
Fast Estimation of Morphing Wing Flight Dynamics
Using Neural Networks and Cubature Rules

Paul Ghanem1, Yunus Bicer1, Deniz Erdogmus1, Alireza Ramezani1 ∗

Abstract— Fluidic locomotion of flapping Micro Aerial Ve-
hicles (MAVs) can be very complex, particularly when the
rules from insect flight dynamics (fast flapping dynamics and
light wings) are not applicable. In these situations, widely used
averaging techniques can fail quickly. The primary motivation
is to find efficient models for complex forms of aerial locomotion
where wings constitute a large part of body mass (i.e., dom-
inant inertial effects) and deform in multiple directions (i.e.,
morphing wing). In these systems, high degrees of freedom
yields complex inertial, Coriolis, and gravity terms. We use
Algorithmic Differentiation (AD) and Bayesian filters computed
with cubature rules conjointly to quickly estimate complex
fluid-structure interactions. In general, Bayesian filters involve
finding complex numerical integration (e.g., find posterior
integrals). Using cubature rules to compute Gaussian-weighted
integrals and AD, we show that the complex multi-degrees-of-
freedom dynamics of morphing MAVs can be computed very
efficiently and accurately. Therefore, our work facilitates closed-
loop feedback control of these morphing MAVs.

I. INTRODUCTION

The dynamic modeling of mechanical and bio-inspired
robotic systems is often conducted using ordinary differential
equations (ODE) that describe the evolution of states such
as positions and orientations over time. These models are
obtained based on known physics of the mechanical systems
and generally many interconnected processes inside of the
described system are not known and cannot be modeled
using ODE. For this reason, machine learning methods
that identify the whole ODE[1], [2] and physics-informed
machine learning methods that fill the gaps in models based
on ODE framework have emerged[3]–[5]

Nevertheless, these machine learning methods are limited
to offline training since they are trained using backprop-
agation and gradient descent methods. As a result, their
training methods require huge data sets to converge for a
solution which limits their time performance. The time of
training particularly becomes important if these models are
meant to be used in conjunction with fast inner-loop closed-
loop feedback. This particularly becomes very problematic in
robotic platforms that have highly nonlinear and continuous
interactions with their fluidic environment, such as aerial
and aquatic locomotion. While the application of machine
learning is expanding in these disciplines, yet it is too
early to make conclusive decision about their suitability for
real-time closed-loop feedback because their accuracy and
computation overhead is unknown.

1The authors are with the Department of Electrical and Computer En-
gineering, Northeastern University, Boston, MA, USA. Emails: {ghanem.p,
bicer.y, a.ramezani,}@northeastern.edu;{erdogmus@ece.neu.edu}

∗ This author is the corresponding author.

Fig. 1. Shows a morphing MAV attached to a robot arm as a way of
systematically studying fluid-structure interaction in the MAV.

In other applications related to robot locomotion, often
neural networks are trained around a local attractor with no
possibility of updating neural networks weights in an online
fashion. To enable online training, Bayesian approaches for
training neural networks have emerged [6]–[8]. However, the
application of these Bayesian approaches remained limited.

In this paper, we attempt to capitalize on an ongoing
research project at Northeastern University, called Aerobat
[9]–[11], to explore novel methods of estimating complex
robotic models using machine learning and neural net poli-
cies. Briefly speaking, Aerobat is a morphing Micro Aerial
Vehicle (MAV) and its flight dynamics contains hard-to-
model components involving complex fluid-structure inter-
actions.

The objective of this paper is to boost our efforts in
understanding Aerobat’s complex dynamics with a platform
shown in Fig. 1. Using the platform, it is possible to
define any desired trajectories for the robot manipulator and
Aerobat which the former defines flight path and the latter
defines robot inputs. Then, the goal is to use the robot’s
Lagrangian model and measurements from onboard sensors
to estimate models that realistically capture fluid-structure
interactions in Aerobat.

To do this, we use Algorithmic Differentiation (AD) and,
inspired by [12], use Kalman filters that employ cubature
approximation rules to numerically compute Gaussian-based
integrals. As a result, we show that we can efficiently
train the physics-informed, feed-forward neural network that
captures Aerobat’s dynamics.

