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Abstract— We present novel sufficient conditions for the
global stability of an equilibrium in the case of nonlinear
dynamics with analytic vector fields. These conditions provide
stability criteria that are directly expressed in terms of the
Taylor expansion coefficients of the vector field (e.g. in terms of
first order coefficients, maximal coefficient, sum of coefficients).
Our main assumptions is that the vector field components be
holomorphic, and the linearized system be locally exponentially
stable and diagonalizable. These results are based on the
properties of the Koopman operator defined on the Hardy space
on the polydisc.

I. INTRODUCTION

In dynamical systems theory, characterizing global sta-
bility remains a challenge. The existence of a Lyapunov
function guarantees global stability due to Lyapunov’s sec-
ond method, but there are very few general constructive
methods. For a linear system, on the other hand, the existence
of a quadratic Lyapunov function is both a necessary and
sufficient condition for global stability. In this context, the
Koopman operator approach provides a “global linearization”
of nonlinear dynamics (see e.g., [1], [7]), which is amenable
to global stability analysis through linear methods [7]. For
instance, specific Koopman eigenfunctions were used in
[6] to obtain necessary and sufficient conditions for global
stability of hyperbolic attractors, a result which mirrors
well-known spectral stability results for linear systems. A
connection between the results in [6] and contraction metric
analysis in stability of nonlinear dynamics was developed
in [13]. Moreover, a numerical method was proposed in [8]
to compute Lyapunov functions from a finite dimensional
approximation of the Koopman operator.

The present work follows the same path as the above-
mentioned results based on the Koopman operator approach.
However, it does not use Koopman eigenfunctions, which are
usually unknown and have to be computed numerically, nor
does it rely on possibly inaccurate approximations of the
operator. Instead, our results provide sufficient conditions
for global stability of equilibrium associated with holo-
morphic vector field, which can be directly verified with
the system vector field. Under mild assumptions on the
linearized dynamics (i.e. exponential stability, diagonalizable
linear system), the specific case of polynomial vector fields is
considered, along with more general analytic vector fields.
Our theoretical findings are built upon our previous work
based on the properties of the Koopman generator defined in
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the Hardy space of the polydisc [14]. But in contrast to pre-
vious work, they do not focus on switched nonlinear systems
and provide stability conditions which are less conservative
thanks to the use of re-scaled Hardy spaces. Moreover, the
obtained criteria are more readily applicable since they are
expressed in terms of simple quantities directly computed
from Taylor coefficients (e.g. first order coefficients, maximal
coefficient, discounted sum of coefficients).

The remainder of the paper is structured as follows.
In Section II, we provide a general introduction to the
Koopman operator framework and some specific properties
in the Hardy space on the polydisc. Our main results are
presented in Section III and illustrated in Section IV with
two examples. Section V gives concluding remarks and
perspectives. The proofs of our main results can be found
in Appendix A and B.

Notations

For multi-index notations α = (α1, ...,αn)∈Nn, we define
|α|= α1 + · · ·+αn and zα = zα1

1 · · ·zαn
n . The complex conju-

gate and real part of a complex number a is denoted by ā and
ℜ(a), respectively. The Jacobian matrix of the vector field
F at z is given by JF(z). The complex polydisc centered at
0 and of radius ρ > 0 is defined by

Dn(ρ) = {z ∈ Cn : |z1|< ρ, · · · , |zn|< ρ}

and ∂Dn(ρ) and (∂D(ρ))n is its boundary and distinguished
boundary respectively. In particular, Dn denotes the unit
polydisc (i.e. with ρ = 1).

II. PRELIMINARIES

We consider a continuous-time dynamical system

ż = F(z), z ∈ Dn(ρ), (1)

with ρ > 0, where the vector field F satisfies the following
assumption.

Assumption 1: The components Fl , l = 1, · · · ,n, of the
vector field F (i) are holomorphic on the closed polydisc
Dn(ρ), (ii) belong to the Hardy space H2(Dn(ρ)) (defined
in Section II-A below), and (iii) generate a flow ϕ t that maps
Dn(ρ) to itself.
The previous assumption mostly ensures that the inner prod-
uct defined below makes sense in the Hardy space.

