
Is Stochastic Mirror Descent Vulnerable to Adversarial Delay Attacks? A
Traffic Assignment Resilience Study

Yunian Pan, Tao Li, and Quanyan Zhu∗

Abstract— Intelligent Navigation Systems (INS) are exposed
to an increasing number of informational attack vectors, which
often intercept through the communication channels between the
INS and the transportation network during the data collecting
process. To measure the resilience of INS, we use the concept
of a Wardrop Non-Equilibrium Solution (WANES), which is
characterized by the probabilistic outcome of learning within
a bounded number of interactions. By using concentration
arguments, we have discovered that any bounded feedback
delaying attack only degrades the systematic performance up
to order Õ(

√
d3T−1) along the traffic flow trajectory within

the Delayed Mirror Descent (DMD) online-learning framework.
This degradation in performance can occur with only mild
assumptions imposed. Our result implies that learning-based INS
infrastructures can achieve Wardrop Non-equilibrium even when
experiencing a certain period of disruption in the information
structure. These findings provide valuable insights for designing
defense mechanisms against possible jamming attacks across
different layers of the transportation ecosystem.

I. INTRODUCTION

The real-time routing demand has been significantly
growing with the rapid development of the modern Intelligent
Navigation Systems (INS), in which typical Online Navigation
Platforms (ONP), such as Google Maps and Waze, receive
billions of routing requests per second. It is, therefore, crucial
to provide reliable and efficient navigation services for active
users, such that the ex-post routing regret is small. The regret-
free routing for individuals gives rise to special macroscopic
traffic conditions, commonly known as the Wardrop equi-
librium (WE) [1] in congestion games. The seeking of WE
is referred to as traffic assignment problem. However, the
increasing connectivity of transportation networks exposes
the INS to a wide variety of informational attacks [2].

This paper focuses on a class of information-delaying
attacks against the INS that aim to intercept the communica-
tion channel between the data source/individual users and the
navigation center, delaying the delivery of traffic condition
information for adversarial purposes. A quintessential attack
surface is the data transmission process, including the network
jamming attacks [3], which are often implemented by sending
high-frequency wireless interference, or a sheer volume of
network packets to the target communication channels/servers.
With the information delays of critical traffic conditions, the
INS infrastructures are at risk of making improper routing
recommendations and misguiding users.
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Fig. 1. The traffic conditions are withheld at each timestep due to the
presence of the attacker, creating a timing disparity between the traffic flow
and traffic latency, disrupting the route recommendation.

Prior studies have shown that relying solely on attack
detection and prevention measures is inadequate in the face of
pervasive malicious factors [4], [5]. These findings highlight
the need to develop resilient mechanisms to endow traffic
systems with self-healing capabilities. We adopt the notion
of Wardrop Non-Equilibrium Solution (WANES) [6], which
extends the regret analysis in games [7], [8] to probabilistic
setting, to investigate the provable resilience of Mirror
Descent (MD) based INS under adversarial delays. The
schematic view of this framework is illustrated in fig. 1.

To the best of our knowledge, this work is among the
first endeavors to analyze stochastic mirror descent under
adversarial delays, given existing works often focus on the
deterministic or bandit setting. Our initial step involves
analyzing the Delayed Mirror Descent (DMD) dynamics.
DMD is nearly identical to ordinary MD, but with the added
feature of delayed latency feedback. Our analysis rests on
the telescoping technique and a Martingale approach, which
encounters two significant challenges. The first challenge
is establishing the per-iterate telescoping inequality due to
the potentially large cardinality (up to T ) of the delayed
latency “bundle” in the general setting. The second challenge
is deriving the concentration argument due to the need for
special analysis of the maximum of the empirical process. We
tackle the problems by making additional assumptions about
the attack capacity and the uniform bound of the expected
latency function. These assumptions are often practical in

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 8322



traffic assignment problems.
Without further assumptions imposed, we show that the

INS under DMD dynamics with carefully chosen learning
parameters endure performance loss up to order O(

√
d3T−1)

with high probability, which matches the order of delay-free
case where d = 1. When d = O(Tα) with α < 1/3, the
performance loss order indicates a high-probability sub-linear
regret bound. This result can be generalized to resilience
analysis of online traffic assignments when the Beckman
potential is time-varying. It further indicates the probability
of a certain class of online learning problems with delayed
stochastic feedback.