This work is organized as follows. After briefly intro-
ducing NU’s Aerobat, we drive the equations of motion

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 8824

Fig. 2. Shows Northeastern University’s Aerobat [9], which is a morphing
MAV.

using the method of Lagrange. Next, we describe two
numerical approaches based on AD and cubature rules to
extract efficient numerical models suitable for model-based
nonlinear control of Aerobat. Our algorithmic computations
are developed based on CasADi toolbox which is briefly
described. The bulk of this works is focused on aerodynamic
force estimation in our platform. We conclude this work with
final remarks and simulation results.

II. BRIEF OVERVIEW OF NORTHEASTERN UNIVERSITY’S
DYNAMIC MORPHING MAV, AEROBAT

The Northeastern University’s Aerobat, which is a mor-
phing MAV shown in Fig. 2, weighs less than 20 gr with a
maximum wingspan of 32 cm and is capable of concurrently
mobilizing 14 active linkage DOF in gait cycles shorter than
200 milliseconds. We have developed this platform (and the
developement is still ongoing) to study control and actuation
frameworks that can help us design future morphing MAVs.
The RISE, Robotics-Inspired Study and Experimentation,
platform shown in Fig. 1 hosts Aerobat and a manipulator
arm, Kinova arm. The RISE platform possesses motion-
capture system, force sensors to register joint motions and
forces. The experimental measurements form RISE arena is
used to verify the estimated resutls.

III. MORPHING MAV MODEL

Here, we describe the equations of motion which will
be used to obtain the simulation results reported in this
paper. The considered flight dynamics assume interconnected
inertial dynamics and aerodynamic subsystem which is ex-
pected from these systems as they do not follow insect flight
dynamics. The dynamics, as will be shown below, is affine-
in-control which is less common to see in flapping wing
flight.

Let qu = [qx, qy, qz, pbx, pby, pbz]
⊤ be the underactuated

(passive) coordinates (body position and orientation param-
eterized with Euler angles) and qa be the actuated (active)
coordinate vectors (wing joint angles). These underactuated
and actuated coordinates result in a system defined by the
configuration variable vector q = [q⊤u , q

⊤
a]

⊤ and the state
vector x = [q⊤, q̇⊤]⊤.

Next, the equations of motion are derived using the Euler-
Lagrange formalism after obtaining the system’s Lagrangian
L ∈ R. In obtaining the Lagrangian functional, the kinetic
(translational and rotational) and potential energy led by

Fig. 3. Illustrates quarter-chord points used to compute B2(q)u2(q, q̇).

the distributed mass from each wing segment is considered
which for saving space explaining them is overlooked in this
paper. Then the equations of motion are derived using the
general formulation

d

dt

∂L
∂q̇
− ∂L
∂q

= ugen (1)

where ugen is the sum of the generalized forces. This
formulation can be expanded into the following form:

D(q)q̈ + C(q, q̇)q̇ +G(q) = B1(q)u1 +B2(q)u2,
(2)

where D(q) denotes the mass inertia matrix, C(.) contains
the Coriolis terms, G(.) is the gravity vector, u1 are the
joint torques, B1(q) = (∂qa/∂q)

⊤ maps joint torques and
B2 (similar to B1) maps external forces to the generalized
coordinates in the system. In Eq. 2, the aerodynamic contri-
butions u2 are considered as the second input to the system.

The aerodynamic forces are modeled by obtaining the
resultant lift and drag forces u2 on n discrete blade elements
at their quarter-chord location denoted by pa,i ∈ R3 (i ∈
{1, . . . , n}) shown in Fig. 3. The combined aerodynamic
generalized forces can be derived as follows:

B2(q)u2 =

(
∂P

∂q

)⊤

u2, (3)

where P = [p1, . . . , pi]
⊤ embodies all of the quarter-chord

points, see Fig. 3. We model B2(q)u2(q, q̇), which is a skinny
vector containing all of the aerodynamic forces at each wing
section, using models of form given in [13].

In this work, our objective is two-pronged and include
• First, we show that using algorithmic differentiation it

is possible to generated models of articulated flapping
flight useful for real-time model-based flight control.

