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Abstract— With increasing control applications in large-scale
distributed and networked systems, the impact of uncertain
time delay is ever-increasing. This paper proposes the use of a
novel non-parametric Integral Quadratic Constraint (IQC) to
achieve robustness against uncertain time delays. The proposed
IQC is then integrated into a frequency-domain controller
synthesis approach for robustness guarantees. Numerical sim-
ulation of an active suspension system within an intra-car
network shows the effectiveness of the proposed method.

I. INTRODUCTION

Time delays in a dynamical system can degrade perfor-
mance and even cause system instability. With the increasing
application of control in large-scale distributed and net-
worked systems, where delays are random and time-varying,
research into robust control design and analysis for such
delays is increasingly important. This paper addresses time-
delay uncertainty for robust controller synthesis.

Stability analysis of time-delay systems has been a funda-
mental area of study in the literature. Methods leveraging
eigenvalue locations, spectrum assignment and parametric
techniques serve as valuable tools in assessing the impact
of delay in various domains, such as biology, networks and
supply chains [1]. Time-domain methodologies, including
the direct Lyapunov method and Lyapunov-Krasovskii func-
tional, have been demonstrated to be powerful tools in the
arsenal of the researchers [2]. Meanwhile, several frequency-
domain approaches leveraging the Integral Quadratic Con-
straints (IQCs) framework have also been proposed.

IQCs offer a flexible formalism for representing and
analysing various nonlinearities and uncertainties, including
time-delay. A sufficient condition for robust stability with
IQC-type uncertainties has been described in [3]. While most
IQC literature focuses on robustness analysis, a small subset
also addresses controller synthesis using the IQC framework.
For example, [4] presents a model-based control synthesis
approach, supported by the MATLAB package ‘IQClab’
[5], which uses an iterative procedure alternating between
nominal controller synthesis and IQC analysis. Similarly,
[6] addresses robust synthesis for uncertain LPV systems
with a similarly alternating approach. A recent non-smooth
optimisation framework for structured controller synthesis is
presented in [7], which provides an optimality certificate but
requires a specific multiplier structure. Finally, [8] presents a
frequency-domain synthesis framework ensuring robustness
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for any non-parametric IQC multiplier with local conver-
gence guarantees.

There have been several studies on the analysis of systems
with time delays using IQCs, where the system is represented
as an interconnection of a linear time-invariant (LTI) system
and a “delay-difference” operator. These studies mainly
aim to derive IQC multipliers associated with the delay-
difference operator. For example, [9] presents classes for
continuous-time systems, while [10], [11] focus on discrete-
time systems. A more graphical interpretation of IQCs is
provided in [12], along with the introduction of a tighter IQC
multiplier class. Parametric IQCs require multiple classes
of multipliers to reduce uncertainty, complicating controller
synthesis. Non-parametric IQCs simplify this by providing
a single class capable of approximating multiple paramet-
ric IQCs, thereby easing the controller synthesis problem.
Recent advances in frequency-domain data-driven controller
synthesis have enabled the use of non-parametric IQCs.
For example, [13] explores the IQC framework for LPV
controller synthesis, while [14] investigates fixed-structure
controller synthesis for multivariable systems represented
in linear fractional representation (LFR) form, integrating
non-parametric IQCs to guarantee robustness as discussed
in [8]. Non-parametric IQCs define a set at each frequency
that encompasses the true uncertainty, allowing frequency-
dependent scaling on both axes and frequency-dependent
rotations. This enables the consideration of elliptical sets
which has been explored in [15], [16], leading to a substantial
reduction in conservatism.

This paper derives a novel non-parametric IQC multiplier
associated with the delay-difference operator over a range
of time delays. The derived multiplier has different scaling
for the real and imaginary axes and frequency-dependent
rotation, enabling the use of an elliptical uncertainty set. It
is then used in a frequency-domain controller synthesis to
develop a robust performance controller.