Moreover, we will make the following additional standing
assumption related to the type of dynamical behavior we
investigate.

Assumption 2: The vector field F admits on Dn(ρ) a
unique hyperbolic equilibrium at the origin (without loss
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of generality), i.e. F(0) = 0, and the eigenvalues λ̃ j of the
Jacobian matrix JF(0) satisfy ℜ{λ̃ j}< 0.

In order to investigate the global stability properties of
the above dynamical system, we will define the Koopman
operator on a proper space adapted to the dynamics. Since
we made the assumption of analyticity of vector fields, it
is natural to consider a space of analytic functions, and a
prototypical choice is the Hardy space on the polydisc.

A. Hardy space of the polydisc

The Hardy space of holomorphic functions on the poly-
disc Dn(ρ) is the space

H2(Dn(ρ)) =
{

f : Dn(ρ)→ C,holomorphic : ∥ f∥2
ρ < ∞

}
,

where

∥ f∥2
ρ = lim

r→1−

∫
(∂D(ρ))n

| f (rω) |2dmn(ω)

and mn is the normalized Lebesgue measure on (∂D(ρ))n.
The space is equipped with an inner product defined by

⟨ f ,g⟩
ρ
=
∫
(∂D(ρ))n

f (ω) ḡ(ω)dmn(ω),

so that the set of monomials{
eα(z) = ρ−|α|zα : z ∈ Dn(ρ), α ∈ Nn

}
is a standard

orthonormal basis on H2(Dn(ρ)). In the sequel, the
monomials will be denoted by ek(z) = ρ−|α(k)|zα(k), where
the map α : N → Nn, k 7→ α(k) refers to the lexicographic
order1. For f and g in H2(Dn(ρ)), with f = ∑k∈N fkek and
g = ∑k∈N gkek, the isomorphism

∑
k∈N

fkek 7→ ( fk)k≥0

between H2(Dn(ρ)) and the l2-space allows to rewrite the
norm and the inner product as

∥ f∥2
ρ = ∑

k∈N
| fk|2 and ⟨ f ,g⟩

ρ
= ∑

k∈N
fk ḡk.

By using the change of variables φ(z) = z′ = z/ρ on Dn(ρ),
the map f 7→ f ′ = f ◦φ−1 defines an isometry between the
two Hardy spaces H2(Dn(ρ)) and H2(Dn) where ∥ f ′∥2 =

∑k∈N | fk|2 = ∥ f∥2
ρ and

{
e′k(z

′) = z′α(k) : z′ ∈ Dn, α ∈ Nn
}

is

the standard orthonormal basis of monomials on H2(Dn). For
more details on the Hardy space, we refer the reader to [9],
[10], [11].

B. Koopman operator on H2(Dn(ρ))

The Koopman operator is defined here as the composition
operator on H2(Dn(ρ)) with symbol ϕ t (see e.g. [3], [4],
[12]).

Definition 1 (Koopman semigroup [5]): The semigroup
of Koopman operators (in short, Koopman semigroup) on
H2(Dn(ρ)) is the family of linear operators (U t)t≥0 defined
by

U t : D(U t)⊂H2(Dn(ρ))→H2(Dn(ρ)), U t f = f ◦ϕ
t

1that is, ek1 < ek2 if |α(k1)| < |α(k2)|, or if |α(k1)| = |α(k2)| and
α j(k1)> α j(k2) for the smallest j such that α j(k1) ̸= α j(k2)

with the domain

D(U t) =
{

f ∈H2(Dn(ρ)) : U t f ∈H2(Dn(ρ))
}
.

Under a contraction assumption on the flow ϕ t , one can
prove the boundedness and the strong continuity of the
Koopman semigroup. In this work, we focus on the evolution
of the evaluation functionals kz of the Hardy space (see [14]
for the technical details), so that the above properties are not
required.

Definition 2 (Koopman generator [5], chapter 7): The
Koopman generator associated with the vector field (1) is
the linear operator

LF : D(LF)⊂H2(Dn(ρ))→H2(Dn(ρ)), LF f := F ·∇ f

with the domain

D(LF) =
{

f ∈H2(Dn(ρ)) : F ·∇ f ∈H2(Dn(ρ))
}
.