• Second, we demonstrate that iterative model estimations
for B2(q)u2(q, q̇) can be achieved in a feasible way
(from a closed-loop-feedback-design standpoint), allow-
ing the accurate prediction of nonlinear fluid-structure
interactions in real-time.

• Third, we show model estimation closely match real-
world measurements.

Algorithmic Differentiation of Inertial, Coriolis Effects,
Gravity in Morphing Wings

In Eq. 2, the inertial matrix, D(q), Coriolis ,C(q, q̇),
gravity vector, G(q), are computed based on a precise
modeling scheme that considers the joint angles, q, their

8825

velocities, q̇, and applies forward and velocity kinematics to
obtain position and velocity terms symbolically. We obtain
these terms symbolically using Matlab’s Symbolic Toolbox.
Following standardized steps D, C and G are obtained.
However, these symbolic matrices are massive and their
application for fast flight control and motion planning is
infeasible.

The alternative to this is Algorithmic Differentiation (AD)
[14] which is as accurate as symbolically generated results
but much leads to much faster computation overhead. There
are two approaches to do AD: (i) operator overloading or
(ii) source code transformation. We have decided to use the
second approach using the toolbox called CasADi because of
its great success in path-planning and motion control in robot
manipulators and floating-base legged systems. CasADi uses
a powerful parser to introduce the derivative terms.

IV. EFFICIENT FLUID-STRUCTURE INTERACTION MODEL
ESTIMATION USING CUBATURE RULES

Here, our objective is to find estimated models for fluid-
structure interactions in articulated flapping flight. The main
motivation is to obtain models that have low computation
overhead, can accurately predict aerodynamic contributions,
and as a result can be used for real-time flight control. It
is possible to show that these fluid-structure interactions, in
addition to the state vector x, can be parameterized in terms
of some internal variables in form of indicial models given
by

ΣAero :

{
ξ̇ = Aξ(t, x)ξ +Bξ(t, x)h(x)

h2 = Cξ(t, x)ξ +Dξ(t, x)h(x)
(4)

where Aξ, Bξ, Cξ and Dξ are some state- and time-
dependent matrices [13]. The hidden variables are denoted by
ξ, and h(x) defines the holonomic constraints that describe
morphing in the system (enforced by u1 from Eq. 2). The
form of Eq. 4 has motivated us to use neural network policies
to find aerodynamic models described by

Σ′
Aero :

{
ξ̇ = γ1(x)

a = γ2(x, ξ)
(5)

where γ1 is the state-dependent, internal dynamics capturing
fluid-structure interactions and γ2 is a nonlinear function
of the hidden variable ξ. Note that Eq. 5 partly captures
the behavior of Eq. 4 as it takes the state vector as the
input and ignores ξ’s role in steering ξ̇. So, the idea is to
capture this hidden dynamics using neural net policies. In
other words, throughout this section our main objective is
to sample the robot’s configurations (i.e., x = [q⊤, q̇⊤]⊤) at
m time points during flight and utilize vehicles Lagrangian
dynamics, which present the predictable part of flight dy-
namics, to train a deep neural network ϕ such that an error
norm is minimized, which will be briefly explained later.

The deep neural network is a hierarchical model of multi-
ple layers and activation functions, where each layer applies
a linear transformation followed by a nonlinear activation

function ψ to the preceding layer. The equation of ϕ is given
by

ϕ(X,W 1, . . . ,W i) = ψi(ψi−1(ψ1(XW
1) . . .W i−1)W i)

(6)
Where W i is the vector containing the weights of i-th layer
and X = [x1, . . . , xm] embodies the sampled robot configu-
rations. The activation function at i-th layer is denoted by ψk.
So, the general idea is to use sampled robot configurations
to construct training data Y = [a1, . . . , am] and then use that
to train the neural net weights W such that the error norm
given below is minimized

W∗ = argmin
W

∥∥Y − ϕ(q, q̇,W 1, . . . ,W i)
∥∥ . (7)

where W∗ = [W 1∗, . . . ,W i∗] is the optimal neural network
weight. Note that the training data aj (j denotes sample
index) is directly obtained from the model dynamics as

B2(qj)u2(qj , q̇j) = D(qj)q̈j + C(qj , q̇j)q̇j+

G(qj)−B1(qj)u1(qj , q̇j)
(8)

where qj and q̇j denote robot configurations at j-th sample
time. Note that the AD-based calculation of D(.), C(.) and
G(.) is employed in Eq. 8. Backpropagation is usually used
to find the optimal weights. Since backproppagation requires
large amount of time to find W∗, many samples (i.e., skinny
Y matrix) have to be collected offline and the optimization
process have to also be done offline.