The paper follows the following progression: First, some
basic notations are established, followed by the problem
description under consideration in Section II. The problem is
reformulated as an interconnection of a linear time-invariant
system, a controller and a so-called delay-difference operator.
Section III briefly introduces the stability analysis using IQCs
and presents one of the paper’s main contributions: the non-
parametric IQC associated with the delay-difference operator.
Building upon the insights from [14], [8], Section IV formu-
lates an optimisation problem for robust controller synthesis.
Numerical simulations of an active suspension system within
an intra-car network are presented in Section V, followed by
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concluding remarks in Section VI.
Notations: R represents the set of real numbers, while

C denotes the set of complex numbers. The 2/∞-norm of
a vector is given by ∥·∥2/∞. The set of real rational stable
transfer functions with bounded infinity norm is denoted by
RH∞. The notation M ≻ (⪰), N signifies that the matrix
M −N is positive (semi-) definite, and M ≺ (⪯), N sig-
nifies that M −N is negative (semi-) definite. The identity
matrix of the appropriate size is denoted by I . The conjugate
transpose of a complex matrix M is indicated as M∗. The
conjugate transpose of the diagonally opposed element in a
square matrix is denoted by ⋆. diag(·) denotes a diagonal
matrix. If M ∈ Cn×m is full row rank, its right inverse is
defined as MR = M∗(MM∗)−1, such that MMR = I and
MRM are Hermitian. In the case of full column rank, the
left inverse is denoted as ML = (M∗M)−1M∗, such that
MLM = I and MML is Hermitian. For a square matrix
with full rank, MR = ML = M−1. The frequency spectrum
is denoted by Ω. For continuous-time systems Ω := R and for
discrete-time systems Ω := [−π/Ts, π/Ts), where Ts is the
sampling time. G(jω) will be used to denote the system’s
frequency response in both cases. Define Dτ as the time-
delay operator and Sτ as the time-difference operator.

Dτ (u) ≜ u(t− τ) ; Sτ (u) ≜ (I−Dτ )(u) = u(t)−u(t− τ).

II. PROBLEM DESCRIPTION

Consider a controller synthesis problem where communi-
cation between the plant and the controller occurs over a net-
work (see Fig. 1a), which can introduce delays characterised
by a nominal value and known bounds. This networked
feedback system can be represented as (see Fig. 1b):

y = Ĝud = Ĝ(Dτuu) (1a)
u = Kyd = K

(
Dτyy

)
(1b)

where τy and τu denote the delay in the measurements and
the control signals respectively. These delays are assumed to
be within the interval [τ , τ ] where τ ≤ 0 ≤ τ . Ĝ represents
the estimated FRF model of the plant with the nominal delay.

Network Layer

Controller

Plant

u yd

ud y

(a) True system

KDτu

DτyĜ

ud

y

yd

u

(b) Block representation

Fig. 1: Control system with a network layer

The time-delay operator Dτ can be replaced by a feed-
through connection and a feed-forward delay-difference op-
erator Sτ (see Fig. 2). This feedback connection can then be
represented as a linear fractional representation (LFR) plant
shown in Fig. 3.

K

Sτu

Ĝ

Sτy

u
+

qu pu

−

ud y
+

qy py

−

yd

Fig. 2: System with delay-difference operator
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yd

qyqu
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py pu

Fig. 3: Linear fractional representation of feedback system

The objective of the paper is to identify a non-parametric
IQC multiplier for the time-delay operator, which is then
utilised for robust controller synthesis to achieve the desired
nominal performance.

III. NON-PARAMETRIC IQC MULTIPLIER

First, a quick introduction to Integral Quadratic Con-
straints (IQCs) and their use in robust system analysis is
provided. Then, a non-parametric IQC multiplier for the
delay-difference operator is derived.

A. Integral Quadratic Constraint

Two signals p and q are said to satisfy the IQC defined
by a multiplier Π, if∫

Ω

[
Fq(jω)

Fp(jω)

]∗

Π(jω)

[
Fq(jω)

Fp(jω)

]
dω ≥ 0 (2)

where Fp(jω) and Fq(jω) are the Fourier transform of the
signals p and q respectively.

From [3, Theorem 1], the feedback connection between
H , a stable LTI system with bounded infinity norm, and a
bounded causal operator ∆ (see Fig. 4) is stable if,

1) Interconnection of H and τ∆ is well-posed, ∀τ ∈ [0, 1];
2) τ∆ satisfies the IQC defined by Π, ∀τ ∈ [0, 1];
3) ∃ ϵ > 0 such that the following frequency domain in-

equality (FDI) is satisfied,[
H(jω)

I

]∗

Π(jω)

[
H(jω)

I

]
⪯ −ϵI, ∀ω ∈ Ω (3)

H

∆

q

p

Fig. 4: Basic feedback configuration
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Remark 1: If Π is partitioned as
[
Π11 Π12

Π∗
12 Π22

]
with Π11 ⪰ 0

and Π22 ⪯ 0, then using [3, Remark 2], τ∆ satisfies the IQC
defined by Π for all τ ∈ [0, 1] if and only if ∆ satisfies the
IQC. Most relevant IQCs can be represented in this form.