II. RELATED WORK

The role of mirror descent in the congestion game frame-
works has been discussed in the literature [9], [10], where the
Hannan consistency in the Cesáro sense was established in
the deterministic latency setting. It was later demonstrated in
[11] that the convergence rate, although remaining O(T−1/2)
in the stochastic domain, can be lifted to O(T−2) leveraging
Nesterov’s acceleration scheme in the deterministic domain.
Our result matches the T−1/2 bound in the trivial setting
without feedback delays (where d = 1).

The gap between online learning and resilience in conges-
tion games was filled in [6], where the setting was extended by
considering the adversary and studying the probabilistic non-
equilibrium outcome of learning. The adversary is assumed
capable of informational manipulation, involving threats both
on the physical layers (such as sensors, GPS spoofing [12],)
and cyber layers (such as routing attacks and DoS attacks
[13].) Our study concerns a general class of attacks that cause
delayed feedback to the traffic assignment systems.

There have been versatile delay-handling strategies in the
literature. One is pooling multiple independent learners to-
gether to process the buffered feedback vectors in a sequential
manner, see the analysis of Joulani et al. in [14], or giving the
learners the ability to learn from local loss permutations, see
Shamir et al. [15]. Another is treating delays as introduced
by distributed asynchronous processors, which is explored
by Agarwal et al. [16]. The strategies mentioned above
can be resource-intensive or make impractical assumptions.
Therefore, this work builds upon simplistic models [17], and
explores the stochastic feedback setting due to its absence in
current literature.

III. PROBLEM FORMULATION

Repeated Congestion Game A transportation network is
abstracted by a directed, finite, and connected graph G =
(V, E), with nodes V depicting road junctions, transportation
hubs, etc., and edges E indexing road segments, transportation
segments, etc., between different node pairs, we assume that
(v, v) /∈ E , for all v ∈ V . The set of Origin-Destination (OD)
pairs is W ⊆ V ×V . Between each OD pair w ∈ W is a set
of directed paths Pw, let P :=

⋃
w∈W Pw.

The vehicles over G constitute a set of infinitesimal players
X , split into distinct populations indexed by different OD
pairs, i.e., X =

⋃
w∈W Xw and Xw

⋂
Xw′ = ∅, ∀w,w′ ∈ W .

For each w ∈ W , let mw be the traffic demand, i.e., the
number of vehicles traveling between w.

For all w ∈ W , each player x ∈ Xw is equipped with an
action set Pw and makes decisions repeatedly, at each round
t = 1, . . . , T ∈ N+, each player is committed to a single path
p ∈ P . The action profile can be captured a flow vector µ ∈
∆ := {µ ∈ R|P|

≥0 |
∑

p∈Pw
µp = mw, ∀w ∈ W}. A path flow

vector determines an edge flow vector q ∈ R|E|
≥0, through the

edge-path incident matrix Λ = [Λ1|, . . . , |Λ|W|] ∈ R|E|×|P|

such that Λw
e,p = 1{e∈p},∀e ∈ E , w ∈ W, p ∈ Pw. In a

compact form, q = Λµ.
The total travel time of a road segment is jointly deter-

mined by the traffic flow on that road and some stochastic
factors, such as weather condition and road incidents, which
affects the congestion level. Let (Ω,F ,P) be the underlying
probability space; ω ∈ Ω encapsulates the universal latent
conditions for G. Let le : R≥0×Ω 7→ R+ be the edge latency
function for e ∈ E , l : R|E|

≥0×Ω 7→ R|E|
+ be its vector-valued

extension, ℓ : ∆ × Ω 7→ R|P|
+ be the path latency function.

Fixing ω ∈ Ω, one can verify that ℓ = Λ⊤l(Λµ, ω).
Standing Assumption 1 ensures that the latency functions

realistically capture the relation between traffic flow and travel
time.

Standing Assumption 1: The latency functions le are F-
measurable, differentiable w.r.t. qe, for all e ∈ E , and
∂le(qe, ω)

∂qe
> 0 for all qe ≥ 0.

