + BekeΓ and can be
bounded as cbu ≤ Bu ≤ cBu , where cbu , cBu ∈ R>0 are
known constants. In the case when none of the muscle groups
are saturated, the lumped, switched control effectiveness term
Bσ ∈ R≥0 is defined as

Bσ (q, q̇) , BM +BE , (24)

where BM and BE are defined in (2) and (3). By Property
3, (24) can be bounded such that cbσ ≤ Bσ ≤ cBσ ,∀σ ∈
(1, 2, ..., N) ⊂ N, where cbσ , cBσ ∈ R>0 are known
constants and N ∈ R>0 is the total number of activated
muscle and electric motor input combinations. Constants
cbu , cBu ∈ R>0 are defined as cbu , min {cbσ ,Γkecbe} and
cBu , max {cBσ ,ΓkecBe}, respectively.

Theorem 1. Consider the hybrid plant HP in (18)-
(22) with flow input νc , τvol and jump input
νd , 0. The system is flow output strictly passive
from input ν , (νc, νd) to output r on the set
A∗ , {((ξ, ν) ∈ CP ∪DP : e0 = e1 = r = 0, ν = 0)} pro-
vided the following sufficient gain conditions are satisfied:

α0, α1 >
1

2
, k1 >

∑
m∈Ms

kL,m

cbu
,

k2 >
N̄d +

∑
m∈Ms

βm

cbu
, k3 >

1

cbu
, k4 >

1 + cBu
cbu

.

(25)

Proof available upon request.
Passivity from the volitional effort of the rider to the output

r is a metric of safe interaction between human and the
machine [19]. The passivity result shows that the energy
stored in the system will be no greater than the energy
supplied by the rider, making the controlled system robust
to the perturbation from the rider. The rider’s volitional
input is accomodated because the FES and electric motor
controllers comply to the rider’s input instead of treating it
as a disturbance that would need to be overcome with high-
gain, high-frequency robust control terms.

Theorem 2. Provided the gain conditions in (25) are
satisfied and in the absence of volitional effort from
the rider, every maximal solution φ to the hybrid
plant HP asymptotically converges to the set A∗ ,
{((ξ, ν) ∈ CP ∪DP : e0 = e1 = r = 0) , ν = 0}.

Proof available upon request.

Remark 1. Because of the well-posedness of HrP and the
global asymptotic stability of A∗, the set A∗ has some
robustness properties [20, Lemma 7.20], making A∗ robust
to vanishing disturbances such as muscle spasms.
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VI. CONCLUSION

Passivity and stability properties of a developed cycle-rider
control system are proven using a hybrid systems approach.
The system is modeled as a hybrid system because it ex-
periences both flows (since the states continuously evolve)
and jumps (as the control effort changes discretely between
different muscle stimulation and motor activation regions).
Due to the cyclic dynamics of the system, an RLC-based
feedforward term is used in the cadence tracking controller
to improve tracking performance and reduce high-gain, high-
frequency effects. Unlike in previous works, stimulation lim-
its are considered for rider comfort. Using a hybrid systems-
based passivity analysis, the hybrid plant is shown to be flow
output strictly passive from the rider’s volitional input to
the measured output. Additionally, the RLC law guarantees
the asymptotic convergence of the error signals, despite
control input saturation. Future work will focus on testing
the developed control scheme, including in experiments with
participants with neuromuscular disorders.
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