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Abstract— The Common Information (CI) approach provides
a systematic way to transform a multi-agent stochastic control
problem to a single-agent partially observed Markov decision
problem (POMDP) called the coordinator’s POMDP. However,
such a POMDP can be hard to solve due to its extraordinarily
large action space. We propose a new algorithm for multi-
agent stochastic control problems, called coordinator’s heuristic
search value iteration (CHSVI), that combines the CI approach
and point-based POMDP algorithms for large action spaces. We
demonstrate the algorithm through optimally solving several
benchmark problems.

I. INTRODUCTION

Multi-agent control problems arise in a number of appli-
cations including in teams of autonomous agents or robots
carrying out a mission, in communication networks with
multiple users and in distributed systems like the smart grid.
The problem typically involves multiple agents with po-
tentially different information taking actions and interacting
with a dynamic system. In cooperative multi-agent problems,
the agents’ goal is to optimize a shared performance metric.

There are several structural approaches to transform or
decompose a multi-agent control problem into single-agent
control problems. One of these approaches is the common
information (CI) approach [2]. In this approach, a multi-agent
control problem is transformed into a single-agent partially
observed Markov decision problem (POMDP) by assuming
the presence of a fictitious player, called the coordinator.
At each time, the information available for each agent is
partitioned into two parts, the common information and the
private information. At each time, instead of letting each
individual agent decide on their actions, the coordinator se-
lects a prescription for each agent, which is a mapping from
that agent’s private information to its actions. The choice
of prescription is based solely on the common information.
In principle, the coordinator’s problem can be solved using
single-agent POMDP algorithms.

Single-agent POMDPs are nevertheless not easy to solve.
Exact value iteration methods of solving POMDPs through
updating a set of support vectors of the value function,
namely α-vectors, were introduced in [3], [4]. However,
these methods were practical only for problems with very
few states [5]. A class of approximate solution methods,
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called point-based methods [5] have been quite successful in
approximately solving POMDP problems with hundreds or
thousands of states. These methods are built on the following
premise: Instead of computing all α-vectors, one can effi-
ciently approximate the Bellman update through point-based
backup procedures, i.e., computing a relatively small subset
of α-vectors representing the gradients of the updated value
function at certain belief points (see [5] for a comprehensive
survey and a tutorial on such methods).

However, compared to a typical single-agent POMDP, a
coordinator’s POMDP has an astronomically large action
space, since its actions are mappings. (Even a seemingly
small problem like DecTiger (2,1,β) (see definition in [1])
has millions of actions.) The huge action space creates major
challenges in the use of state-of-the-art point-based methods
to coordinator’s POMDPs because: (1) The backup procedure
requires solving discrete optimization problems over the
action space. (2) The belief exploration processes of certain
point-based methods [6], [7] also require solving discrete
optimization problems over the action space. Therefore, even
though the CI approach transforms a multi-agent problem
into a single-agent one, there’s still a need for a specialized
algorithm to solve these specialized single-agent problems.

In this work, we present a new algorithm for multi-
agent control that combines the CI approach with point-
based POMDP solution methods for large action spaces. We
demonstrate the performance of the new algorithm on several
benchmark problems with huge action spaces.

Related Work: While many theoretical results have been
developed using the CI approach [2], [8], there is a lack of
efficient planning algorithms based on this approach. As a
result, empirical results have been established either in the
case of very small private information spaces [9], or through
machine learning techniques [10].

The model of Dec-POMDP is a multi-agent extension of
POMDP that has been studied extensively (see [11] for a
survey), where point-based methods have been applied (e.g.
[12]). In many Dec-POMDP algorithms, the policy are rep-
resented as policy trees [12], whose size grows exponentially
in time horizon. Therefore, such algorithms require a huge
amount of memory and can only solve small finite horizon
problems. There have also been Dec-POMDP algorithms
designed for infinite horizon problems [13], [14]. However,
those algorithms do not provide an optimality guarantee.