Moreover, the expression of the Koopman generator in
the basis of monomials can be obtained from the Taylor
expansion

F ′
l (z

′) = ∑
|α|≥1

a′l,α z′α =
∞

∑
k=1

a′l,k z′α(k) (2)

of the vector field on Dn (with a slight abuse of notation,
we will use two different conventions for the subscripts of
the Taylor coefficients, i.e. a′l,k = a′l,α(k)). It is shown in [14]
that〈
LF ′e′k,e

′
j
〉
=

{
∑

n
l=1 αl(k)a′l,(α( j)−α(k))l

if |α( j)| ≥ |α(k)|
0 if |α( j)|< |α(k)|.

(3)
with

(α( j)−α(k))l = (α1( j)−α1(k), · · · ,αl( j)−αl(k)+1,
· · · ,αn( j)−αn(k))

and, by convention, a′l,α(k) = 0 if α(k) contains a negative
component. In particular, for monomials e′k and e′j of same
total degree |α( j)|= |α(k)|, we have〈

LF ′e′k,e
′
j
〉

=


∑

n
l=1 αl( j)a′l,α(l) if j = k

αl(k)a′l,α(r) if α( j) = (α1(k), · · · ,αl(k)−1, · · · ,
αr(k)+1, · · · ,αn(k)),

0 otherwise.
(4)

C. Stability result

We now present an intermediate result that we will use
to prove our main stability results. It is adapted from [14],
where a switched system was considered instead of (1).

Lemma 1: Consider the nonlinear system (1) satisfying
Assumptions 1 and 2 on the unit polydic. Moreover, assume
that the Jacobian matrix JF ′(0) is diagonal and there exists
ρ ∈]0,1] such that Dn (ρ) is forward invariant with respect to
the flow. Let

(
b jk
)

j≥1,k≥1 be a double sequence of positive
real numbers such that b jkbk j > 0 if ⟨LF ′e′k,e

′
j⟩ ≠ 0 and
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such that ∑
∞
k=1 b jk ≤ 1, and define the double sequence(

Q jk
)

j≥2,1≤k≤ j−1 with

Q jk =

∣∣∣〈LF ′e′k,e
′
j

〉∣∣∣2
4
∣∣∣ℜ(〈LF ′e′j,e

′
j

〉)∣∣∣ ∣∣ℜ(〈LF ′e′k,e
′
k

〉)∣∣b jkbk j

(5)

if
〈

LF ′e′k,e
′
j

〉
̸= 0 and Q jk = 0 otherwise. If the series

+∞

∑
k=1

|α(k)|εk ρ
2|α(k)| (6)

is convergent with

ε j ≥ max
k=1,..., j−1

εk Q jk, (7)

then the system (1) is GAS on Dn(ρ). Moreover the series

V (z′) =
∞

∑
k=1

εk

∣∣∣z′α(k)
∣∣∣2 (8)

is a Lyapunov function on Dn(ρ), i.e. F(z′) ·∇V (z′)< 0 for
all z′ ∈ Dn(ρ)\{0}.

The proof follows on similar lines as in [14].
Remark 1: The assumption that the Jacobian matrix

JF ′(0) is diagonal can be extended to a diagonalizability
condition of JF ′(0). Indeed, if there exits P such that
JF̂ ′(0) = P−1JF ′(0)P is diagonal, a change of variables
ẑ′ = P−1z′ in Dn(ρ) can be chosen so that the dynamics
˙̂z′ = F̂ ′(ẑ′) = P−1F ′(Pẑ′) in the new variables has a diagonal
Jacobian matrix and is defined on an invariant set that
is contained in Dn(ρ) (see the example in Section IV-A).
Therefore, from this point on, we will assume without loss
of generality that the Jacobian matrix JF ′(0) is diagonal.
Moreover, most of our results could be extended to upper
triangular Jacobian matrices, a property which is always
satisfied in Cn×n up to a linear change of coordinates (Schur’s
theorem). See [14] for this general case.

