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Abstract— With the advent of advanced perception algo-
rithms, achieving long-term autonomy in vehicle platooning has
become a possibility. In this paper, we propose a framework
to evaluate the risk of misperception resulting from noisy
observations from the environment. Each vehicle relies on a
perception unit to understand its surroundings and estimate
the positions and velocities of other vehicles. We employ
the Expected Shortfall (Average Value-at-Risk) measure to
evaluate the risk of collision between pairs of vehicles and the
risk of violating traffic laws for each vehicle under possible
misperceptions. Obtaining an explicit expression for the risk
measure allows us to investigate potential trade-offs between
overall misperception-induced risks and network architecture.
Using our framework, we demonstrate how misperception of
highway traffic signs can cause phenomena similar to tailgating
and quantify its impact on the risk of such events. Our
results can also be used to identify vehicles that are highly
susceptible to misperception and to enhance the platoon’s
robustness concerning overall risk measures in the presence
of misperception. We validate our theoretical findings through
extensive simulations.

I. INTRODUCTION

The recent advancements in perception algorithms allow
autonomous vehicles to rely more on perception sensors such
as radar, sonar sensors, 2D/3D lidar and visual systems to
understand the environment and other agents [7, 23, 20].
No matter how well-trained and robust perception units are
designed, the observation from the environment could be
disturbed or damaged. Different environmental elements such
as rain or fog can significantly impair the visual sensors and
make them unreliable[1, 13, 15, 4]. Therefore misperception
of the environment and other cars is inevitable.

When uncertainties are introduced to a model, systematic
risk measures have proven to be one of the most reliable
methods to study the system’s safety. Measurements such as
Value-at-risk (VaR) and Expected Shortfall (Average Value-
at-risk (AVaR)) which have been previously developed to
study financial models [2, 16], have gained popularity in
studying the risk of events in dynamical network systems [3,
21]. VaR has been successfully employed to study problems
such as vehicle platooning [21, 11, 10], power network
synchronizing[22], and rendezvous problems for a team of
robots [12]. It is shown that not only can this framework be
used to study a single event such as collision, but it is also
a strong tool when cascades of events are involved.
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The emergence of advancements in perception algorithms
[18, 19], allowed autonomous vehicles to rely on their
observation of the environment rather than depending solely
on communication channels. Relying on the perception unit
benefits the platoon in two folds. First, it allows us to remove
the communication unit, which is vulnerable with respect to
adversarial attacks and failures. Additionally, communication
devices are expensive and may not operate consistently
across different brands of vehicles. On the other hand,
with recent advancements in visual perception algorithms[9],
almost all cars are equipped with cameras that allow them to
perceive the environments for safety measures and collision
avoidance. Like any other sensor, the perception unit is weak
to input disturbances. This motivated us to design control al-
gorithms to improve the overall robustness and performance
of the systems when perception noise and ambiguities are
present[8, 14].

In this paper, we consider two scenarios. First, we study
the risk stemming from misperception of other vehicles’
states. This scenario is similar to the case when a driver
fails to estimate the other vehicle’s state with accuracy. As
a result, there is a large potential for increased inter-vehicle
collision risk. In the second scenario, we investigate the case
where the perception unit fails to perceive the traffic signs.
This type of misperception is expected to happen rarely.
However, the result could be fatal and extremely expensive.
For instance, misperceiving a 45 mph speed sign with 65 mph
will make the affected vehicle similar to an aggressive driver,
which results in phenomena similar to tailgating. In both
scenarios, we are not limiting our study to the risk of inter-
vehicle collision and further investigating the risks induced
by violating posted traffic signs, a.k.a; violation risks.

Contribution: Building upon our recent works [21, 11, 12,
14], we extend our result to the fleet of autonomous vehicles
that rely on perception unit to coordinate their movements.
We introduce a renewed definition for the safe sets, which
allows us to extend our framework to investigate the Average
Value-at-Risk for inter-vehicle collision and violation of
the speed limits. We prove that the renewed risk measure
enjoys properties such as convexity, monotoncity and sub-
additivity. We further investigate how network architecture
affects the risks induced by misperception and draw the
fundamental inherent risk of misperception in autonomous
vehicle platooning.