B. IQC multiplier for delay-difference operator

The uncertainty associated with the delay-difference oper-
ator can expressed as the set

S = {Sτ | τ ∈ [τ , τ ]}.

In the frequency domain, this set can be depicted as an arc
at each frequency point:

S(jω) =
{
1− e−jωτ

∣∣ τ ∈ [τ , τ ]
}

(4)

To formulate an IQC multiplier for the delay-difference
operator involves identification of an enclosing uncertainty
set. A classical approach has been to take the disk of radius
1 around the point (1, 0) defined by the IQC multiplier:

Π1 =

[
0 1

1 −1

]
(5)

Since this IQC formulation is independent of the range of
time-delay uncertainty, it can result in significant conser-
vatism in the solution. A more effective IQC multiplier can
be computed by taking the maximal time delay into account
[12]:

Π2(jω) =

[
|ϕ(jω)|2 0

0 −1

]
(6)

where |Sτ (jω)| ≤ |ϕ(jω)|. An example of ϕ satisfying this
constraint can be given as [11]:

ϕ(s) =
2τ̃2s2 + 2cτ̃s

τ̃2s2 + aτ̃s+ 2c
(7)

where τ̃ = max(|τ |, |τ |), a = 2
√
c and c ∈ R+. This IQC

multiplier yields smaller conservatism but is heavily depen-
dent on the selection of ϕ. The conservatism can be further
reduced by combining the multipliers into a single IQC
multiplier. This usually requires iterative optimisation over
parameters a1 and a2 for a1Π1 + a2Π2.

In this paper, an ‘optimal’ elliptical uncertainty set E(jω)
which encloses the uncertainty in the delay-difference opera-
tor is identified such that the area of uncertainty is minimum
at each frequency point (see Fig. 5)

S(jω) ⊆ E(jω) ≜

{
x

∣∣∣∣∣
∥∥∥∥∥A(ω)

[
Re{x}
Im{x}

]
+ b(ω)

∥∥∥∥∥
2

≤ 1

}
.

(8)
Theorem 1: Let the uncertainty in the time-difference

operator be symmetric about zero, i.e., τ = −τ . Then, the
‘optimal’ elliptical uncertainty set E(jω) that encompasses
the uncertainty in the time-difference operator, which min-
imises the area of uncertainty at each frequency point, as in
(8) is characterised by,

A(ω) =

{
diag

(
3

2(1−cos θ) ,
√
3

2 sin θ

)
, if θ ≤ 2π

3

I , otherwise
; b =

[
−1

0

]

Re{x}

Im{x}

|ωτ |

|ωτ |

S(jω)

E(jω)

(1, 0)

Fig. 5: Uncertainty in time delay at a given frequency ω and
the corresponding elliptical uncertainty set

where, θ = ωτ .
Proof: First, observe that the arc of S is symmetric

around the x-axis. Consequently, the covering ellipse should
also demonstrate the symmetry about the x-axis with the
semi-major axis aligned to the y-axis. Furthermore, the
centre of the arc (0, 0) and the end points of the arc
(1− cos(θ), ± sin(θ)) should lie at the boundary of the
ellipse. Then, it can be easily verified that a class of ellipses
covering the arc is given as:

E =

{
x

∣∣∣∣∣
(

Re{x}−a
a

)2

+
(

Im{x}
b

)2

≤ 1, a ∈
(
1
2 (1− cos θ), 1

]
,

b = a sin θ√
2a(1−cos θ)−(1−cos θ)2

and θ ∈ [0, π].

}
⋃{

x

∣∣∣∣∣
(

Re{x}−a
a

)2

+
(

Im{x}
b

)2

≤ 1,

b ≥ 1, a = 1 and θ > π.

}
.

Now, a minimisation problem over this class of ellipses can
be solved to minimise the area of the ellipse πab. This
minimisation problem can be solved analytically to give:

(a, b) =


(

2(1−cos θ)
3 , 2 sin θ√

3

)
, if θ ≤ 2π

3

(1, 1) , otherwise
(9)

Expressing the equation of the ellipse in norm representation
gives the desired values for A(ω) and b.