Each path flow profile µ ∈ ∆ induces a pushforward
probability measure Pℓ,µ : B(R|P|

+ )→ [0, 1] associated with
the positive random vector ℓ(µ, ·) : Ω 7→ R|P|

+ .
The Standing Assumption 2 quantitatively ensures that the

latency for a given path flow is relatively stable in the sense
that it has a subgaussian tail. In other words, its variance
magnitude is controlled by the parameter σ. It also implies
that the expected travel time of the paths is bounded by some
upper estimate that is linearly related to σ by the oracle-
given constant κ. Such a setting is practical in most realistic
scenarios.

Standing Assumption 2:
• There exists σ > 0, such that for all µ ∈ ∆, the Eu-

clidean norm ∥z∥ = ∥ℓ(µ)− E[ℓ(µ)]∥ is σ-subgaussian,
i.e.,

E[exp(
∥z∥2

σ2
)] ≤ exp(1).

• There exists a positive constant L, such that,

∥E ℓ(µ)∥ ≤ L, ∀µ ∈ ∆.

Further, there exists a constant κ > 0 such that L ≤ κσ.
Resilience under Adversarial Information Delay Wardrop
Equilibrium (WE) has been a conventional solution concept
in transportation literature that describes the conditions under
which the individual users have the least ex-post regret.
Since the latent variable is oftentimes unobservable, we
consider a meta-version of the congestion game, Gc =
(G,W,X ,P,E[ℓ(·)]), with the utility functions replaced by
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the expected latency function. This “meta” game gives rise
to a solution concept corresponding to Definition 1.

Definition 1 (Mean Wardrop Equilibrium [1]): A path
flow µ ∈ ∆ is said to be a Mean Wardrop Equilibrium
(MWE) if ∀w ∈ W , µp > 0 indicates E[ℓp] ≤ E[ℓp′ ] for all
p, p′ ∈ Pw. The set of all MWE is denoted by µ∗.
It is well known that at MWE, the Beckman Potential of
Gc is minimized; by Fubini’s theorem, it is equivalent to
minimizing the Mean Beckman Potential (MBP), as in (1),

min
µ∈∆

Φ(µ) := E

[∑
e∈E

∫ (Λµ)e

0

le(z, ω)dz

]
. (1)

Given Standing Assumption 1, Φ is in general non-strictly
convex, ∇µΦ(µ) = Eω[Λ

⊤l(Λµ, ω)] = E[ℓ(µ)].
By convention, at each time t, within each OD population

w ∈ W , if the infinitesimal players randomize independently
according to some mixed strategy πt

w ∈ ∆(Pw) identically,
the individual-level and population-level decision makings are
equivalent [9], in the sense that πt

w = 1
mw

(µt
p)p∈Pw

. Let Ht

denote the history of information about µt and ℓt realizations,
a learning algorithm A maps a history Ht to µt+1.

Definition 2 ([6]): For the congestion game Gc, let
(∆T ,BT ) be the product space, with BT be the product
Borel algebra of ∆T . For any ϵ > 0, define the target set
as Cϵ := {µ ∈ ∆|Φ(µ) − Φ∗ < ϵ}. A probability measure
PT over (∆T ,BT ) is an (ϵ, δ)-Wardrop Non-Equilibrium
solution (WANES) if PT {(µt)Tt=1 ∈ ∆T |µ̄T ∈ Cϵ} ≥ 1− δ,
with µ̄T = 1

T

∑T
t=1 µ

t. Furthermore, any learning algorithm
A producing such PT is said to be (ϵ, δ)-resilient.

Definition 2 provides additional freedom to analyze the
transient behavior.
Attack Model We consider the online traffic navigation sce-
nario, where a feedback-delaying attacker (typically network
jamming attacker) can delay the crowdsourcing of traffic
latency (typically by launching DoS attacks), withholding
the traffic latency of each round for a finite period of time.
Consequently, the ONP navigation center is not able to retrieve
the exact travel time estimates from the planned paths at each
round t. Instead, at every t, a historical “bundle” of latency
feedback is revealed to the navigation center, while the real-
time traffic latency is to be revealed in the future.