Remark 2: The assumption that the polydisc Dn (ρ) is
forward invariant with respect to the flow (Assumption 1)
can be obtained from additional conditions (see Theorem
1 below). In general, if we do not require the invariance
assumption, one can consider the convergent series (8) as a
candidate Lyapunov function and approximate the region of
attraction of (1) as the largest level set of (8) lying in the
region where V̇ (z′) = F(z′) ·∇V (z′)< 0 with z′ ̸= 0.

III. GLOBAL STABILITY CRITERIA

We are now in a position to present our main results. We
will consider separately the case of polynomial vector fields
and analytic vector fields.

A. Stability criterion for polynomial vector fields

Let us consider a dynamical system with a polynomial
vector field

żl = Fl(z) =
r

∑
k=1

al,k zα(k), l = 1, . . . ,n. (9)

We first define the following quantities associated with the
polynomial vector field.

• Let d be the maximal degree of the polynomials Fl , i.e.

d = max
k∈N

{
|α(k)| : al,k ̸= 0 for some l

}
= |α(r)|

• Let K be the number of nonzero terms (without counting
the term containing the monomial zl in Fl), i.e.

K =
n

∑
l=1

#
{

k ̸= l : al,k ̸= 0
}

(10)

where # is the cardinal of a set.
• Let S be the maximal polynomial coefficient over all

components of the vector field (again discarding the
terms containing the monomial zl in Fl), i.e.

S = max
l=1,··· ,n

max
k=1,··· ,r

k ̸=l

∣∣al,k
∣∣ .

• Let R be the minimal real part of the diagonal entries
of JF(0), i.e.

R = min
l=1,··· ,n

∣∣ℜ(al,l
)∣∣ .

Then we have the following result.
Theorem 1: Consider a dynamical system with polyno-

mial vector field (9) on the polydisc Dn(µ), which satisfies
Assumptions 1 and 2 for some µ > 0 large enough. More-
over, assume that the Jacobian matrix JF(0) is diagonal.

Then Dn (ρ) is forward invariant with respect to the flow
and (9) is GAS on Dn(ρ) with

ρ <


R

KS
if KS/R ≥ 1

d−1

√
R

KS
if KS/R < 1

provided that µ > ρ .
See Appendix A for the proof.

B. Stability criterion for analytic vector fields

In this section, we provide a result for dynamics with
analytic vector fields, which we rewrite as

żl = Fl(z) =
∞

∑
k=1

al,k zα(k), l = 1, . . . ,n, (11)

under the assumption that the Jacobian matrix JF(0) is
diagonal.

We first define the following quantities associated with the
Taylor expansion (2) of the vector field.

• Let Lµ be the discounted (infinite) sum of Taylor
coefficients of the vector field, i.e.

Lµ =
n

∑
l=1

∞

∑
k=1

µ
|α(k)| ∣∣al,k

∣∣ . (12)

Note that Lµ might not be a convergent series for all µ ,
but is always convergent for µ ≤ 1 under Assumption
1. We also have Lµ = ∑

n
l=1 Fl(µ,µ) if al,k ≥ 0∀l,k.
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• Let R be the minimal real part of the diagonal entries
of JF(0), i.e.

R = min
l=1,··· ,n

∣∣ℜ(al,l
)∣∣ .

We have the following result.
Theorem 2: Consider a dynamical system with analytic

vector field (11), which satisfies Assumptions 1 and 2, and
defined on the polydisc Dn(µ) with µ > 0 such that Lµ

is convergent. Moreover, assume that the Jacobian matrix
JF(0) is diagonal.

Then (11) is GAS on Dn(ρ) with

ρ <
µ2R
Lµ

(13)

provided that Dn (ρ) is forward invariant with respect to the
flow.

See Appendix B for the proof.
Remark 3: If the Jacobian matrix is not diagonal(izable),

the above result can be extended to the case of an upper tri-
angular Jacobian matrix with additional diagonal dominance
conditions∣∣aq,r

∣∣2 < 1
D2

∣∣ℜ(aq,q)
∣∣ |ℜ(ar,r)| , 1 ≤ q < r ≤ n

and ∣∣aq,r
∣∣< 1

D

∣∣ℜ(aq,q)
∣∣ , 1 ≤ q < r ≤ n

where D is the number of upper off-diagonal nonzero entries
of JF(0). See the proof of Corollary 3.9 in [14] for more
details.