Point-based methods have been applied to multi-agent
problems with partial history sharing. For example, in [15],
the authors applied point-based methods to finite horizon
problem with communication between agents. However, to
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the best of our knowledge, our work is the first to combine
the CI approach with point-based POMDP methods on
general infinite-horizon multi-agent problems.

Contributions: (1) In the context of works related to the
CI approach, we present the first practical algorithm to solve
a general coordinator’s POMDP with large action spaces.
(2) In the context of the Dec-POMDP literature, we provide
a memory-efficient anytime algorithm for infinite horizon
problems with performance bounds.

A quick word on notations: ∆(X ) is the set of probabil-
ity distributions on a set X . For a function f : X 7→ ∆(Y),
we write f(y|x) = [f(x)](y). The letter P is reserved for
transitions kernels. Any expression that involves a belief
b ∈ ∆(S) in place of a state s ∈ S (e.g. P(o|b, a), r(b))
is understood as a weighted average.

II. PRELIMINARIES

A. Problem Formulation

1) Multi-agent Control with Partial History Sharing:
We consider an infinite-horizon multi-agent control model
characterized by a tuple E = (I,S,A,M,O, b0,P, r, β)
where I is a finite set of agents; S is a finite set representing
the state space; A =

∏
i∈I Ai, where Ai is a finite set

representing the action space of agent i; M =
∏

i∈I Mi,
where Mi is a finite set representing the domain of private
information for agent i; O is a finite set representing the
domain of common observation; b0 ∈ ∆(S × M) is the
initial joint distribution on the state and private information
of all agents; P : S × M × A 7→ ∆(S × M × O) is the
state-information joint transition kernel; r : S × A 7→ R is
the instantaneous reward; β ∈ (0, 1) is the discount factor.

Player i’s information space at time t is Hi
t = (O)t ×

Mi which represents the common observations from time
1 to t along with the private information at time t. Actions
may or may not be commonly observed by all agents. If any
ait is commonly observed by all agents, then it is part of
the common observation ot+1. The goal in this problem is
to choose a joint strategy π = (πi)i∈I , π

i = (πi
t)

∞
t=0, π

i
t :

Hi
t 7→ Ai to maximize the expected total discounted-reward

J(π) := Eπ [
∑∞

t=0 β
tr(st, at)].

As shown in [2], this model can be used to model many
decentralized decision and control problems with partial
history sharing i.e. problems where certain subsets of agents’
action and observation history are commonly known.

2) Transformation into Coordinator’s POMDP: Follow-
ing the CI approach introduced in [2], we transform the
problem E into an equivalent POMDP problem, called the
coordinator’s POMDP, which can be characterized by a tuple
Ē = (S̄, Ā,O, b0, P̄, r̄, β), where O, b0, β are the same as in
the original model; S̄ = S × M is the (augmented) state
space; Ā =

∏
i∈I Āi is the (new) action space, where Āi is

the set of mappings (called prescriptions) from Mi to Ai;
P̄ : S̄ × Ā 7→ ∆(S̄ × O) is the combined state transition
and observation kernel; r̄ : S̄ × Ā 7→ R is the instantaneous
reward function. P̄ and r̄ are respectively defined by

P̄(s̄′, o|s̄, γ) = P(s̄′, o|s̄, a) ∀s̄, s̄′ ∈ S̄, o ∈ O, γ ∈ Ā

r̄(s̄, γ) = r(s, a) ∀s̄ ∈ S̄, γ ∈ Ā

where s̄ = (s,m), a = (ai)i∈I and ai = γi(mi).
In this paper, we focus on the coordinator’s POMDP and

its variations. Without lost of generality, we remove the over-
line of S̄ and assume that the private information is a fixed
function of the state. For s ∈ S, we use ms = (mi

s)i∈I ∈ M
to denote its corresponding private information. We also drop
the overline of P̄ and r̄ to simplify expressions. Note that
we still use Ā to represent the space of prescriptions to
distinguish it from the space of actions of individual agents.