Mathematically, let the attacker’s action be a vector d =
(min{dt, T − t + 1})1≤t≤T , where dt ∈ N+ represents the
delayed time that the latency information ℓt is delivered to the
INS. The total budget delay is D =

∑T
t=1 min{dt, T−t+1},

which is of order O(T 2), as the maximum D is T (T +1)/2.
We assume that the attacker’s maximum per-iterate attack
budget is d := ∥d∥∞ ≪ T . The INS receiver’s information
structure [18] at time t includes the latency vector “bundle”
indexed by Dt = {k|k +min{dk, T − k + 1} − 1 = t}, i.e.,
they receive Lt := {ℓk|k ∈ Dt}, without access to the “time
stamps” of ℓk.

IV. TRAFFIC ASSIGNMENT WITH DELAYED FEEDBACK

The Delayed Mirror Descent Let ℓ̄t be the estimate of the
sum of arrived latency “bundle”, i.e., ℓ̄t =

∑
τ∈Dt

ℓτ . The

Delayed Mirror Descent (DMD), as shown in Algorithm 1,
replaces the latency vector in the ordinary Mirror Descent
algorithm with ℓ̄t. We use the Bregman divergence that
measures the dissimilarity between two iterates.

Definition 3: Given a mirror map Ψ : ∇ → R̄ and two
points µ1, µ2 ∈ ∆, the Bregman divergence is DΨ|µ1

µ2
=

Ψ(µ1)−Ψ(µ2)− ⟨∇Ψ(µ1), µ1 − µ2⟩.
Suppose that the mirror map Ψ is σΨ-strongly convex, we

have DΨ|µ1

µ2
≥ σΨ

2 ∥µ1 − µ2∥2. We refer readers to [19] for
a more in-depth discussion regarding this notion.

Algorithm 1: Delayed Mirror Descent (DMD)

Input : initialize µ1 ∈ ∆, learning rate η.
for t ∈ 1, . . . , T do

for w ∈ W , x ∈ Xw, do
INS assigns mixed strategy
πt(·, x)← 1

mw
(µt

p)p∈Pw
to player x;

player x samples path A(x) ∼ πt(·, x);
end
Players X suffer latency ℓt ∼ Pℓ,µt(·);
INS reveals latency vector (ℓk)k∈Dt

to X ;
INS updates:

µt+1 ← argmin
µ∈∆

⟨µ, ηℓ̄t⟩+DΨ(µ, µ
t) (2)

end

Telescoping Setup Central to the analysis, Lemma 1 quanti-
fies the summation of MBP functional gains along the learning
trajectory, setting up conditions for telescoping the sequence.

Let Ft = σ((zτ )τ∈D1 , . . . , (zτ )τ∈Dt−1) be the filtration
of the delayed data generating process for t = 1, . . . , T ,
note that µt is Ft-measurable. We fix an equilibrium flow
µ∗ ∈ µ∗ for simplicity of analysis, and define the process
ξt = η⟨zt, µ∗ − µt⟩ for t = 1, . . . , T . We also let ∥ztm∥ :=
maxr∈∪t

s=τt
Ds
∥zr∥ be the maximum of the empirical process

generated through Dτt , . . . ,Dt, with τt = minDt.
Lemma 1: Under the mirror descent dynamics with latency

feedback, the following holds for t = 1, . . . , T ,∑
τ∈Dt

η (Φτ − Φ∗)− 2η2d

σΨ
L2 +DΨ|µ

∗

µt+1 −DΨ|µ
∗

µt

≤
∑
τ∈Dt

ξτ +
2η2d

σΨ
∥ztm∥2.

(3)

As illustrated in Fig. 2, due to bounded attack capacity d,
the cardinality of the delayed latency “bundle” |Dt| ≤ d for
every t ≤ 1, . . . , T . One can further see that the cardinality
of ∪ts=τtDt should be bounded by 2d.

Proof: Recall that the mirror step can be equivalently
written as

µt+1 =: ∇Ψ∗(∇Ψ(µt)−
∑
τ∈Dt

ηℓτ︸ ︷︷ ︸
dual step

),

where Ψ∗ : R|P| → R is the Fenchel conjugate of the mirror
map Ψ. Under proper conditions, for µ ∈ ∂Ψ∗(ν), ν ∈
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Fig. 2. The per-iterate latency “bundle” is bounded, t− τt + 1 ≤ d.