In contrast to the parametric IQC (6), the proposed non-
parametric can address the non-symmetric delay by rotating
the ellipse around the centre of the arc, i.e., (1, 0).

Corollary 2: Let the uncertainty in the time-difference
operator be [τ , τ ]. Then, the ‘optimal’ elliptical uncertainty
set E(jω) that encompasses the uncertainty in the time-
difference operator at each frequency point as in (8) can
be characterised by,

A(ω) =

diag
(

3
2(1−cos θ) ,

√
3

2 sin θ

)
R , if θ ≤ 2π

3

R , otherwise

b(ω) =

[
−1

0

]
−A(ω)

[
1− cos θ̃

− sin θ̃

]
where,

θ = ω

(
τ − τ

2

)
; θ̃ = −ω

(
τ + τ

2

)
; R =

[
cos θ̃ sin θ̃

− sin θ̃ cos θ̃

]
.

Since the parametric IQC multipliers cannot represent the
elliptical uncertainty set, a non-parametric IQC multiplier is
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identified for this elliptical uncertainty set. To determine the
multiplier Π for the time-difference uncertainty, first consider
a transformation matrix J = diag(1, j) such that J∗J = I .

The delay-difference uncertainty lies within an elliptical
uncertainty set defined by (8) which can be written as,∥∥∥∥∥A

[
Re{x}
Im{x}

]
+ b

∥∥∥∥∥
2

≤ 1 ⇔

∥∥∥∥∥AJ∗

[
Re{x}
j Im{x}

]
+ b

∥∥∥∥∥
2

≤ 1

⇔

 1

Re{x}
j Im{x}


∗[

1− b∗b −b∗Ā

−Ā∗b −Ā∗Ā

] 1

Re{x}
j Im{x}


∗

≥ 0

where Ā(jω) = A(ω)J∗. So, the IQC multiplier Π is:

Π(jω) =

[
1− b∗b −b∗Ā

−Ā∗b −Ā∗Ā

]
(jω) (10)

Since Π satisfies the condition given in Remark 1, τ∆ also
satisfies the IQC defined by Π for all τ ∈ [0, 1].

It’s worth noting that this non-parametric multiplier ne-
cessitates the splitting of the uncertainty into its real and
imaginary components, which is not feasible with parametric
IQC multipliers. Additionally, the switching condition at 2π

3
offers another natural rationale for non-parametric IQCs.

IV. FREQUENCY-DOMAIN ROBUST CONTROLLER
SYNTHESIS

In this section, first, a summary of the frequency-domain
controller synthesis method from [14] is provided. Then, the
conditions for robustness using IQC framework are provided
using [8]. Finally, both methods are combined for robust
controller synthesis with nominal performance.

A. Robustness conditions from IQC

Given a non-parametric IQC multiplier, the approach pre-
sented in [8] can be used for robust controller synthesis in
the frequency domain. The robust control synthesis problem
for the feedback connection between the perturbation ∆ and
the generalised plant G is considered,

q = G11p+G12u (11a)
y = G21p+G22u (11b)
p = ∆(q) (11c)
u = Ky (11d)

The objective is to determine a fixed-structure controller
K ∈ K that ensures the robustness of the closed-loop system
against the perturbation ∆, which satisfies the IQC defined
by the non-parametric multiplier Π. Subsequently, employing
[8], all controllers in the form of K = XY −1, which pro-
duce closed-loop systems satisfying the frequency domain
inequality (3), are encompassed within the set defined by
the following linear matrix inequalities (LMIs):[

(Π+)−1 L

L∗ −L

]
(jω) ⪰ 0, ∀ω ∈ Ω (12)

(Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc)(jω) ⪰ 0, ∀ω ∈ Ω (13)

where, Kc = XcY
−1
c is an initial stabilising controller,

L = L∗Π−Lc + L∗
cΠ

−L− L∗
cΠ

−Lc

L =

[
G11Φ+G12X G11Ψ

Φ Ψ

]

Lc =

[
G11Φc +G12Xc G11Ψ

Φc Ψ

]
Φ = GR

21 (Y −G22X)

Φc = GR
21 (Yc −G22Xc)

Ψ = I − ΦΦL = I −GR
21G21

where Π+ ≻ 0 and Π− ⪯ 0 are chosen such that for some
ϵ > 0, Π+ [ 0 0

0 ϵI ] = Π+ +Π−.