Mathematical Notations: We follow the traditional nota-
tion for real-valued scalars, vectors, and matrices. The set
of real numbers is denoted by R. The non-negative and
positive scalars are represented by R+ and R++ respectively.
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We denote the vector of all ones by 1d ∈ Rd, the d
dimensional identity matrix by Id ∈ Rd×d and matrix
of all zeros by 0d ∈ Rd×d. We represent the set of d-
dimensional positive(semi)-definite matrices by Sd++ (Sd+).
For a given set H, we represent the cardinality of the set by
|H|, which measures the number of distinct elements of set
H. We employ operator ; to concatenate two column vectors
x, y ∈ Rd to obtain column vector [x; y] ∈ R2d.

Algebraic Graph Theory: We let G be the undirected graph
defined by G := (V, E), where V is the set of vertices, E is
the set of all edges. Throughout this paper we assume that
the the graph G has n vertices, |V| = n, and nE edges,
|E| = nE . Let us define the Laplacian matrix L by{

lij = −ωij for i ̸= j

lii =
∑n

j=1 ωij

, (1)

where ωij is the weights assigned to the edge (i, j). For
undirected graphs ωij = ωji therefore the Laplacian
matrix, L, is symmetric and positive semi-definite
[6]. We denote the eigenvalues of matrix L by
0 = λ1 ≤ λ2 ≤ · · · ≤ λn, and their corresponding
normalized eigenvector by qi. We let matrix
Q = [q1 | q2 | · · · |qn] and Λ = diag(0, λ2, · · · , λn).
Because the eigenvectors are normalized, Q is an orthogonal
matrix, i.e., QQT = QTQ = In and q1 = 1√

n
1n. We let Ni

and Di :=
∑n

j=1 ωij as the set of all neighbors and degree
of agent i respectively. The diameter of the graph, denoted
by DG is defined by the longest shortest path between all
pairs (i, j) ∈ V ×V . We denote the incident matrix of graph
G by matrix B ∈ Rn×|V|.

Probability Theory: A random vector x ∈ Rd is a vector
of random variables. The random vector y with normal
distribution which has expected values µ ∈ Rd and Covari-
ance matrix Σ ∈ Rd×d, is denoted by y ∼ N (µ,Σ). The
error function by erf : R → (−1, 1) defined by erf(x) :=
2
π

∫ x

0
e−t2dt. The expected value of the random vector y is

denoted by E[y].

II. PROBLEM STATEMENT

Let us consider a fleet of n autonomous vehicles traveling
on a highway. The agents are labeled in descending order
such that the nth agent is considered the leader of the platoon.
Each vehicle is equipped with perception sensors that allow
it to observe the environment and other vehicles. We assume
that each vehicle can instantly measure the distance and
velocity of the observed vehicles through the perception
unit. It is further assumed that each vehicle can provide a
confidence score for its observations, i.e., the more accurately
it can observe other vehicles and measure their states, the
higher the confidence it has in its observation. In addition, the
perception unit is responsible for identifying and reporting
the traffic signs, such as speed limits. The vehicle controller
unit uses the target velocity from the perception unit to
control the vehicle’s speed.

A stochastic differential equation (SDE) governs the dy-
namics of each agent in the network, i.e., the dynamic of

i’th agent is given by

dx
(i)
t = v

(i)
t dt

dv
(i)
t = u

(i)
t dt+ gdξ

(i)
t

(2)

where x
(i)
t ∈ R, v(i)t ∈ R and ξ

(i)
t ∈ R are position, velocity

and the exogenous disturbance of ith agent. The exogenous
disturbance, ξ(i)t , is modeled by Brownian motion, i.e.,

E[ξ(i)t ] = 0, E[ξ(i)t ξ(i)τ ] = t− τ, (3)

for 0 ≤ τ ≤ t. Design of control input u(i)
t aims to achieve

three goals:
1) Maintain the inter-vehicle distances between the at d.
2) Agents velocities reach consensus.
3) Ensure that the agents follow the traffic signs to avoid

possible penalties.
To achieve the first two objectives following the control

policy was suggested by [21]

û
(i)
t :=

n∑
j=1

ωij

(
v
(j)
t − v

(i)
t

)
+ β

n∑
j=1

ωij

(
x
(j)
t − x

(i)
t − (j − i)d

)
,

(4)

where β ∈ R++ is the tuning parameter to balance between
the consensus of the velocities and distances. In order to
achieve the third objective, we propose an updated version
of the control policy (4). The modified policy is given by

u
(i)
t := γ

(
v̄
(i)
t − v

(i)
t

)
︸ ︷︷ ︸

Target Velocity tracking

+û
(i)
t ,

(5)

where γ ∈ R++ is constant to adjust the vehicle’s desire to
follow the target velocity v̄