Remark 1. The coordinator’s POMDP can have a pro-
hibitively large action space even for seemingly small prob-
lems like the DecTiger problem with N ≤ 3 doors and 1-step
delayed information sharing (described in [1]). For example,
with N = 2, we have |Ā| =

∏2
i=1 |Ai||Mi| = 314 ≈ 4.78×

106; with N = 3, we have |Ā| =
∏2

i=1 |Ai||Mi| = 426 ≈
4.50 × 1015. For POMDPs with such extraordinarily large
action space, most computers wouldn’t even have enough
memory to initialize off-the-shelf POMDP solvers, let alone
running them.

B. Point-based Algorithms for POMDPs

In this section, we provide an overview of point-based
algorithms for POMDPs and their common ingredient: the
point-based backup operation. We then discuss the heuristic
search value iteration (HSVI) algorithm [6], which will be the
basis of our proposed algorithm. To describe the algorithms
in this section, we consider a standard single-agent infinite-
horizon discounted reward POMDP defined through a tuple
E = (S,A,O, b0,P, r, β).

1) Point-based Algorithms and the Backup Operation:
For a POMDP, the value function is defined as a function
of the belief state and the Bellman operator is defined as
follows: For any function V : ∆(S) 7→ R,

TV (b) := max
a∈A

[
r(b, a) + β

∑
o∈O

P(o|b, a)V (τ(b, a, o))

]
where b ∈ ∆(S) and τ is the belief update function.
A piecewise-linear convex function V can be written as
V (b) = maxα∈V αT b where V is a finite collection of
|S|−dimensional vectors. The Bellman update of such a
function is given by TV (b) = maxa∈A maxµ∈VO (αa,µ)

T
b

where VO is the set of all mappings from O to V and

αa,µ(s) := r(s, a) + β
∑
o∈O

∑
s′∈S

P(s′, o|s, a)µo(s
′).

Therefore, the value iteration algorithm can be achieved
by updating the collection of α-vectors [3], [4], [5] through

V(k+1) := {αa,µ : a ∈ A, µ ∈ (V(k))O}. (1)

However, computing (1) is inefficient: We can see that
|V(k+1)| = |A| · |V(k)||O|, i.e. the growth of number of α-
vectors is doubly exponential. Even with procedures to prune
out dominated α-vectors [4], the exact value iteration is still
ill-equipped to handle large state and action spaces [5].
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While computing all the α-vectors in a Bellman update is
expensive, computing an α-vector that supports the updated
function at a particular belief point b ∈ ∆(S) (i.e. TV (b) =
αT b and TV (b̃) ≥ αT b̃ for all b̃ ∈ ∆(S)) is not: one can
compute this vector αb through

αb,a,o := argmax
α∈V

∑
s∈S

b(s)
∑
s′∈S

P(s′, o|s, a)α(s′) (2)

∀a ∈ A, o ∈ O

αb,a(s) := r(s, a) + β
∑
o∈O

∑
s′∈S

P(s′, o|s, a)αb,a,o(s′) (3)

∀s ∈ S, a ∈ A

αb := argmax
αb,a:a∈A

(
αb,a

)T
b (4)

The above procedure is referred to as the (point-based)
backup procedure at belief point b. Point-based algorithms
for POMDPs are based on the idea that by using backup
procedures at a carefully selected subset of belief points,
one can obtain a set of α-vectors that provide a good
approximation of the optimal value function.

2) Heuristic Search Value Iteration: The HSVI algorithm
is a point-based algorithm first introduced in [6]. In addition
to a set of α-vectors that represent a lower bound for the
optimal value function V ∗, the algorithm maintains an upper
bound of V ∗ to guide exploration of beliefs. The algorithm
repeatedly performs depth-first searches to select a few
belief points and updates upper and lower bounds at those
beliefs. HSVI is an anytime algorithm: the algorithm can be
terminated either by user or after certain stopping criteria is
met. When it terminates, it returns the direct control policy1

associated with the α-vectors.
The lower bound function L in HSVI is represented as

a set of α-vectors. Its update function L.Update(b) adds a
new α-vector to the set by performing the backup operation
at b as described in (2) – (4). The algorithm also periodically
prunes certain dominated α-vectors in the set.