Another problems with backprogagation involves narrow
boundaries of prediciton which becomes very important
in our application. Meaning to realistically predict fluid-
structure interactions, the measurements must be collected
at various robot configurations which is not feasible. As
a result, we can end up with measurements collected and
weights trained around a local attractor. There is the risk
that when the robot states escape that local attractor, neural
network weights W cannot be updated in real-time due to
the computational cost of backproppagation.

Extended Kalman Filter (EKF) can be considered to
estimate W∗ [15]. Since in the neural network case, EKF
method depends on computing the Jacobian term ∂ϕ

∂W the
computational cost can be very high. In this paper, we use
cubature numerical approximation rules to find the optimal
weights W∗. Unlike the EKF [15], the cubature rules do not
need to solve the jacobian term ∂ϕ

∂W , and can offer practical
numerical solutions for computing the Gaussian-weighted
integrals that appear in posterior terms involved in model
estimation.

A. Model Estimation Problem

In general, the KF training algorithm can be divided into
two classes, parallel KF and parameter-based KF. In parallel
KF, both neural network output and weights are the states
to be estimated by the KF algorithm. For parameter-based
KF, only weights are treated as the states to be estimated.
We consider the second approach which treats the training
process as a filtering process.

8826

We will turn the problem of finding the unknown internal
dynamics given by Eq. 5 into the following neural network
model estimation problem. Consider the neural network
weights to be found in Eq. 7. The following discritized
dynamics are considered

ΣNN :

W 1
k+1 =W 1

k + ν1k

W 2
k+1 =W 2

k + ν2k
...

W i−1
k+1 =W i−1

k + νi−1
k

W i
k+1 =W i

k + νik

ak+1 = ϕ(xk+1,W
1
k+1, . . . ,W

i
k+1) + rk

(9)

where the subscripts denote the k-th sample time; νik and
rk are the process and measurement noise, respectively. We
stack all of the weight parameters and associated noise from
i-th layers to simplify the notation as following

Σ′
NN :

{
Wk+1 =Wk + νk

ak+1 = ϕ(xk+1,Wk+1) + rk
(10)

whereWk and νk embody the stacked parameters from each
layer. Note that the neural network weights are the state
vector and the vehicle configuration x is the input in Eq. 10.
While, in Eq. 5, we assumed the output γ2 is a function of
states x and hidden variable ξ, in Eq. 10, we assume the
output function ϕ is the function of states and neural net
weights (W) which explains how the hidden dynamics is
replaced by neural net policies to be found in this section.

We also note that in Eq. 10, the main reason that the
process dynamics is simply identity is because the estimation
problem is solved under the assumption that the weights
are optimal weights in which case their value must remain
unchanged, i.e.,Wk+1 =Wk. Ideally,Wk must be constant.
However, we add the artificial process noise νk to provide
more flexibility in tuning the filter.

B. Bayesian Estimation

The general form for the estimated dynamics of Eq. 10 is
given by

ΣKF :

{
Ŵk+1 = Ŵk +Kk(âk −B2u2)

âk+1 = ϕ(xk+1,W
1
k+1, . . . ,W

i
k+1) + rk

(11)

where Ŵk is the estimated weight vector at k-th time step,
Kk is the generated Kalman gain according to cubature
approximation rules inspired by [12], and âk is the output
of the neural network.