(i)
t , which is provided through

perception as a result of observing the speed signs. Per-
ception measurement has proven to be robust and reliable.
However, the perception unit relies on cameras and other
sensors, where the input can become disturbed. As a result,
there could be mismeasurement and misclassifications of the
objects. The noise enters the system through the control
input, û

(i)
t , defined in (4). Authors in [8] showed that the

perception noise could be modeled as an additive disturbance
to the measurements. We model the disturbed control signal
by

û
(i)
t :=

n∑
j=1

ωij

(
v
(j)
t − v

(i)
t + gvx

(ij)
t

)
+ β

n∑
j=1

ωij

(
x
(j)
t − x

(i)
t − (j − i)d+ gxy

(ij)
t

)
,

(6)

where y
(ij)
t and x

(ij)
t are the disturbance of the perception

unit. Constants gx, gv ∈ R++ are indicators for noise ampli-
tude on the velocities and position estimation, respectively.
We assume that y

(ij)
t and z

(ij)
t are white noise with mean

zero and covariance ςij .
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During vehicle platooning, we assume that the underlying
graph topology is fixed. Furthermore, agents are expected
to have a certain distance from each other. In practice, the
accuracy of the perception-based measures is significantly
impacted by the distance between two vehicles. We aim to
compensate for such distance-related errors by assuming that
each vehicle has a reliable estimation of ςij based on the
priory information and the underlying graph. When there
is no prior information available, we assume that ∀(i, j) ∈
V the ςij = 1. The prior data provide us with reliable
information regarding the confidence of each perception unit
in estimating other agents. Therefore, we will assign weights
of the graph G based on the available information byωij =

1

ςij
if(i, j) ∈ V

ωij = 0 otherwise
. (7)

When an agent has access to high-quality information about
another agent, they are more likely to assign trust to their
observations and the control law they employ. Conversely,
agents with limited ability to observe and estimate the states
of other agents may assign less confidence to their observa-
tions and control laws. In case when there are no prior in-
formation available, we assume that the misperception noise
across the graph is uniform. The second source of ambiguity
in the perception unit is the identification and classification
of traffic signs. Despite the advances in training of perception
models, the potential for misperceiving environmental data
remains to be present, particularly when taking into account
the combination of vehicle motion and the observation noise.

The problem is to quantify the risk of systematic events
when the platoon relies on the perception unit to perceive the
environment and other cars. The events we are considering
are the inter-vehicle collision and violation of posted traffic
signs on the highway. Removing the communication unit
would make the agents interact implicitly in achieving con-
sensus and maintaining the inter-vehicle distance. Explicit
quantification of systematic risk allows us to revile the
relation between the risk measures with underlying graph
G, misperception ambiguities, and exogenous noise.

In Section III we obtain the stationary distribution of
the inter-vehicle distances and velocities. Section IV is
designated to define the AVaR risk measure and computa-
tion of explicit expressions for both risks of collision and
violation. We also discuss the inherent risks associated with
misperceptions in Section IV. We present the case study for
risk analysis of vehicle platooning under misperception in
section V.

III. STATIONARY BEHAVIOR OF NETWORK

In vehicle platooning, vehicles adhere to their steady-state
behavior. If a transient event occurs, they tend to return to
their stationary distributions relatively fast [21]. Therefore in
this paper, we concentrate on studying the risk of undesired
events based on the stationary behavior of the agents. Let us
define new set of coordinates zt and νt by

zt = QT (xt − y), and νt = QTvt, (8)

where y := [d; 2d; · · · ;nd] is the vector of desired inter-
vehicle distances.

Lemma 1. Let us assume that the vehicles have perceived
the vector of target velocity by

v̄t =

{
0 t < 0

ṽ t ≥ 0
, (9)

and the weights of the graph G are assigned based on (7).
One can decouple the dynamics of the platoon by

dz
(i)
t = ν

(i)
t dt

dν
(i)
t =

(
−(λi + γ)ν

(i)
t − βλiz

(i)
t + γqTi v̄

)
dt+ gidz

(i)
,

(10)
where g2i = g2 + λ2

i (β
2g2x + g2v) and is standard Brownian

motion. Furthermore for all i ∈ {2, · · · , n} pairs (z
(i)
t , ν

(i)
t )

are independent from each other.

Lemma 1 demonstrates that we can decouple the dynamics
of the system even when the measurement of inter-vehicle
distances and velocities are affected by perception-induced
disturbances. The vector of inter-vehicle distances d̄ is
defined by

d̄ = ẼTQz + d1n−1, (11)

where Ẽ = [ẽ1, ẽ2, · · · , ẽn−1] and ẽi := ei+1 − ei.