Unlike the lower bound, the upper bound function in HSVI
is represented through the lower convex hull of a set of
isolated points (b, v̄b) ∈ ∆(S) × R, i.e., let B be a matrix
whose n column vectors represent n beliefs and v̄ ∈ Rn be a
vector representing the upper bound values of those beliefs,
then for any b ∈ ∆(S),

U(b) = min{v̄T η : η ∈ Rn
+,Bη = b.} (5)

This representation is based on the fact that V ∗ is convex.
Let T be the Bellman operator as defined in Section II-B.1.
The U .Update(b) procedure computes

v̄b := TU(b) = max
a∈A

r(b, a)+β
∑
o∈O

P(o|b, a)U(τ(b, a, o))

and then adds (b, v̄b) to the point set used for convex hull.
The algorithm also removes redundant points in the set
periodically.

1The direct control policy [16] can be described as follows: At belief b,
find α∗ ∈ V that maximizes αT b, and take the action a∗ associated with
α∗, i.e. the maximizing action in (4) when α∗ was initially computed.

III. COORDINATOR’S HSVI ALGORITHM

As noted earlier, compared to a regular single-agent
POMDP, a coordinator’s POMDP will have an exponentially
large number of actions. This makes both the lower bound
and upper bound update of HSVI infeasible. More specifi-
cally, in the backup operations (2)-(4), we need to first solve
|Ā|×|O| discrete optimization problems in (2) and then solve
an optimization problem over Ā in (4). Also, to perform a
Bellman update for the upper bound at belief point b, the
HSVI algorithm needs to compute U(τ(b, γ, o)) for all pairs
of (γ, o) ∈ Ā × O. This is infeasible also due to the large
number of actions in a coordinator’s POMDP.

In this section, we introduce the Coordinator’s Heuristic
Search Value Iteration (CHSVI) algorithm, which combines
the CI approach with the HSVI algorithm. Instead of ap-
plying HSVI directly on the coordinator’s POMDP, we
apply HSVI on a multi-step extended form of coordinator’s
POMDP. Through the use of the extended form and the
structure of prescription space, we are able to simplify both
the upper bound and lower bound update operations, creating
a more practical algorithm.

We first describe the extended form of coordinator’s
POMDP. For the ease of illustration, consider I = {1, 2}
though the idea can naturally extend to more than two play-
ers. We derive an extended POMDP Ê from the coordinator’s
POMDP Ē = {S, Ā,O, b0,P, r, β} by extending each time
t into three stages: (t, 0), (t, 1), (t, 2). The state space is
S0 := S at (t, 0), S1 := S ×A1 at (t, 1), and S2 := S ×A
at (t, 2). The common observation space is {∅} at both (t, 0)
and (t, 1), and O at (t, 2). Only stage (t, 2) features an
instantaneous reward, which is r(s, a) for (s, a) ∈ S2. The
system evolves as follows:

1. At (t, 0), the coordinator chooses prescription γ1 ∈ Ā1

for agent 1 only. The state deterministically transits from
s ∈ S to (s, γ1(m1

s)) ∈ S ×A1.
2. At (t, 1), the coordinator chooses prescription γ2 ∈ Ā2

for agent 2 only. The state deterministically transits from
(s, a1) ∈ S ×A1 to (s, a1, γ2(m2

s)) ∈ S ×A1 ×A2.
3. At (t, 2), the coordinator has no action to take. The

state-information joint transition kernel is simply the same
P(s′, o|s, a) as defined in the initial model E .