B. Controller synthesis with performance criterion

Furthermore, a desired control performance criterion can
be added to the optimisation. The frequency-domain con-
troller synthesis approach presented in [14] can be utilised
allowing for the combination of both performance metrics
and robustness condition into a single optimisation.

Consider a generalised LTI system, mapping exogenous
disturbances w ∈ Rnw and control inputs u ∈ Rnu to
performance channels z ∈ Rnz and measurements y ∈ Rny

given as:

z = Gp,11w +Gp,12u

y = Gp,21w +Gp,22u

The synthesis objective is to design a fixed-structure feed-
back controller K that regulates the effect of the exogenous
disturbances w onto the performance channels z given by:

Tzw = G11 +G12K(I −G22K)
−1

G21

Under the assumption that the closed loop is stable, the
norms of Tzw can be expressed as:

∥Tzw∥22 =
1

2π

∫
Ω

trace (Tzw(jω)T
∗
zw(jω)) dω

∥Tzw∥22 = sup
ω∈Ω

σ (Tzw(jω)T
∗
zw(jω))

where, σ(·) is the maximum singular value. Then, the con-
troller design problem can be formulated as the minimisation
of an upper bound on the system norms

min
K∈K,Γ

γ (14)

s.t., K stabilises the closed-loop
Tzw(jω)T

∗
zw(jω) ⪯ Γ(jω), ∀ω ∈ Ω

where, K is the set of controllers with desired structure and
Γ(jω) is a Hermitian matrix. For the H∞ norm, Γ(jω) = γI ,
where γ ∈ R and for the H2 norm, we have:

γ =
1

2π

∫
Ω

trace (Γ(jω)) dω. (15)

Using [14], the desired optimisation can be written as a series
of convex optimisations with Kc = XcY

−1
c as the stabilising

controller from the previous iteration.
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min
X,Y,Γ

γ (16)[
Γ− Λp (Gp,11Φp +Gp,12X)

⋆ Φ∗
pΦp,c +Φ∗

p,cΦp − Φ∗
p,cΦp,c

]
(jω) ≻ 0,∀ω ∈ Ω

where,

Φp = GR
p,21 (Y −Gp,22X) Ψp = I −GR

p,21Gp,21

Φp,c = GR
p,21 (Yc −Gp,22Xc) Λp = (Gp,11Ψp)(Gp,11Ψp)

∗

When the initial controller Kc is known to be stabilising,
it can be shown that the controller K is also stabilising [14].
For a stable plant G22, a controller with a sufficiently small
gain can in general stabilise the closed-loop system. In the
case of an unstable plant, a stabilising controller must be
available already for system identification. To solve the op-
timisation problem, a grid-based approach can be employed,
where the controller K is used as the initial stabilising
control for the next optimisation. This sequence of convex
optimisation problems will converge towards a local optimal
solution of the original problem since the initial controller
already satisfies the constraint and any optimisation can only
improve the objective.

C. Robust controller synthesis

To utilise the proposed IQC multiplier, the real and imag-
inary component of the uncertainty needs to be split. The
split representation of the uncertainty and the corresponding
auxiliary signals pr and pi can be seen in Fig. 6. This
split representation is feasible since the proposed controller
synthesis is done in the frequency domain.

Sτ

q p

(a) True uncertainty

Re{Sτ}

j Im{Sτ}

q
pr

+

pi

+

p

(b) Split representation

Fig. 6: Real and imaginary splitting of the uncertainty

Then the time-delay problem under consideration can be
represented in an LFR formulation as:

qy

qu

yd

 =


0 0 −Ĝ −Ĝ Ĝ

0 0 0 0 I

−I −I −Ĝ −Ĝ Ĝ




pyr
pyi
pur
pui
u

 (17)

where, pyr and pyi are the outputs of the split Sτy , and
similarly pur and pui are the outputs of the split Sτu . The

corresponding Π is given as:

Π(jω) =


Πy,11 0

0 Πu,11

Πy,12 0

0 Πu,12

Πy,21 0

0 Πu,21

Πy,22 0

0 Πu,22

(jω) (18)

where Πy(jω) and Πu(jω) are the non-parametric multipli-
ers for the delay uncertainty for the measurements and the
control signals respectively. In scenarios involving multiple
delayed measurements and control signals, the uncertainty of
each signal can be considered independently and structured
diagonally. Π can be derived using similar logic.

