
Resilience of Time-Varying Communication Graphs for Consensus of

Changing Sets of Computing Agents

Vincent Schmidtke1 Zonglin Liu1 and Olaf Stursberg1

Abstract— System performance of distributed control systems
and networked computing systems is strongly dependent of
the underlying communication topology. This paper considers
the rarely studied problem of how the topology can maintain
resilience by reconfiguration in case that agents leave or join the
network during online operation. Existing optimization-based
approaches which reconfigure the entire network can typically
not be used in this case, since the computational burden for
online application is too high. Thus, this paper proposes a novel
combined offline-online scheme which optimizes the topology
for high convergence rate (of e.g. consensus problems) while
providing guarantees for the robustness against agent failures.
In the offline part, an optimization of the entire topology
is carried out using novel constraints to prepare resilience
of the online procedure. For the latter, the proposed scheme
guarantees that robustness is maintained for joining agents and
if a specified number of agents leave the network. In simulation,
the proposed scheme is compared to existing approaches and the
advantages of the online-offline procedure are demonstrated.

I. INTRODUCTION

Multi-agent systems can be found in various applications

today, most of which are large-scale systems, such as sets of

autonomous vehicles, UAV swarms, or autonomous industrial

robots. The individual agents are often assumed to have their

own computing unit and can exchange information over a

communication network. Among others, consensus problems

for a group of networked computing agents are often con-

sidered in literature [1]–[3]: Let a set N = {1, . . . , N} of

agents be given which communicate over an undirected graph

G = (N , E), with E containing the available communication

edges. For a connected graph G and arbitrary initialization

of the agents’ states xi(t0) ∈ R
n, i ∈ N at time t0, consider

the goal of reaching consensus, i.e., the local variables xi(t)
converge to a common value 1

N

∑N

j=1
xi(t0) for t → ∞

when using the simple update rule:

ẋi(t) =
∑

j∈Ni

(xj(t)− xi(t)), t ≥ t0, (1)

in which Ni ⊆ N denotes the set of agents that can

communicate with i.

Now focus on the case that the set of agents participating

in the task varies over time, as may occur, e.g., due to

malfunction of certain agents, or if new agents try to join

the set. Since the consensus value 1

N

∑N

j=1
xi(t0) depends

explicitly on the participating agents, a changing set of agents

first of all alters the value. Even if this is acceptable (since

*This work has been financially supported in part by the German
Research Foundation (DFG) through the project CoInCiDE.

1Control and System Theory, EECS, University of Kassel, Germany
{v.schmidtke, z.Liu, stursberg}@uni-kassel.de

a consensus is still reached), the following problems may

occur when using (1): 1). The graph may loose connectivity

if certain agents leave the network. 2). Given a current

graph, it may not be possible to establish links to joining

agents due to limitations of the communication bandwidth

(possibly instantiated by a maximum number of connections

per agent). 3). A reconfiguration of the existing graph may

be costly and consume too much time.

Although the topic of resilient consensus for time-varying

agents is important for applications such as vehicle coordi-

nation or plug-and-play scenarios in electrical networks, this

problem has found only little attention in research so far.

For most work considering consensus problems with time-

varying graph, the set of participating agents is fixed, while

the communication edges are optimized in order to increase

the convergence rate, see [4], [5], [6]. The optimization

of the edges in that work is achieved by solving mixed-

integer semi-definite programming (SDP) problems, which

theoretically can be applied to reconfigure existing graphs

for the given problem. But high computational complexity

often prevents the application, in particular for large sets of

agents, and if the graph has to be reconfigured fastly. This

situation was confirmed in [7] for a large group of drones,

where the graph has to be reconfigured upon failure of single

drones in order to preserve connectivity. Efficient heuristics

developed in the last years (see [8] and [9]) may be applied

to reduce the computation time, but frequent reconfiguration

of the graph also poses challenges to these approaches. In

two recent papers [10] and [11], methods to reconfigure the

graph for joining or leaving agents were introduced; in [11]

no optimization problem has to be solved for reconfiguration,

but the graph has to fulfil restrictive assumptions (such as

even numbers |Ni|).
To counteract negative consequences caused by changes

of the set of computing agents, the proposal in this paper

is to first optimize an initial graph by solving an mixed-

integer semi-definite programming (SDP) problem. This aims

at ensuring that the initial graph is robust against loss of con-

nectivity for the case of leaving agents. If agents are joining

in the online process, a strategy to quickly determine new

edges connecting to the existing graph is proposed, while no

reconfiguration has to be carried out. It is shown that the

resulting graph can always maintain the same robustness as

the initial graph, even if arbitrarily many new agents join the

network.