The total reward for the new POMDP is given by∑∞
t=0 β

tr(s(t,2), a(t,2)). With some abuse of notation, for
γi ∈ Āi, we define γi(ai|mi) := 1{γi(mi)=ai}. The belief
update functions for the three stages are given by

[τ0(b, γ1)](s, a1) = b(s)γ1(a1|m1
s)

[τ1(b, γ2)](s, a1, a2) = b(s, a1)γ2(a2|m2
s)

[τ2(b, o)](s′) =

∑
(s,a)∈S×A P(s′, o|s, a)b(s, a)∑

s̃∈S
∑

(s,a)∈S×A P(s̃, o|s, a)b(s, a)

The extended coordinator’s POMDP Ê differs from the
coordinator’s POMDP Ē only in the ordering of events within
a time instant t but not in the total reward at time t and the
dynamics from t to t + 1. Therefore, Ê is equivalent to Ē :
Any strategy in Ê has a counterpart in Ē with the same total
reward and vice versa.
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In CHSVI algorithm (Algorithm 1), we apply the frame-
work of HSVI to the extended coordinator’s POMDP while
utilizing the special structure of the prescription space to
implement the update procedures more efficiently. In the
following sections, we describe the upper bound U and lower
bound L used in the CHSVI algorithm in detail.

Function CHSVI:
Input: A coordinator’s POMDP model

(S, Ā,O, b0,P, r, β)
Output: A belief based coordination policy π; an

upper bound for V ∗(b0) and lower
bound for V π(b0).

// ζ ∈ (0, 1) is a hyperparameter.
Initialize U and L;
while Stopping criterion not satisfied do

ϵ = ζ[U(b0)− L(b0)];
Explore(U,L, b0, ϵ);

π = DirectControlPolicy(L);
return π, U(b0), L(b0)

Function Explore(U,L, b, ϵ):
γ∗ = U .Update(b);
L.Update(b);
if U(b)− L(b) ≤ ϵ then return;
(b′, ϵ′) = ChooseNext(U,L, b, γ∗, ϵ);
Explore(U,L, b′, ϵ′);
U .Update(b);
L.Update(b);

Function ChooseNext(U,L, b, γ∗, ϵ):
Set ℓ ∈ {0, 1, 2} to be such that b ∈ ∆(Sℓ);
if ℓ < 2 then

return τ ℓ(b, γ∗), ϵ;
else

o∗ = argmaxo∈O P(o|b)[U(τ2(b, o))−
L(τ2(b, o))− ϵβ−1];

return τ2(b, o∗), ϵβ−1;
Algorithm 1: Coordinator’s HSVI Algorithm

A. Lower Bound Update

In CHSVI, we maintain three lower bound functions (sets
of α-vectors) corresponding to the three stages of t. Let
Lℓ denote the lower bound function and Vℓ denote the
corresponding set of α-vectors for stage ℓ (of some time t).
Let T ℓ be the Bellman operator for stage ℓ. We now describe
the update steps in detail.

Stage ℓ = 0, 1: In this stage, the coordinator picks a
prescription for agent i = ℓ+1. For b ∈ ∆(Sℓ), the Bellman
update of the lower bound at b is given by

[T ℓLℓ+1](b) = max
γi∈Āi

Lℓ+1(τ ℓ(b, γi))

= max
γi∈Āi

max
α∈Vi

∑
(sℓ,ai)∈Sℓ×Ai

b(sℓ)γi(ai|mi
sℓ)α(s

ℓ, ai) (6)

The optimization problem (6) can be solved via the
following steps:

γi,α(mi) := argmax
ai∈Ai

∑
sℓ∈Sℓ:mi

sℓ
=mi

b(sℓ)α(sℓ, ai) (7)

∀mi ∈ Mi, α ∈ Vi

J(α) :=
∑

sℓ∈Sℓ

b(sℓ)α(sℓ, γi,α(mi
sℓ)) ∀α ∈ Vi (8)

α∗ := argmax
α∈Vi

J(α) (9)

γi,∗ := γi,α∗
, (10)

where we have used the fact that for each fixed α ∈ Vi,
the optimization problem over γi ∈ Āi can be separated
into |Mi|-optimization problems over Ai. Then, we add the
following new alpha vector αb ∈ RSℓ

to Vℓ:

αb(sℓ) =
∑

ai∈Ai

γi,∗(ai|mi
sℓ)α

∗(sℓ, ai) ∀sℓ ∈ Sℓ. (11)