IV. EXAMPLES

In this section, we estimate the region of attraction of
an equilibrium by using our stability criteria. We consider
general examples inspired by [2], where the authors provide
some guidelines to construct vector fields that generate
holomorphic flows on the bidisc D2.

A. Polynomial vector field

Consider the vector field

F(z1,z2) =

{
a
(
z1 − 1

ac z2
)

a
(
z2 − 1

ac z1 +bz2
1
)
,

(14)

where a = −1/4, c = 8 and b = −1/50. The dynamics
admit the equilibria (0,0) and (−75,150) so that (0,0) is
the unique equilibrium point on the polydisc Dn (µ) with
µ < 75. The Jacobian matrix JF(0) has negative eigenvalues
a−1/c =−3/8 and a+1/c = −1/8, and is diagonalizable

by the matrix P =

(
1 −1
1 1

)
. Using the change of coordi-

nates ẑ = P−1z, we have

F̂(ẑ1, ẑ2) =

{
(a− 1

c )ẑ1 +
ab
2

(
ẑ2

1 −2ẑ1ẑ2 + ẑ2
2
)

(a+ 1
c )ẑ2 +

ab
2

(
ẑ2

1 −2ẑ1ẑ2 + ẑ2
2
)
.

(15)

For the vector field F̂ , we compute d̂ = 2, K̂ = 6, Ŝ = |ab|=
1/200 and R̂ = |a+ 1/c| = 1/8, so that K̂Ŝ/R̂ = 6/25 < 1.
Hence, it follows from Theorem 1 that the nonlinear system

(15) is GAS on the invariance polydisc D2(ρ̂) with 1 < ρ̂ <
25/6. Finally, this implies that (14) is GAS on P(D2(ρ̂))⊃
D2(ρ̂) = D2(ρ) since ∥P∥∞ = 2 > 1 and with ρ = ρ̂ .

B. Analytic vector field

Consider the vector field

F(z1,z2) =


a
(

z1 −
2z2

2
c− z2

)
a
(

z2 −
bz2

1
(d − z1)2

)
,

(16)

where a =−1, b = 4, c = 30 and d = 20. Since

F1(z) =−z1 +2
∞

∑
k=0

zk+2
2

30k+1 and F2(z) =−z2 +4
∞

∑
k=0

(k+1)zk+2
1

20k+2 ,

we obtain
Lµ = 2µ +

2µ2

30−µ
+

4µ2

(20−µ)2 ,

and R = 1. Then, we must choose µ < 20 such that

µ2R
Lµ

=
µ2

2µ +
2µ2

30−µ
+

4µ2

(20−µ)2

,

is maximal, which yields µ ≈ 11.002 and Lµ ≈ 40.727. We
verify that the origin (0,0) is the unique equilibrium point
on the polydisc Dn (µ). If we assume that ρ ∈]1,µ[, Dn (ρ)
is invariant with respect to the flow. Indeed,

• |z1| = ρ ⇒ ℜ(z̄1F1(z)) = −ρ2 + 2ℜ

(
z̄1z2

2
30− z2

)
< 0 since

1 >
2ρ

30−ρ
and it follows that

ρ
2 >

2ρ3

30−ρ
>

2ρ3

|30−|z2||
> 2

∣∣∣∣∣ z̄1z2
2

30− z2

∣∣∣∣∣≥ 2

∣∣∣∣∣ℜ
(

z̄1z2
2

30− z2

)∣∣∣∣∣
• |z2|= ρ ⇒ ℜ(z̄2F2(z)) =−ρ2 +4ℜ

(
z̄2z2

1
(20− z1)2

)
< 0 since

1 >
4

(20−ρ)2 and it follows that

ρ
2 >

4ρ2

|20−ρ|2
>

4ρ2

|20−|z1||2
>

∣∣∣∣ 4z̄2z1

(20− z1)2

∣∣∣∣
≥
∣∣∣∣ℜ( 4z̄2z1

(20− z1)2

)∣∣∣∣ .
Hence, it follows from Theorem 2 that (16) is GAS on

D2(ρ) with ρ < µ2R/Lµ ≈ 2.972.