Assume we have a set of measurements Ak =
[a1, a2, . . . , ak] from RISE platform, the goal of any bayesian
estimator is to estimate state Wk+1 form measurements
Ak+1 by finding the posterior density function

p(Wk+1|Ak+1) =
p(ak+1|Wk+1)

p(ak+1|Ak)
p(Wk+1|Ak) (12)

where p(.) denotes the probability density function and its
fully determined by it is mean value and covariance ma-
trix. The posterior density function p(Wk+1|Ak+1) is fully

determined by obtaining the mean and covariance matrix of
p(ak+1|Wk+1), p(ak+1|Ak) and p(Wk+1|Ak). Since finding
the mean and covariance terms for all of these terms follow a
similar procedure, here, let us only show obtaining the mean
value Ŵk+1|k and covariance matrix Pk+1|k of p(Wk+1|Ak).

The expected value of W given the a priori information
Ak is given by the following generic equation

Ŵk+1|k =

∫
D
Wkp(Wk|Ak)dWk (13)

where D is the space on which W is defined. Note that
to write Eq. 13, Eq. 10 and the fact the νk is zero-
mean random variable are used. In Eq. 13, p(Wk|Ak) =
N (Wk; Ŵk|k, Pk|k) is the Gaussian density function with
the mean value given by Ŵk|k and covariance matrix given
by Pk|k. The covariance matrix Pk+1|k is given by

Pk+1|k =

∫
D
WkWT

k N (Wk; Ŵk|k, Pk|k)dWk−

Ŵk+1|kŴT
k+1|k +Qk

(14)

where Qk is the process noise covariance matrix at k-th
sample time. Next, we briefly describe the approximation
methods used to find Guassian-weighted integrals in the
above equations.

C. Approximation of Probability Density Terms

When the predictive (process) and observation models are
linear, that is the Gaussian-weighted integrals to be solved
possess the form

I(l) =

∫
Dx

l(x)p(x)dx (15)

where l(x) is a linear function of state vector x and p(x)
is the a Gaussian density function, then, the integral given
above can be solved analytically, leading to the well-known
Kalman time and measurement update equations[16]–[18].

When the predictive and observation models are nonlinear
as is the case presented by Eq. 9, the linearization of the
model [15] or numerical approximation solutions must be
implemented. For instance, EKF linearizes the model using
Taylor series expansion. The linezarization process can be
computationally expensive for the application of Eq. 9 in
real-time closed-loop feedback flight control of our models.
Mainly because, EKF heavily depends on ∂ϕ

∂W at every
time step. To solve this issue, we consider filters that use
cubature rules to compute the Guassian-weighted integrals
that appear in the conditional probability density function
explained previously.

Consider the following nonlinear Gaussian-weighted inte-
gral, which captures terms such as Eq. 14,

I(f) =

∫
D
f(W)exp(−WTW)dW (16)

where f(.) denotes any nonlinear function of W . Then, the
integral given by Eq. 16, can be approximated by

I(f) =

m∑
i=1

bif(ξi) (17)

8827

Algorithm 1 Compute Cubature Kalman Gain and Covari-
ance Matrix

function UPDATE KALMAN GAIN
Pk−1|k−1 ← Sk−1|k−1S

T
k−1|k−1

Predictive Update:
Wi,k−1|k−1 ← Sk−1|k−1ξi + Ŵk−1|k−1

W∗
i,k|k−1 ←Wi,k−1|k−1

Ŵk|k−1 ← 1
m

∑m
i=1W∗

i,k|k−1

Pk|k−1 ← 1
m

∑m
i=1W∗

i,k|k−1W
∗T
i,k|k−1

−Ŵk|k−1ŴT
k|k−1 +Q

Measurement Update:
Wi,k|k−1 ← Sk|k−1ξi + Ŵk|k−1

Yi,k|k−1 ← ϕ(Xi,k,Wi,k|k−1)
âk|k−1 ← 1

m

∑m
i=1 Yi,k|k−1

P ′
k|k−1 ←

1
m

∑m
i=1 Yi,k|k−1Y

T
i,k|k−1

−âk|k−1â
T
k|k−1 +R

P ′′
k|k−1 ←

1
m

∑m
i=1Wi,k|k−1Y

T
i,k|k−1−Ŵk|k−1â

T
k|k−1

Kk ← P ′′
k|k−1

(
P ′
k|k−1

)−1

Pk|k ← Pk|k−1 −KkP
′
k|k−1K

T
k

return Pk|k, Kk

end function

where m = sample number, bi = 1
m and ξi =

√
m
2 [1]i.