Theorem 1. Let us assume that ṽ is the perceived target ve-
locity of vehicles, and perception disturbance follows regime
in (6). Then inter-vehicle distances d̄ reach a stationary
multivariate normal distribution, i.e. ,

d̄ ∼ N (µd̄,Σd̄) (12)

where
µd̄ =

γ

β
ẼTL†ṽ + d1n−1, (13)

and

σ2(i)

d̄ =

n∑
k=1

(ẽTi qk)
2λ

2
k(βg

2
x + g2v) + g2

2βλk(λk + γ)
, (14)

where σ2(i)

d̄
are the diagonal elements of matrix Σd̄. In

addition, for the velocities of vehicles, it follows

v ∼ N (
1

n
1T
n ṽ,Σv ), (15)

where

σ2(i)
v =

n∑
k=1

(eTi qk)
2λ

2
k(βg

2
x + g2v) + g2

2βλk
, (16)

where σ2(i)
v are the diagonal elements of matrix Σ(v).

Proof. Using Lemma 1 we can decouple the systems, and
the decouple systems’ states are independent. Combining the
results of Lemma 1 and elementary linear algebra, one can
prove the results.

In this paper, we want to focus our attention on the risk
induced by misperceptions. In other words, when there are no
exogenous disturbances applied to the vehicles, i.e., g = 0,
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and the only source of the disturbances is misunderstanding
each other velocities and distances. Thus, we can further
simplify the results presented in Theorem 1 by

σ2(i)

d̄ =

n∑
k=2

(ẽTi qk)
2λk(βg

2
x + g2v)

2β(λk + γ)
, (17)

σ2(i)
v =

(βg2x + g2v)

2β
Di, (18)

where Di the degree of agent i. Theorem 1 illustrate that the
misperception of posted speed signs on the highway doesn’t
influence the stability of the platoon. However, it’s going
to impact the expected inter-vehicle distance and consensus
velocities.

IV. MISPERCEPTION INDUCED RISKS

In this section, we discuss the risks induced by mispercep-
tion. We aim to investigate the events that interrupt vehicle
platooning, such as inter-vehicle collisions and violations of
traffic laws. In the latter case, even if one vehicle breaks
a traffic law and law enforcement requires it to stop, the
entire platooning will be impacted. From the perspective of
platoon design, traffic law violations, and collisions have
the same cost in terms of interrupting traffic flow. In order
to incorporate the severity of the failure and utilize the
properties of the risk measure, we consider the Average
Value-at-Risk measure (AVaR) [5, 17]. AVaR evaluates the
expected outcome of the system’s state when it surpasses the
Value-at-Risk (VaR). In this paper, we consider a variance
of the original AVaR that is defined using the parameterized
level sets Uδ , which quantifies the expected outcome, in
terms of δ ∈ [0 , 1], when the state (or the observable) of
the system is below its corresponding VaR. Let us define a
family of nested sets Uδ that is parameterized by {δk}∞k=0

with limk→∞ δk = 1. The set U1 represents the undesired
values of states, and Rn\U0 denotes the safe state values for
operation. The nested sets construct an alarm zone between
U∞ and Rn \ U0, and it satisfies following properties:

• Uδ2 ⊂ Uδ1 if δ1 < δ2
•

⋂∞
k=0 Uδk = Uδ∞ with limk→∞ δk = 1

The Value-at-Risk measure is then defined by

VaRε(x) := inf
δ

{
δ ≥ 0

∣∣ P{x ∈ Uδ} < ε
}
, (19)

and the corresponding AVaR is then defined by

Rε :=
1

ε

∫ ε

0

VaRαdα,

where 1− ε ∈ (0, 1) denotes the confidence level.

A. Risk of Inter-Vehicle Collision

To evaluate how dangerously a pair of vehicles is close to
a collision, we define the level sets

Uδ =

(
−∞,

d

c
(1− δ)

)
.

The zone for potential collisions in between the agents is
defined by d̄i ∈ (0, d/c), where parameter c ≥ 1 determines

the upper end-point of the collision set Uδ . For instance,
c = 2 means no risk is involved when the distance between
the pair of agents is in [d/2, d]. When c = 1, there is no
acceptable tolerance for deviations from the target distance d.
The AVaR measure for collision in a platoon of the inverted
pendulum is presented in the following theorem.