∂Ψ(µ), it holds that Ψ(µ) + Ψ∗(ν) = ⟨µ, ν⟩. Therefore,
given a primal flow point µt, we define νt+1 := ∇Ψ(µt)−∑

τ∈Dt
ηℓτ = ∇Ψ(µt+1) as the dual latency point. One can

verify that µt+1 = ∇Ψ∗(νt+1) and the dual step can be
written as νt+1 = νt −

∑
τ∈Dt

ηℓτ .
Due to the convexity of Φ,∑

τ∈Dt

η(Φ(µτ )− Φ∗) ≤
∑
τ∈Dt

η⟨E ℓτ , µτ − µ∗⟩

=
∑
τ∈Dt

η⟨zτ , µ∗ − µτ ⟩+ η⟨ℓτ , µτ − µ∗⟩

=
∑
τ∈Dt

ξτ +
∑
τ∈Dt

η⟨ℓτ , µτ,− − µ∗⟩+ η⟨ℓτ , µτ − µτ,−⟩,

where we let µτ,− be intermediate primal flow before applying
latency ℓτ , i.e., let Dt,τ := {r ∈ Dt, r < τ}, µτ,− :=
∇Ψ∗(ντ,−) = ∇Ψ∗(∇Ψ(µt)−

∑
r∈Dt,τ

ηℓr). Similarly we
define the immediate primal flow point after applying latency
ℓτ as µτ,+ := ∇Ψ∗(ντ,+) := ∇Ψ∗(∇Ψ(µτ,−)− ηℓτ ). One
can then verify that µτt,− = µt and µmaxDt,+ = µt+1.

Consider the following decomposition for arbitrary µ∗ ∈ ∆,
⟨µτ,− − µ∗, ℓτ ⟩ = ⟨µτ,− − µτ,+, ℓτ ⟩ + ⟨µτ,+ − µ∗, ℓτ ⟩. By
the first-order optimality condition of (2),

⟨ηℓτ +∇Ψ(µτ,+)−∇Ψ(µτ,−), µτ,+ − µ∗⟩ ≤ 0.

Apply Pythagorean identity of Bregman divergence:
DΨ|µ

τ,+

µτ,− + DΨ|µ
∗

µτ,+ − DΨ|µ
∗

µτ,− = ⟨∇Ψ(µτ,+) −
∇Ψ(µτ,−), µτ,+ − µ∗⟩, and we arrive at

η⟨ℓτ , µτ,+ − µ∗⟩+DΨ|µ
τ,+

µτ,− +DΨ|µ
∗

µτ,+ −DΨ|µ
∗

µτ,− ≤ 0.

Summing over τ ∈ Dt, since DΨ|µ
τ,+

µτ,− ≥ σΨ

2 ∥µ
τ,+ − µτ,−∥2,

by Cauchy-Schwarz inequality and −b2 + 2ab ≤ a2,∑
τ∈Dt

η⟨ℓτ , µτ,− − µ∗⟩+ σΨ

2
∥µτ,+ − µτ,−∥2

≤
∑
τ∈Dt

DΨ|µ
∗

µτ,− −DΨ|µ
∗

µτ,+ + ⟨µτ,− − µτ,+, ηℓτ ⟩

≤
∑
τ∈Dt

DΨ|µ
∗

µτ,− −DΨ|µ
∗

µτ,+ .+ η∥ℓτ∥∥µτ,− − µτ,+∥,

which then gives∑
τ∈Dt

η⟨ℓτ , µτ,− − µ∗⟩

≤
∑
τ∈Dt

DΨ|µ
∗

µτ,− −DΨ|µ
∗

µτ,+ +
η2

2σΨ
∥ℓτ∥2

≤
∑
τ∈Dt

DΨ|µ
∗

µτ,− −DΨ|µ
∗

µτ,+ +
η2

2σΨ
(L2 + ∥zτ∥2).