Remark 2. If we apply the point-based backup procedure
(2) – (4) directly at this stage, then the operation count
would be Θ(|S||V||Āi|), which grows exponentially in |Mi|
since |Āi| = |Ai||Mi|. In contrast, the operation count of the
procedure listed in (7) – (11) is Θ(|S||Vi||Ai||Mi|), which
is polynomial in all parameters involved.
Stage 2: For b ∈ ∆(S2) the Bellman update of the lower
bound at b is given by

[T 2L0](b) = r(b) + β
∑
o∈O

P(o|b) max
α∈V0

[τ2(b, o)]Tα

= r(b) + β
∑
o∈O

max
α∈V0

∑
s2∈S2

b(s2)
∑
s′∈S

P(s′, o|s2)α(s′)

where r(b) :=
∑

(s,a)∈S×A b(s, a)r(s, a).
Since we have no action in this stage, we can compute the

new alpha vector αb ∈ RS2

in the same way as in (2)-(4)
(except that there’s no action), i.e. we compute

αb,o := argmax
α∈V0

∑
s2∈S2

b(s2)
∑
s′∈S

P(s′, o|s2)α(s′)

∀o ∈ O (12)

αb(s2) := r(s2) + β
∑
o∈O

∑
s′∈S

P(s′, o|s2)αb,o(s′)

∀s2 ∈ S2 (13)

The lower bound update algorithm is given in Algo. 2.

Function L.Update(b):
// L stores three sets of α-vectors:

Vℓ, ℓ = 0, 1, 2
Set ℓ ∈ {0, 1, 2} to be such that b ∈ ∆(Sℓ);
if ℓ < 2 then

Compute αb with (7) – (11);
else

Compute αb with (12)(13);
Add αb to Vℓ;
Prune dominated vectors in Vℓ once in a while;

Algorithm 2: Lower Bound Update
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B. A New Upper Bound Representation

In this section, we propose a new upper bound represen-
tation for POMDPs, called α-constraints based upper bound.
The new upper bound is tighter than the ones used in the
original HSVI. Due to limited space, we only provide a brief
description of the new representation. Interested readers can
refer to [1] for details.

To describe the new upper bound representation, we first
note the dual form of (5) is

U(b) = max{bT y : y ∈ RS ,BT y ≤ v̄}, (14)

which can be directly interpreted as follows: The optimal
value function has an α-vector representation V ∗(b) =
maxα∈V∗ αT b, where V∗ represents the limit of V(k) defined
in (1). The maximization problem (14) provides an upper
bound for V ∗(b) since all α-vectors in V∗ satisfy the
constraints BTα ≤ v̄ (due to the fact that v̄ is an upper
bound for V ∗ at beliefs in B). In other words, (14) can
be seen as an α-constraint based upper bound, where the
upper bound function is constructed from a group of linear
constraints the set V∗ should satisfy.

Building upon this idea, we make use of other types of
linear constraints other than value function upper bounds,
e.g., α(s) ≥ vmin where vmin := mins∈S,a∈A r(s, a)/(1 −
β). Adding this to (14), we have

U(b) = max{bT y : y ∈ RS ,BT y ≤ v̄, y ≥ vmin1}.

to be a potentially tighter upper bound.
In summary, any valid linear inequalities that are satis-

fied by all vectors in V∗ can be added to the set of α-
constraints. This provides us a lot of flexibility compared to
the convex hull-based bounds. We next describe the update
of α-constraint based upper bound in extended coordinator’s
POMDPs. The update method described in the next section
is independent of the specific choice of α-constraints.