V. CONCLUSIONS AND FUTURE WORK

We have obtained new sufficient conditions for global
stability of nonlinear equilibrium by leveraging the Koopman
operator framework in the Hardy space of the polydisc. In
particular, stability criteria were proposed, which provide
an approximation of the region of attraction in the case of
polynomial vector fields and more general analytic vector
fields. These criteria are systematic in that they can be
directly verified with the Taylor expansion coefficients of
the vector field, so that they could be easily implemented in
a toolbox.
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We envision several perspectives for future work. Our
Koopman operator based techniques could be applied to
other types of dynamical systems (e.g. limit cycles dynam-
ics, general attractors). Moreover, our criteria seem to be
conservative in some cases, so that they could be adapted to
yield stability results in larger polydiscs. More importantly,
the relevance and possible extension of our stability results
to Cn could be investigated.

APPENDIX

A. Proof of Theorem 1

The proof is inspired by the proof of Corollary 3.8 in [14].
Let us consider the change of variable z′ = z/µ which

yields a rescaled dynamics on the unit polydisc Dn with the
vector field

F ′
l (z

′) =
r

∑
k=1

µ
|α(k)|−1al,kz′α(k) =

r

∑
k=1

a′l,kz′α(k). (17)

The Jacobian JF ′(0) is also diagonal and K′ = K (see (10)).
In the new coordinates, the inner products (3) and (4) are
given by〈

LF ′e′k,e
′
j
〉

=


µ |α( j)|−|α(k)|

∑
n
l=1 αl(k)al,(α( j)−α(k))l

if |α( j)|> |α(k)|
∑

n
l=1 αl(k)al,l if j = k

0 otherwise.
(18)

Our result is proved through Lemma 1 with the sequence
b j j = (1−ξ )

b jk =
ξ

2K
if j ̸= k with

〈
LF ′e′k,e

′
j

〉
̸= 0 or

〈
LF ′e′j,e

′
k

〉
̸= 0

b jk = 0, if j ̸= k with
〈

LF ′e′k,e
′
j

〉
= 0 or

〈
LF ′e′j,e

′
k

〉
= 0,

(19)
with ξ ∈]0,1[. It is clear from (3) that, for a fixed j and

for all k ∈ N \ { j}, there are at most K nonzero values
⟨LF ′e′k,e

′
j⟩ and at most K nonzero values ⟨LF ′e′j,e

′
k⟩, so that

the sequence (19) satisfies ∑
∞
k=1 b jk ≤ 1. The elements Q jk

of the double sequence (5) are given by

Q jk =
K2
∣∣∣〈LF ′e′k,e

′
j

〉∣∣∣2
ξ 2
∣∣∣ℜ(〈LF ′e′j,e

′
j

〉)∣∣∣ ∣∣ℜ(〈LF ′e′k,e
′
k

〉)∣∣ j < k. (20)

Moreover, using (18), we obtain the inequalities∣∣〈LF ′e′k,e
′
j
〉∣∣ ≤ µ

|α( j)|−|α(k)|
n

∑
l=1

αl(k)
∣∣al,(α( j)−α(k))l

∣∣
≤ Sµ

|α( j)|−|α(k)| |α(k)|

and ∣∣ℜ(〈LF ′e′j,e
′
j
〉)∣∣= n

∑
l=1

αl( j)
∣∣ℜ(al,α(l)

)∣∣ ≥ R |α( j)| .

It follows from the above inequalities and from (20) that

Q jk ≤
K2S2µ2(|α( j)|−|α(k)|) |α(k)|2

ξ 2R2 |α( j)| |α(k)|
≤ K2S2

ξ 2R2 µ
2(|α( j)|−|α(k)|)

where we used |α( j)| ≥ |α(k)|.