Let w1(W) = N (W;µ,Σ) (where µ and Σ are ...) and
w2(W) = exp(−WTW), then it is possible to show that∫
D
f(W)w1(W)dW =

1√
πn

∫
D
f(
√
2ΣW + µ)w2(W)dW

(18)
From Eqs. 16, 17 and 18 it can be shown that∫

D
f(W)N (W;µ,Σ)dW =

m∑
i=1

wif(
√
2Σξi + µ) (19)

which is directly used to write the algorithm given below to
compute the approximation of Gaussian-weighted integrals
in the Kalman Filter.

V. EXPERIMENTAL RESULTS AND DISCUSSION

Here, we briefly report the accuracy and computation
overhead of the obtained model for our morphing wing
flight based on AD and cubature rules. Our results suggest
the feasibility of using these models for locomotion con-
trol of robots whose dynamics involves sophisticated robot-
environment interactions.

Figure 4 shows the computation overhead for various
terms in the inertial dynamics. As expected AD yields
significantly smaller computation overhead. To check the
accuracy of AD models versue symbolically generated terms,
we use AD-based inertia, Coriollis and gravity terms to
obtain training data points for our cubature filter.

Fig. 4. Shows the comparison between the computation overhead of
MATLAB Symbolic Toolbox- and CasADi-generated inertial D(q), Coriolis
C(q, q̇) and Gravity G(q) matrices.

Note that we use a mathematical model to extract our
training data B2(q)u2(q, q̇). However, the proposed frame-
work is developed with the aim of implementing it on to the
actual robot. So, without loss of generality the same training
data can be obtained by capturing the vehicle’s body position,
orientation, wing angles and their times derivatives and using
the vehicles Lagrangian dynamics (excluding aerodynamics
interactions).

Figures 5 and 6 show a comparison between the estimated
and actual models. In these simulation results, our neural
network consists of three layers with two softplus activation
functions for form ψ = ln(1+expin). At every 100 samples,
one training data is utilized towards obtaining optimal neural
network weights using the cubature Kalman Filter. And
then the learned models is used to estimated fluid structure
interactions in the robot.

The robots’ body joint angles are commanded with pre-
defined values. Damping coefficients are considered to pas-
sively stabilize roll, pitch, and yaw dynamics as the vehicle
is open-loop unstable and no controller is involved.

Based on our simulation results, and as it can be seen in
Figs. 5 and 6 the estimated aerodynamics model can do a
decent job predicting actual generalized forces B2(q)u2(q, q̇)
in a 200-milliseconds time envelope (sample time is 10−4

sec). The process and measurement noise values (rk and νk)
are assumed to be zero. The mean square error is 0.04% for
all generalized forces. The diagonal terms in the covariance
matrix P are less than 10−2 which reflects the confidence of
the filter about the estimated weights.

VI. CONCLUDING REMARKS

In this work, algorithmic differentiation and neural net-
works equipped with cubature rules were proposed to iden-
tify inertial and fluidic forces acting on a morphing MAV
called Aerobat. These forces can be very complex to the
extent that averaged models fail to predict them. The neural
network design extends to prior works on Bayesian filters.
Using cubature rules to compute Gaussian-weighted integrals

8828

Fig. 5. Shows a comparison between the forces from the experiment and
estimated aerodynamic models ΣKF plotted in the x,y and z directions.
This plot shows the acceleration induced by the generalized aerodynamic
forces.

efficiently, we showed that the complex multi-degrees-of-
freedom dynamics of morphing MAVs can be computed very
efficiently and accurately. In the future, we aim to employ the
online identification of inertial dynamics and aerodynamics
forces in Aerobat proposed in this paper for the real-time
flight control of the robotic platform.

REFERENCES

[1] O. Ogunmolu, X. Gu, S. Jiang, and N. Gans, “Nonlinear
Systems Identification Using Deep Dynamic Neural Networks,”
arXiv:1610.01439 [cs], Oct. 2016.

[2] S. Lu and T. Basar, “Robust nonlinear system identification using
neural-network models,” IEEE Transactions on Neural Networks,
vol. 9, no. 3, pp. 407–429, May 1998.