Theorem 2. Let us assume that the platoon of vehicles has
a stationary behavior given in Theorem 1 in the absence of
exogenous disturbance, and the perceived target velocity is
given by ṽ. The risk of encountering an inter-vehicle collision
for i’th pair is given by

Ri
ε,C :=


0, if σ

(i)

d̄
≤ 1

κϵ
(µ

(i)

d̄
− d

c ) or ε ≥ 1
2

1− c
d (µ

(i)

d̄
− κεσ

(i)

d̄
), if 1

κϵ
(µ

(i)

d̄
− d

c ) ≤ σ
(i)

d̄
≤ µ

(i)

d̄

κε

1, if
µ
(i)

d̄

κε
≤ σ

(i)

d̄

,

where κε =
e−ι2ε

ε
√
2π

, given that ιε = erf−1(1− 2ε).

The risk measure defined in Theorem 2 deviates from the
risk defined in our previous works [21, 11, 12]. The risk
measure Ri

ε,C takes values from interval [0 , 1] where one
indicates maximum risk. The updated definition of level sets
allows us to calculate the AVaR measure explicitly. Building
upon the results of Theorem 2 one can prove that the risk
measure Ri

ε,C enjoys properties such as convexity.

Corollary 1. The risk measure Ri
ε,C , defined in Theorem 2

is normalized, convex, monotone and sub-additive.

We need to emphasize that the risk measureRi
ε,C enjoys

most of the properties of a coherence risk measure except
positive homogeneity and shift invariant.

B. Risk of Violation of Speed Limits

The risk of breaking traffic laws while platooning is ex-
plored in this section when misperceptions emerge. Although
violation of traffic signs seems less costly for a platoon than
collision, both events would lead to disruption of the traffic
flow. We need to remove vehicles from the fleet and rewire
the control policy according to the new graph topology. Let
us assume that the maximum and minimum allowed speed
is given by v+ and v−, respectively. We define the violation
level sets by

Uv
δ =

(
v+(1 + δcv),∞

)
,

Lv
δ =

(
−∞, v−(1− cvδ)

)
,

where Uv+

δ and Lv−
δ are the corresponding unsafe level sets

for maximum and minimum allowed speed and cv ∈ R++.
The intervals [v+, v+(1 + δcv)] and [v−(1 − δcv), v

−] are
the potential violation regions. Speed limit violations are
inevitable. However, not all violations are treated the same.
Defining the potential violation region allows us to define
risk proportionally to violation cost. We define the risk of
violation of the lower and upper bounds of the speed limits
based on (19). The following Theorem helps us to calculate
the risk of violation of speed signs explicitly.
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Fig. 1: Risk of collision for k-path graphs (1 ≤ k ≤ 30).
Left no misperception of traffic signs, and right the middle
pair misperceived.

Theorem 3. Let us assume that the platoon of vehicles has
a stationary behavior described in Theorem 1 in the absence
of exogenous disturbance and the perceived target velocity
is given by ṽ. Then the risk of violation of maximum and
minimum speed limit are given by

Ri,±
ε,V :=


0, if σ(i)

v ≤ v±∓µ
(i)
v

κϵ
or ε ≥ 1

2

κεσ
(i)
v ±µ

(i)
v

cvv± ∓ 1
cv

if v±∓µ
(i)
v

κϵ
≤ σ

(i)
v ≤ v±(cv±1)∓µ

(i)
v

κϵ

1, if v±(cv±1)∓µ
(i)
v

κϵ
≤ σ

(i)
v

where κε =
e−ι2ε
√
2π

, given that ιε = erf−1(1− 2ε).

Finally, we let the overall risk of violation is the maximum
risk involved between the two speed limits and is given by

Ri
ε,V = max{Ri,+

ε,V ,R
i,−
ε,V }.

C. Inherent Risk of Misperception

Theorem 2 and 3 provide an explicit expression for AVaR
of collision and violation with respect to the graph G. It
permits us to investigate further how network architecture
interplay with the risks induced by misperceptions.

Theorem 4. Let us assume that graph G has diameter DG
and all agents perceive the traffic signs correctly. Then the
inherent Average Value-at-Risk is given by

R =


0, if C1(D) or ε ≥ 1

2

1− c+
2cκεgp√
4 + γnDG

if C2(DG)

1, if C3(DG)

, (20)

where g2p :=
βg2x + g2v

2β
and C□, □ ∈ {1, 2, 3} are given by

C1(DG) : DG ≤ 1

nγ

[
(
2cκεgp
c− 1

)2 − 4
]
,

C2(DG) :
1

nγ

[
(
2κεgp
c− 1

)2 − 4
]
≤ DG ≤ 1

nγ

[
(2κεgp)

2 − 4
]
,

C3(DG) :
1

nγ

[
(2κεgp)

2 − 4
]
≤ DG .