Now we analyze η⟨ℓτ , µτ − µτ,−⟩: applying Cauchy-
Schwarz inequality and triangular inequality several times,∑

τ∈Dt

η⟨ℓτ , µτ − µτ,−⟩ ≤
∑
τ∈Dt

η∥ℓτ∥∥µτ − µτ,−∥

≤
∑
τ∈Dt

η∥ℓτ∥

(
t−1∑
s=τ

∥µs − µs+1∥+ ∥µt − µτ,−∥

)

=
∑
τ∈Dt

η∥ℓτ∥
( t−1∑

s=r

∥∥∇Ψ∗(νs)−∇Ψ∗(νs+1)
∥∥

+
∥∥∇Ψ∗(νt)−∇Ψ∗(ντ,−)

∥∥).
Since Ψ is σΨ-strongly convex, its Fenchel conjugate Ψ∗ is
1
σΨ

-smooth, the R.H.S. becomes

≤
∑
τ∈Dt

η∥ℓτ∥

(
1

σΨ
(

t−1∑
s=τ

∥∥νs − νs+1
∥∥+ ∥∥νt − ντ,−

∥∥))

≤
∑
τ∈Dt

η2

σΨ
∥ℓτ∥

t−1∑
s=τ

∑
r∈Ds

∥ℓr∥+
∑

p∈Dt,τ

∥ℓp∥

 .

To associate the upper estimate with the cardinality of |Dt|,
by triangular inequality, ∥ℓt∥ = ∥E ℓt + zt∥ ≤ L+ ∥zt∥ for
all t. Breaking the brackets, we get the R.H.S. becomes

≤ η2L2

σΨ

∑
τ∈Dt

Qτ︸ ︷︷ ︸
I

+
η2L

σΨ

∑
τ∈Dt

∥zτ∥Qτ︸ ︷︷ ︸
II

+
η2

σΨ

∑
τ∈Dt

∥zτ∥

t−1∑
s=τ

∑
r∈Ds

∥zr∥+
∑

p∈Dt,τ

∥zp∥


︸ ︷︷ ︸

III

,

where Qτ = |Dt,τ | +
∑t−1

s=τ |Ds|, which essentially counts
for the number of all latency vectors other than ℓτ , that have
been delivered between round τt and t.

We fix τ and t and look into round s ∈ {τ, . . . , t}, when
s = t, consider q ∈ Dt,τ ; when s < t, consider q ∈ Ds.
There are two cases, q < τ and q ≥ τ . Consider both cases
quantitatively, Qτ ≤ Qτ,1 +Qτ,2:

Qτ ≤

 ∑
q∈Dt,τ

1{q≥τ} +

t−1∑
s=τ

∑
q∈Ds

1{q≥τ}


+

 ∑
q∈Dt,τ

1{q<τ} +

t−1∑
s=τ

∑
q∈Ds

1{q<τ}

 .

When q ≥ τ , by a pigeonhole argument, there are
at most dτ instances, as fixing a q, q + dq − 1 is at
most in only one of {q, . . . , t − 1}. Analytically, we have
Qτ,1 =

∑
q∈Dt,τ

1{q≥τ} +
∑t−1

s=τ

∑
q∈Ds

1{q≥τ}, which is∑t−1
s=τ

∑s
q=τ 1{q+dq−1=s}. We rearrange the sum and rewrite

it as
∑t−1

q=τ

∑t−1
s=q 1{q+dq−1=s} which by observation is

bounded by dτ − 1 ≤ dτ .
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When q < τ , fixing q, we have that Qτ,2 can be
written as

∑
q∈Dt,τ

1{q<τ}+
∑t−1

s=τ

∑
q∈Ds

1{q<τ} which
is essentially

∑t
s=τ |Ds,τ | and can be further written as∑τ−1

q=1 1{q+dq−1=t} +
∑t−1

s=τ

∑τ−1
q=1 1{q+dq−1=s}. This quan-

tity essentially counts the q’s that get delayed into the range
{τ, t}, i.e.,

∑τ−1
q=1 1{q+dq−1∈{τ,...,t}} ≤ d.

Hence, we arrive at:

I ≤ η21L
2

σΨ

∑
τ∈Dt

dτ + d ≤ 2η21L
2

σΨ

∑
τ∈Dt

d,

II ≤ 2η2L

σΨ
max
τ∈Dt

∥zτ∥
∑
τ∈Dt

d,

III ≤ 2η2

σΨ
max

τ∈∪t
s=τmin

Ds

∥zτ∥2
∑
τ∈Dt

d.