Now, with an appropriate choice of Π+ and Π−, a
single optimisation for a controller that is robust to time-
delay variations and has good performance under nominal
conditions can be written as:

min
X,Y

γ (19)

s.t.

[
Γ− Λp (Gp,11Φp +Gp,12X)

⋆ Φ∗
pΦp,c +Φ∗

p,cΦp − Φ∗
p,cΦp,c

]
(jω) ≻ 0[

(Π+)−1 L

L∗ −L

]
(jω) ⪰ 0 ∀ω ∈ Ω

(Φ∗Φc +Φ∗
cΦ− Φ∗

cΦc)(jω) ⪰ 0 ∀ω ∈ Ω

The final set of constraints is necessary to ensure the
stability of the nominal closed loop. However, since the
performance objective already guarantees this stability, the
final set of constraints can be safely dropped.

V. NUMERICAL SIMULATIONS

Conventional suspension systems consist of a spring and
damper between the main body of the car and the wheel
assembly. The spring-damper characteristics are usually se-
lected based on the desired trade-off between passenger
comfort, road handling, and suspension deflection. Active
suspensions achieve a better balance of these objectives using
a feedback-controlled hydraulic actuator between the chassis
and wheel assembly. In this section, the active suspension
system example from the MATLAB Robust Control Tool-
box is taken and converted to discrete-time at a sampling
frequency of 100Hz. It is assumed that the controller is
collocated with the actuator, i.e. there is no delay, while
the sensors are connected via the intra-car network such as
a CAN bus. Under nominal conditions, the measurements
should arrive within a sampling time step, i.e., there is no
delay. However, under peak congestion, priority is assigned
to critical signals such as throttle control. Consequently, the
sensor readings may experience delays of up to 20 samples or
0.2 s. Furthermore, each sensor can directly transmit sensor
values onto the bus, so a combination of delays may occur.

Fig. 7 shows an example of an active suspension system.
The system under consideration has two sensors: body ac-
celeration (ab) and suspension travel (sd). The sensor values
are sent to the controller via the CAN network which intro-
duces delays τ1 and τ2 to the measurements, respectively.
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Car
Dynamics

K

CAN Network

Road Bump (r)

sd

abDτ1(ab)

Dτ2(sd)

u

Fig. 7: Active suspension system in an intra-car network

The objective of the controller synthesis is to design a
controller with a trade-off between passenger comfort and
road handling. This paper considers the scenario where road
handling is prioritised (β = 0.99). More details on the used
filters and model parameters can be found in the MATLAB
documentation [17].

Fig. 8: Simulation of the active suspension system with the
nominal and the robust controllers for a road bump of height
5 cm. System with nominal delay and 30 different realisation
of the delays are shown.

The non-parametric IQC (10) is defined for both delays to
account for robustness to time delays from 0 to 20 samples.
Now a robust second-order controller can be synthesised.
Fig. 8 shows the time-domain simulation results for a road
bump of height 5 cm. The controller with nominal perfor-
mance may lead to instability for certain delay combinations,
whereas the robust controller maintains system stability
regardless of delay variations.

Furthermore, the parametric IQC (6) is used for controller
synthesis with c = 1. Although controllers synthesised using
either the parametric or the non-parametric IQC achieve ro-
bustness to time delay, the controller obtained using the non-
parametric IQC formulation demonstrates a better nominal
performance of 1.5048 compared to the controller obtained
using the parametric IQC formulation, which has a nominal
performance of 1.6581. This highlights the reduced conser-
vatism of the proposed non-parametric IQC compared to the

parametric IQC.

VI. CONCLUSION

This paper presents a novel non-parametric IQC for the
delay-difference operator, which can be used to guarantee ro-
bustness against time-delay uncertainty. This non-parametric
IQC represents an elliptical set covering the uncertainty in
the delay-difference operator. It can then be utilised for
synthesis of a robust controller with desired frequency-
domain performance metrics. Finally, numerical simulations
of an active suspension system within an intra-car network
are presented. The simulations show that the synthesised con-
troller is robust to time-delay uncertainty in the prescribed
range and exhibits reduced conservatism compared to the
controller synthesised using the parametric IQC.
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