If KS/R ≥ 1, we set µ = 1. In this case, we
have Q jk ≤ K2S2/(ξ 2R2)

def
= Q for some ξ ∈]0,1[. It fol-

lows that (7) is satisfied with ε j ∼ maxk∈K j {εk Q}
with K j = {k ∈ {1, . . . , j−1} :

〈
LF ′e′k,e

′
j

〉
̸= 0}. Hence, this

yields the sequence ε j =O(Q|α( j)|) for j > 1. It follows that
(6) is convergent with a radius ρ < 1/

√
Q, or equivalently

ρ < R/(KS) for some ξ ∈]0,1[ large enough. The polydisc
Dn(ρ) is forward invariant with respect to the flow since

|zl |= ρ ⇒ℜ(z̄lFl(z))=ℜ
(
al,1
)

ρ
2+ℜ

(
r

∑
k=2

al,k z̄lzα(k)

)
< 0

for all l = 1, · · · ,n. Indeed, ℜ
(
al,1
)
< 0 and it follows from

ρ < R/(KS)≤ 1 that∣∣ℜ(al,1
)∣∣ρ2 ≥ Rρ

2 > ρ
3KS

≥
r

∑
k=2

|al,k|ρ3

≥
r

∑
k=2

|al,k|ρ |α(k)|+1 as |α(k)| ≥ 2

>
r

∑
k=2

∣∣∣al,k z̄lzα(k)
∣∣∣

≥

∣∣∣∣∣ℜ
(

r

∑
k=2

al,k z̄lzα(k)

)∣∣∣∣∣ .
Finally Lemma 1 implies that the dynamics (9) is GAS on
Dn(ρ).

If KS/R < 1, we can choose µ > 1. In this case, we have

µ
2(|α( j)|−|α(k)|) ≤ µ

2(d−|α(1)|) = µ
2(d−1)

and therefore

Q jk ≤
K2S2µ2(d−1)

ξ 2R2
def
= Q < 1

for some ξ ∈]0,1[ and with 1 < µ < d−1
√

R/(KS). It follows
that (7) is satisfied with ε j ∼ maxk∈K j {εk Q}= 1 for j ≥ 1.
Then, (6) is convergent with a radius ρ ′ < 1 and Lemma 1
implies that the new dynamics ż′ = F ′(z) is GAS on Dn(ρ ′)
(note that the invariance of the new dynamics on Dn(ρ ′)
directly follows from the invariance of the original dynamics
on Dn(ρ)). Hence, the original dynamics (9) is GAS on
Dn(ρ), with ρ = µρ ′ < d−1

√
R/(KS). Moreover, the polydisc

Dn(ρ) is forward invariant with respect to the flow since it
follows from d−1

√
R/(KS)> ρ > 1 that∣∣ℜ(al,1

)∣∣ρ2 ≥ Rρ
2 > ρ

d+1KS

≥
r

∑
k=2

|al,k|ρd+1

≥
r

∑
k=2

|al,k|ρ |α(k)|+1

>

∣∣∣∣∣ℜ
(

r

∑
k=2

al,k z̄lzα(k)

)∣∣∣∣∣ .
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B. Proof of Theorem 2

The proof is inspired by the proof of Corollary 3.9 in [14].
Let us consider the change of variable z′ = z/µ which

yields a rescaled dynamics on the unit polydisc Dn with the
vector field F ′(z′) (see (17) in the previous proof). In this
case, the Jacobian matrix JF ′(0) is also diagonal.

Our result is proved through Lemma 1 with the sequence

b j j = (1−κ)

b jk = 0 if j ̸= k with |α( j)|= |α(k)| and〈
LF ′e′k,e

′
j

〉
̸= 0 or

〈
LF ′e′j,e

′
k

〉
= 0

b jk =
κ

2

∣∣∣〈LF ′e′k,e
′
j

〉∣∣∣
∑

∞
l=1

∣∣∣〈LF ′e′l ,e
′
j

〉∣∣∣ if |α(k)|< |α( j)|

b jk =
κ

2

∣∣∣〈LF ′e′j,e
′
k

〉∣∣∣
∑

∞
l=1

∣∣∣〈LF ′e′j,e
′
l

〉∣∣∣ if |α(k)|> |α( j)|

with κ ∈]0,1[. The sequence b jk satisfies

∞

∑
k=1

b jk < (1−κ)+
κ

2

∑
j
k=1

∣∣∣〈LF ′e′k,e
′
j

〉∣∣∣
∑

∞
l=1

∣∣∣〈LF ′e′l ,e
′
j

〉∣∣∣
+

κ

2

∑
∞
k= j+1

∣∣∣〈LF ′e′j,e
′
k

〉∣∣∣
∑

∞
l=1

∣∣∣〈LF ′e′j,e
′
l

〉∣∣∣ < 1.