Let ∥ztm∥ := maxτ∈∪t
s=τt

Ds
∥zτ∥ be the maximum of

the empirical process generated by Dτt , . . . ,Dt, clearly,
maxs∈Dt

∥zs∥ ≤ ∥ztm∥. Combining I, II, and III, we obtain∑
τ∈Dt

η (Φτ − Φ∗) + DΨ|µ
∗

µt+1 −DΨ|µ
∗

µt ≤
∑
τ∈Dt

ξτ

+
η2

2σΨ
(L2 + ∥zτ∥2 + 2dL2 + max

τ∈Dt

2dL∥zτ∥+ 2d∥ztm∥2)

≤
∑
τ∈Dt

ξτ +
η2

2σΨ
((1 + 2d)(L2 + ∥ztm∥2) + 2dL∥ztm∥)

≤
∑
τ∈Dt

ξτ +
2η2d

σΨ
(L2 + ∥ztm∥2).

Rearrange the terms and we arrive at (3).

V. RESILIENCE ANALYSIS

Bounding the Moment Generating Function To verify that
iterates (2) lead to a Wardrop Non-equilibrium solution, we
need to derive a high probability bound for the functional gaps
Φ(µt)−Φ∗ of the flow trajectory (µt)T+1

t=1 along the learning
process. To this end, we define a set of weights {wt}T+1

t=1 that
serves as the set of variable coefficients inside the moment
generating functions of the functional gaps, which allows for
the flexibility of compensating the learning rate η. The target
of our analysis is the two auxiliary quantities as we have
defined in (4).

Zt =wt+1

∑
τ∈Dt

(η(Φτ − Φ∗)− 2η2dL2

σΨ
)

+ wT+1(DΨ|µ
∗

µt+1 −DΨ|µ
∗

µt ) for t = 1, . . . , T.

St =

T∑
i=t

Zi, for t = 1, . . . , T + 1.

(4)

We analyze the moment generating function of St condi-
tioned on Fτt . By convention, we let τt = t if Dt = ∅, thus
τ1 = 1. The core result, as shown in Theorem 1 is a Chernoff-
type of bound that gives rise to the main concentration
argument of our interest.

Theorem 1: Suppose that {wt} satisfies that, wt+1 +

w2
t+1

648d3η2σ2

σΨ
≤ wt, and wt+1η

2d2 ≤ σΨ

432dσ2 . Then, it holds
that for every 1 ≤ t ≤ T with probability 1,

E[exp(St)|Fτt ] ≤ exp((wt − wT+1)DΨ|µ
∗

µt + C

T∑
i=t

wi+1η
2),

(5)
where the constant C := 324σ2d3σ−1

Ψ (8 + κ2).
The proof, which is deferred to the Appendix, relies on

an induction approach. The intuition behind this approach
is that propagation of subgaussian behavior scales with d2,
while the subgaussianity of the maxima of empirical process
scales with d. Thus, the stochastic error of the per-iterate
upper estimate scales with d3.
DMD attains Non-equilibrium With all the preparations
above, we now turn to the non-equilibrium analysis. Corollary
1 comes from the fact that the stochastic fluctuation will be
absorbed by the sequence {wt} under certain conditions.

Corollary 1: Let wT+1 = σΨ

1296d3σ2η2(T+1) and wt =

wt+1 +
648w2

t+1d
3η2

σΨ
for all 1 ≤ t ≤ T . The sequence

{wt} satisfies the condition required by Theorem 1, and
for δ ∈ (0, 1), the following events hold with probability at
least 1− δ:

1

T

T∑
t=1

(Φ(µt)− Φ∗) ≤ O

(
DΨ|µ

∗

µ1

ηT
+

σ2

σΨ
d3(1 + ln(

1

δ
))η

)
,

(6)
and

DΨ|µ
∗

µT+1 ≤ O
(
DΨ|µ

∗

µ1 +
σ2

σΨ
d3(1 + ln(

1

δ
))η2

)
. (7)

Setting η =

√
DΨ|µ

∗
µ1

σ2

σΨ
d3(1+ln( 1

δ ))T
, we have

1

T

T∑
t=1

(Φ(µt)− Φ∗) ≤ Õ

d
3
2

√
σ2

σΨ
DΨ|µ

∗

µ1 (1 + ln( 1δ ))

T

 .

(8)
Proof: For simplicity, let cd := 108d3. We first show

that the sequence {wt} satisfies the conditions required by
Theorem 1:

wt+1 + w2
t+1

6cdη
2σ2

σΨ
≤ wt,

wt+1η
2

σΨ
≤ 1

4cdσ2
.