C. Upper Bound Update

We maintain three upper bound functions corresponding
to the three stages. Each upper bound function is represented
through a set of α-constraints as described in the previous
section. Let Mℓy ≤ wℓ represent the α-constraints (on y ∈
Sℓ) associated with stage ℓ. Let T ℓ be the Bellman operator
for stage ℓ. We now describe the update steps in detail:
Stage ℓ = 0, 1: In this stage, the coordinator picks a
prescription for agent i = ℓ+1. For b ∈ ∆(Sℓ), the Bellman
updated upper bound at b is given by

v̄b := [T ℓU ℓ+1](b) = max
γi∈Āi

U ℓ+1(τ ℓ(b, γi))

= max
γi∈Āi

max
y∈RSi

Miy≤wi

∑
(sℓ,ai)∈Sℓ×Ai

b(sℓ)γi(ai|mi
sℓ)y(s

ℓ, ai)

=: max
γi∈Āi

max
y∈RSi

Miy≤wi

J i(b, γi, y) (15)

Now, notice that if we treat each γi as a 0-1 indicator
vector in [0, 1]A

i×Mi

, then J i(b, γi, y) is bilinear in γi

and y: It is linear in γi for each fixed y and linear in y
for each fixed γi. Therefore, (15) is a bilinear program-
ming (BP) problem, which has been studied extensively in
the optimization as well as decentralized control literature.
Notably, in [17], the author provided a method to convert
bilinear programs to MILPs. Gurobi Optimization™ has also
developed specialized solvers for bilinear programs [18].
Remark 3. Even though bilinear programming problems are
NP-hard [19] in general, modeling the upper bound update
through BP still offers several advantages over the original
update method in HSVI (i.e. separately solving the inner
linear program in (15) for each γi ∈ Āi) for the following
reasons: (i) It allow us to apply systematic methods for BP
to avoid brute-force enumeration of prescriptions. (ii) Not all
BPs fall into the NP-hard category. (iii) It opens up the door
for approximate upper bound methods (e.g. certain relaxation
of the MILP reformulation [17] of BP).

Stage 2: For b ∈ ∆(S2), the Bellman update of the upper
bound at belief b is given by

v̄b = [T 2U0](b)

= r(b) + β
∑
o∈O

P(o|b) max
y∈RS

M0y≤w0

[τ2(b, o)]T y (16)

which can be computed by solving |O| linear programs.
The upper bound update algorithm is given in Algo. 3.

Function U .Update(b):
// U stores three sets of

α-constraints: Cℓ, ℓ = 0, 1, 2
Set ℓ ∈ {0, 1, 2} to be such that b ∈ ∆(Sℓ);
if ℓ < 2 then

Compute v̄b, γi,∗, the optimal value and
optimizer of the bilinear program (15);

else
Compute v̄b with (16);
Set γi,∗ to represent the null prescription;

Add bT y ≤ v̄b to Cℓ;
Prune redundant α-constraints once in a while;
return γi,∗;

Algorithm 3: Upper Bound Update

IV. EXPERIMENTAL RESULTS

We implemented the CHSVI algorithm in Python (https:
//github.com/dwtang/chsvi). All BP and LP involved in
the algorithm are solved with Gurobi Optimization Studio™.
The hyperparameter ζ is set to 0.85. We terminate the
algorithm when the gap between the upper and lower bounds
is less than 0.01 or if the run time has exceeded 24 hours.
The lower bounds are initialized through the fixed action
bound in the same way as in [16]. The α-constraints used
in upper bounds are initialized to be the marginal belief
based constraints obtained from a relaxed POMDP problem
where all private information are assumed to be common. We
adapt the same pruning strategy as HSVI: For lower bounds,
we only prune α-vectors that are pointwise dominated by
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another vector. For upper bounds, we remove redundant α-
constraints through solving linear programs.

We run the algorithm on several DecTiger instances
defined in [1]. The experiments are conducted on a computer
with Intel Xeon® E3-1231 v3 CPU (4 cores, 3.4Ghz) and
16GB RAM. The results are shown in Table I and Figure
1. Additional experimental results are provided in [1]. In
the first three instances, the algorithm is able to close the
gap between the upper and lower bound and find a near
optimal strategy. To the best of our knowledge, except when
analytical solutions are available, these are the first provably
optimal solutions for infinite-horizon multi-agent control
problems.