Theorem 4 allows us to find a fundamental risk for
collision-induced misperceptions among all possible graph

Fig. 2: Maximum collision risk for different k-path graphs
when different vehicles misperceive the speed limit.

structures for a given graph diameter. Similar bounds can be
derived for the risk of violation based on the fact that

gpDmin ≤ σ(i)
v ≤ gpDmax,

where Dmin and Dmax are the minimum and maximum
degree of the graph. The risk of violation is monotonically
increasing with the degree of agent i. As a result, increasing
the connectivity of an agent will result in a higher level of
violation risk.

The issue of modifying the graph to minimize risks
becomes more intricate when misinterpretations of traffic
signs are involved. When there are possible misperceptions
of traffic signs, Theorem 1 shows that the expected value of
the inter-vehicle distance is modeled based on the underlying
graph and position of the misperception. For instance, when
a vehicle perceives a larger speed limit than reality, it starts
approaching the car in front to accelerate the whole network.

V. CASE STUDY

A platoon of 30 agents traveling on a highway with control
policy (6) is considered. We investigate the risks induced
by misperceptions for the path graph, k-path graph, and
complete graph. k-path graph is the graph in which each
agent can observe k neighbors in front and back if such
neighbors exist. For all the results presented here, we set
n = 30, gp = 0.3, γ = 0.2, β = 1, d = 1.8, c = 2, cv =
0.1. The confidence level, ε is set at 1 percent. The lower and
upper bound for speed limits are assumed to be ±10 percent
of the true speed sign. We further assume that agents might
misperceive the posted traffic signs as 10 percent more than
the posted sign.

A. Complete Graph

The complete graph has a symmetric structure where
λi = ωn, for i ∈ {2, · · · , n} and ω is the uniform weight
across the graph. It is immediate that the risk of violation
is uniform across the graph and maximized compared to
all other graphs. The complete graph localizes the effects
of misperceptions of traffic signs. Thus, the only vehicles
affected by misperceptions are the immediate neighbors. We
must emphasize that the complete graph is unrealistic when
relying on the perception unit, and the risk of violation are
at maximum on this type of graph.
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(a) Path Graph. (b) k-path Graph (k = 4)

Fig. 3: Risk of collision for multiple misperceptions for path
and 4-path graph.

B. Path Graph

The path graph corresponds to the case where each agent
can only perceive the most immediate neighbor on the fleet.
Figure 1 illustrates that the path graph corresponds to the
minimum collision risk in the absence of traffic sign mis-
perception. However, when the middle pair misperceives the
speed limit, the risk of collision for all other fleet members
is extremely affected. In other words, the path graph is
extremely vulnerable with respect to the misperception of
traffic signs.

C. k-Path Graph

Figure 1 depicts the results for path graph, k-path (k ∈
{4, 7, · · · , 28}) and the complete graph. The risk of collision
in the absence of traffic sign misperception increases from
the path graph to the complete graph when we increase
k. Meanwhile, the robustness concerning misperceptions of
the traffic signs significantly increases with an increase of
k. When multiple vehicles misperceive the traffic signs, as
illustrated in Figure 3, the path graph starts to show a
significant increase in the Risk of collision. At the same
time, such misperceptions have minor effects on the 4-path
graph.

Figure 2 shows how the position of vehicles that mis-
perceives the traffic sign affects the maximum risks of
collision in the network with respect to different k-path
graphs. It is clear that extending the capability of vehicles
to perceive additional neighbor cars increases the overall
network’s robustness to misperceptions while keeping the
risk of violations at a minimum.

VI. CONCLUSION

We have formulated a systematic framework to investi-
gate the Average Value-at-Risk (AVaR) measure for a fleet
of autonomous vehicles that rely on a perception unit to
travel in coordination. The renewed AVaR measures enjoy
properties such as convexity, sub-additivity and monotonicity
which would help pave the road for solving the problem of
risk minimization over the network of agents. Quantifying
explicit expression for AVaR allows us to demonstrate how
the misperception of other agents’ states will propagate
through the network. We further quantify risks induced by
the misperception of traffic signs and how they interplay with
the underlay graph structure.
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