[3] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed
neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,”
Journal of Computational Physics, vol. 378, pp. 686–707, Feb. 2019.

[4] J. Stiasny, G. S. Misyris, and S. Chatzivasileiadis, “Physics-Informed
Neural Networks for Non-linear System Identification for Power
System Dynamics,” arXiv:2004.04026 [cs, eess], Apr. 2021.

[5] K. Qian, A. Mohamed, and C. Claudel, “Physics Informed Data
Driven model for Flood Prediction: Application of Deep Learning
in prediction of urban flood development,” arXiv:1908.10312 [cs,
eess], Aug. 2019.

[6] Training Multilayer Perceptrons with the Extended
Kalman Algorithm. [Online]. Available: https : / /
proceedings . neurips . cc / paper / 1988 / hash /
38b3eff8baf56627478ec76a704e9b52-Abstract.html
(visited on 09/13/2021).

[7] X. Wang and Y. Huang, “Convergence Study in Extended Kalman
Filter-Based Training of Recurrent Neural Networks,” IEEE Trans-
actions on Neural Networks, vol. 22, no. 4, pp. 588–600, Apr. 2011.

[8] B. Safarinejadian, M. A. Tajeddini, and A. Ramezani, “Predict
time series using extended, unscented, and cubature Kalman filters
based on feed-forward neural network algorithm,” in and Automation
The 3rd International Conference on Control, Instrumentation, Dec.
2013, pp. 159–164.

[9] E. Sihite, P. Kelly, and A. Ramezani, “Computational Structure
Design of a Bio-Inspired Armwing Mechanism,” IEEE Robotics and
Automation Letters, vol. 5, no. 4, pp. 5929–5936, Oct. 2020.

Fig. 6. Shows a comparison between the actual and estimated wing joint
torques (Note, left and right wing have symmetric morphing). This plot
shows the acceleration induced by the generalized aerodynamic forces.

[10] E. Sihite and A. Ramezani, “Enforcing nonholonomic constraints
in Aerobat, a roosting flapping wing model,” in 2020 59th IEEE
Conference on Decision and Control (CDC), Jeju Island, Korea
(South): IEEE, Dec. 2020, pp. 5321–5327.

[11] E. Sihite, A. Darabi, P. Dangol, A. Lessieur, and A. Ramezani, “An
Integrated Mechanical Intelligence and Control Approach Towards
Flight Control of Aerobat,” arXiv:2103.16566 [cs, eess], Mar. 2021.

[12] I. Arasaratnam and S. Haykin, “Cubature Kalman Filters,” IEEE
Transactions on Automatic Control, vol. 54, no. 6, pp. 1254–1269,
Jun. 2009.

[13] J. S. Izraelevitz, Q. Zhu, and M. S. Triantafyllou, “State-Space
Adaptation of Unsteady Lifting Line Theory: Twisting/Flapping
Wings of Finite Span,” AIAA Journal, vol. 55, no. 4, pp. 1279–1294,
Apr. 2017.

[14] J. Carius, R. Ranftl, V. Koltun, and M. Hutter, “Trajectory Optimiza-
tion With Implicit Hard Contacts,” IEEE Robotics and Automation
Letters, vol. 3, no. 4, pp. 3316–3323, Oct. 2018.

[15] L. Ljung, “Asymptotic behavior of the extended Kalman filter as
a parameter estimator for linear systems,” IEEE Transactions on
Automatic Control, vol. 24, no. 1, pp. 36–50, Feb. 1979.

[16] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian
optimization for learning gaits under uncertainty,” Annals of Math-
ematics and Artificial Intelligence, vol. 76, no. 1, pp. 5–23, Feb.
2016.

[17] A. Rai, R. Antonova, S. Song, W. Martin, H. Geyer, and C. G.
Atkeson, “Bayesian Optimization Using Domain Knowledge on the
ATRIAS Biped,” arXiv:1709.06047 [cs], Sep. 2017.

[18] Y. Ho and R. Lee, “A Bayesian approach to problems in stochastic
estimation and control,” IEEE Transactions on Automatic Control,
vol. 9, no. 4, pp. 333–339, Oct. 1964.

8829