The elements Q jk of the double sequence (5) are given by

Q jk

=



∑
∞
l=1

∣∣∣〈LF ′e′l ,e
′
j

〉∣∣∣∑∞
l=1
∣∣〈LF ′e′k,e

′
l
〉∣∣

κ2
∣∣∣ℜ(〈LF ′e′j,e

′
j

〉)∣∣∣ ∣∣ℜ(〈LF ′e′k,e
′
k

〉)∣∣ if |α(k)| ̸= |α( j)|

and
〈

LF ′e′k,e
′
j

〉
̸= 0

0 otherwise.
(21)

We note that ∑
∞
l=1

∣∣∣〈LF ′e′l ,e
′
j

〉∣∣∣ and ∑
∞
l=1

∣∣〈LF ′e′k,e
′
l

〉∣∣ are
finite according to the assumptions. It is easy to see that
Q jk > 1 for |α( j)|> |α(k)|.

Moreover, with (3), (4) and (12), we obtain

∞

∑
l=1

∣∣〈LF ′e′l ,e
′
j
〉∣∣ ≤

∞

∑
l=1

n

∑
p=1

αp(l)
∣∣∣a′p,(α( j)−α(l))p

∣∣∣
≤

∞

∑
l=1

|α(l)|
n

∑
p=1

∣∣∣a′p,(α( j)−α(l))p

∣∣∣
≤ |α( j)|

∞

∑
l=1

n

∑
p=1

∣∣∣a′p,(α( j)−α(l))p

∣∣∣
= |α( j)|

∞

∑
l=1

µ
|α( j)|−|α(l)|

n

∑
p=1

∣∣∣ap,(α( j)−α(l))p

∣∣∣
=

1
µ
|α( j)|

∞

∑
l=1

µ
|α( j)|−|α(l)|+1

n

∑
p=1

∣∣∣ap,(α( j)−α(l))p

∣∣∣
≤

Lµ

µ
|α( j)| ,

and
∞

∑
l=1

∣∣〈LF ′e′k,e
′
l
〉∣∣ ≤

∞

∑
l=1

n

∑
p=1

αp(k)
∣∣∣a′p,(α(l)−α(k))p

∣∣∣
≤ |α(k)|

∞

∑
l=1

n

∑
p=1

∣∣∣a′p,(α(l)−α(k))p

∣∣∣
= |α(k)|

∞

∑
l=1

µ
|α(l)|−|α(k)|

n

∑
p=1

∣∣∣ap,(α(l)−α(k))p

∣∣∣
=

1
µ
|α(k)|

∞

∑
l=1

µ
|α(l)||α(k)|+1

n

∑
p=1

∣∣∣ap,(α(l)−α(k))p

∣∣∣
≤

Lµ

µ
|α(k)| .

It follows from the above inequalities and from (21) that

Q jk ≤
L2

µ |α( j)| |α(k)|
κ2µ2R2 |α( j)| |α(k)|

=
L2

µ

κ2µ2 R2 def
= Q

so that (7) is satisfied with ε j ∼ maxk∈K j {εk Q} with

K j = {k ∈ 1, . . . , j−1 :
〈
LF ′e′k,e

′
j
〉
̸= 0 for |α(k)|< |α( j)|}.

Hence, this yields the sequence ε j = O(Q|α( j)|). It follows
that (6) is convergent with a radius ρ ′ < 1/

√
Q or equiva-

lently ρ ′ < µR/Lµ with κ ∈]0,1[ large enough. Then Lemma
1 implies that the dynamics ż′ = F ′(z) is GAS on Dn(ρ ′)
(note that the invariance of the new dynamics on Dn(ρ ′)
directly follows from the invariance of the original dynamics
on Dn(ρ)). Hence, the original dynamics (11) is GAS on
Dn(ρ), with ρ = µρ ′ < µ2R/Lµ .
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