Let A = 6cdσ
2σ−1

Ψ η2(T +1). Set wT+1 = 1
2A . For 1 ≤ t ≤

T , set wt such that wt+1+w2
t+1

6cdη
2σ2

σΨ
= wt, the first condi-

tion is automatically satisfied. To verify the second condition,
notice that in this setup, wtη

2 ≤ η2

A = σΨ

6cdσ2(T+1) ≤
σΨ

4cdσ2 .

Now let K = (w1−wT+1)DΨ|µ
∗

µ1 +C
∑T

t=1 wt+1η
2+ln( 1δ ).

By Markov inequality and Theorem 1,

P[S1 ≥ K] ≤ exp(−K)E[exp(S1)]

≤ exp(−K) exp((w1 − wT+1)DΨ|µ
∗

µ1 + C

T+1∑
t=2

wtη
2)

= δ.
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Since S1 =
∑T

t=1 wt+1η
∑

τ∈Dt
(Φ(µτ ) − Φ∗) −

2dL2

σΨ

∑T
t=1 wt+1η

2 + wT+1(DΨ|µ
∗

µT −DΨ|µ
∗

µ1 ), we have that
with probability at least 1− δ,

T∑
t=1

wt+1η(
∑
τ∈Dt

Φ(µτ )− Φ∗) + wT+1DΨ|µ
∗

µT+1

≤ w1DΨ|µ
∗

µ1 + (
2dL2

σΨ
+ C)

T∑
t=1

wt+1η
2 + ln(

1

δ
).

Since wT+1 = 1
2A and 1

2A ≤ wt ≤ 1
A for 1 ≤ t ≤ T + 1,

we plug them into above and obtain

η

T∑
t=1

∑
τ∈Dt

(Φ(µτ )− Φ∗) + DΨ|µ
∗

µT+1

≤ 2DΨ|µ
∗

µ1 + 2(
2dL2

σΨ
+ C)η2T + 2A ln(

1

δ
)

≤ 2DΨ|µ
∗

µ1 + 2(
σ2

σΨ
(B +A ln(

1

δ
)))η2T,

where B = O(d3). Dividing both sides by η yields

1

T

T∑
t=1

(Φ(µt)− Φ∗) ≤
DΨ|µ

∗

µ1

ηT
+ 2(

σ2

σΨ
B +A ln(

1

δ
))η

≤ O

(
DΨ|µ

∗

µ1

ηT
+

σ2

σΨ
d3(1 + ln(

1

δ
))η

)
.

and DΨ|µ
∗

µT+1 ≤ 2DΨ|µ
∗

µ1 + 2( σ2

σΨ
(B +A ln( 1δ )))η

2T . Setting

η =

√
DΨ|µ

∗
µ1

σ2

σΨ
d3(1+ln( 1

δ ))T
gives the results.

Corollary 1 immediately implies resilience in the non-
equilibrium sense, which is summarized in Proposition 1.
A case study for simulated delay attack over the Sioux Fall
network is omitted due to page limit1.

Proposition 1: For δ ∈ (0, 1), the DMD Algorithm 1 with
η = O(

√
d−3T−1) is (ϵ, δ)-resilient, which gives a (ϵ, δ)-

WANES, with ϵ = Õ(
√

d3

T ).
Proof: For µ1, . . . , µT produced by the DMD algorithm,

by the convexity of Φ∗, Φ(µ̄T )−Φ∗ ≤ 1
T

∑T
t=1 Φ(µ

t)−Φ∗

which satisfies Corollary 1 with 1− δ, hence the statement
follows.

VI. CONCLUSION

In this paper, we have investigated the resilience of DMD-
based INS under adversarial delay attacks. We made some
mild assumptions to handle the challenges that arose in finite-
time analysis, obtaining a high probability bound for the
performance loss. With the aid of the non-equilibrium notion,
we have demonstrated the self-restoring capability of INS to
recover from information-delaying attacks.

Future research would focus on developing scalable and
distributed strategies to handle adversarial delays to improve

1Interested readers can refer to https://github.com/UnionPan/
Wardrop_attack.git.

the defense mechanism in the face of cyber-physical threats.
We would also refine the analysis of concentration arguments,
improving the order of existing results to match the lower
bound in the deterministic setting.
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