L(b0) U(b0) Time (s)
DecTiger (2,1,0.9) 32.7704 32.7792 56
DecTiger (2,1,0.99) 388.4035 388.4134 2081
DecTiger (3,1,0.9) 6.7139 6.7236 63781
DecTiger (3,1,0.99) 76.2553 222.2532 86483

TABLE I
EXPERIMENTAL RESULTS ON DecTiger (N, d, β).
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Fig. 1. Experimental Results on DecTiger (3, 1, β). The dotted line
represents the upper bound U(b0) and the solid line represents the lower
bound L(b0).

It took the algorithm more than 18 hours to reduce
the gap between upper and lower bound to 0.01 for
DecTiger(3,1,0.9). However, in hindsight, one can observe
that the lower bound arrives at a near optimal value relatively
quickly (At the 3 hour mark, the lower bound is already
at 5.9919, not too far from the final value of 6.7236). The
remainder of the algorithm mostly reduces the upper bound
to provide an optimality guarantee. This means that even if
we terminate the algorithm early for DecTiger(3,1,0.9), we
can still obtain a strategy with near optimal performance.
In DecTiger(3,1,0.99), the gap is still large at the 24 hours
mark. However, we conjecture that the solution reported at 24
hours is already close to optimal, and the gap will continue
to decrease with run time.

We would like to note that directly applying off-the-
shelf POMDP solvers to DecTiger is out of the question
on our computer: We have tried to apply the state-of-the-
art HSVI2 solver [16] on a coordinator’s POMDP with 25
states, 4 observations, and 210 actions/prescriptions. The
program ended up using all of the memory, causing the
computer to freeze. In comparison, coordinator’s POMDP
of DecTiger(2,1,β) has 74 states, 37 observations, and 314

actions/prescriptions, while DecTiger(3,1,β) has 435 states,
145 observations, and 426 actions/prescriptions.

V. CONCLUSIONS

In this work, we proposed the Coordinator’s Heuristic
Search Value Iteration (CHSVI) algorithm, which combines
the CI approach and point-based POMDP methods to solve
multi-agent stochastic control problems. Our algorithm al-
lows us to solve multi-agent control problems much more
efficiently than directly using point-based algorithms for
coordinator’s POMDP (see Remarks 1 and 2). Further, our
approach suggests several immediate future directions for
further improving scalability such as: (1) approximate upper
bound update methods for CHSVI; (2) combination of the
CI approach with other point-based algorithms such as
SARSOP[7]; (3) efficient methods to initialize α-constraints
for the upper bound representation.
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Kochenderfer, “Decentralized control of partially observable Markov
decision processes,” in Proc. IEEE CDC, 2013, pp. 2398–2405.

[12] J. S. Dibangoye, C. Amato, O. Buffet, and F. Charpillet, “Optimally
solving Dec-POMDPs as continuous-state MDPs,” J. Artif. Intell. Res.,
vol. 55, pp. 443–497, 2016.

[13] J. Pajarinen and J. Peltonen, “Periodic finite state controllers for
efficient POMDP and DEC-POMDP planning,” Proc. NIPS, 2011.

[14] J. S. Dibangoye, O. Buffet, and F. Charpillet, “Error-bounded approx-
imations for infinite-horizon discounted decentralized POMDPs,” in
Proc. ECML PKDD, 2014, pp. 338–353.

[15] S. Adhikari and P. Gmytrasiewicz, “Point based solution method for
communicative IPOMDPs,” in Proc. Euro. Conf. Multi-Agent Syst.
(EUMS), 2021, pp. 245–263.

[16] T. Smith and R. Simmons, “Point-based POMDP algorithms: Im-
proved analysis and implementation,” in Proc. 21st Conf. UAI, 2005.

[17] M. Petrik and S. Zilberstein, “Average-reward decentralized Markov
decision processes.” in Proc. IJCAI, 2007, pp. 1997–2002.

[18] “Nonconvex quadratic optimization,” https://www.gurobi.com/events/
non-convex-quadratic-optimization-2/, accessed: 03/21/2023.

[19] J. Tsitsiklis and M. Athans, “On the complexity of decentralized
decision making and detection problems,” IEEE Trans. Automat.
Contr., vol. 30, no. 5, pp. 440–446, 1985.

1437