In the next section, the problem of time-varying agents is

described in detail, while the considered offline and online

strategies are introduced in Sec. 3 and 4. Effectiveness and

2023 62nd IEEE Conference on Decision and Control (CDC)
December 13-15, 2023. Marina Bay Sands, Singapore

979-8-3503-0123-6/23/$31.00 ©2023 IEEE 3474

efficiency of the proposed method comparing to existing ones

are demonstrated by numerical examples in Sec. 5, and the

paper concludes in Sec. 6.

II. GRAPHS FOR TIME-VARYING SETS OF AGENTS

Given an undirected communication graph G of a consid-

ered set of agents, the adjacency matrix A(G) ∈ R
N×N

of G is determined by setting the entry aij in the i-th

row and j-th column of A(G) equal to one if an edge eij
exists, and zero otherwise. Based on A(G), the Laplacian

matrix of the graph is determined by L(G) := D(G) −
A(G), where D(G) ∈ R

N×N is a diagonal matrix with

dii =
∑N

j=1
aij on the diagonal. After collecting all local

consensus variables xi(t), i ∈ N into a global vector

x(t) := [xT
1 (t), x

T
2 (t), . . . , x

T
N (t)]T ∈ R

N ·n×1, the dynamics

of x(t) is defined to:

ẋ(t) = −L(G)x(t), t ≥ t0, (2)

which depends explicitly upon the Laplacian matrix. The

eigenvalues of L(G) satisfy:

0 = λ1(L(G)) ≤ λ2(L(G)) ≤ . . . ≤ λn(L(G)) (3)

and λ2(L(G)) > 0 applies if the graph G is connected [12].

In addition, λ2(L(G)) also provides an upper-bound of the

convergence rate in (2).

For most consensus problems in practice, the (hetero-

geneous) communication bandwidth of each agent is also

limited [13], implying that only a few communication edges

can be maintained at any time. To this end, the following

assumption is introduced in this work:

Assumption 1: For any agent i ∈ N , the number of

admissible (undirected) communication edges is limited to

ni ∈ N
≥1, and |Ni| ≤ ni always holds.

In case agents are leaving or joining the consensus process,

a time-varying graph Gtk = (Ntk , Etk) is employed, where

tk > t0 k ∈ {1, 2, . . .} records the time for each change of

the set of agents. Note that the situation that more than one

agent leaves or joins at the same time can be regarded as a

sequence of single changes without progress of time.

If the update rule (1) is applied to the case of time-varying

graphs, the following problems may occur (in addition to

variations of consensus value and convergence rate):

1) The leaving of agents may disconnect a previously

connected graph (see Fig. 1), such that a consensus

cannot be reached any longer through (1);

2) The joining of new agents is not possible, if no

additional communication edges can be added to the

existing graph due to the restriction formulated in

Assumption 1, see Fig. 2;

3) To address the two problems above, the edges in the

current graph must be reconfigured, what can be very

complicated for large numbers of agents (especially if

a certain convergence rate must be maintained).

To address these problems, the edges in the initial graph

Gt0 are first optimized offline such that the graph remains

connected for a bounded number of agents leaving, and has

tk+1

Fig. 1: From tk to tk+1, the graph has lost its connectivity

due to the leaving agent marked by red dashed lines.

2 2

22

3

3

Fig. 2: The blue graph Gtk cannot connect to the joining

agent shown as a black circle in tk+1 without further

reconfiguration, since all agents have reached their maximum

number ni of communication edges (listed next to the

corresponding nodes).

sufficient capacity for additional edges to accommodate new

agents. In the online phase, only the edges for connecting

new agents have to be optimized (a task of relatively low

complexity), while the properties of the initial graph are

recursively guaranteed for arbitrarily many joining agents.

III. OFFLINE OPTIMIZATION OF THE INITIAL GRAPH Gt0

In the offline design phase, the communication edges for

the initial group of Nt0 := |Nt0 | agents are optimized by

solving a mixed-integer SDP problem. In detail, a binary

variable bij ∈ {0, 1} is used to encode whether an agent i

can communicate with agent j with i, j ∈ Nt0 . For bij = 1,

an edge exists between the two agents, and bij = 0 otherwise.

In addition, as the communication is undirected, bij = bji
holds for all i, j ∈ Nt0 . By using the binary variables, the

adjacency matrix A(Gt0) of the graph can be encoded by:

A(Gt0) :=













0 b12 · · · b1Nt0

b21 0
. . . b2Nt0

...
. . .

. . .
...

bNt0
1 bNt0

2 · · · 0













, (4)

and the Laplacian matrix is:

L(Gt0) :=





















∑

j∈Nt0

b1j −b12 · · · −b1Nt0

−b21
∑

j∈Nt0

b2j
. . . −b2Nt0

...
. . .

. . .
...

−bNt0
1 −bNt0

2 · · ·
∑

j∈Nt0

bNt0
j





















.

(5)

Given an integer-valued constant ρ > 1, a sufficiently large

constant m > 0 (that is larger than the left-hand side of (11)),

and a matrix 11
T of ones with dimension Nt0 × Nt0 , the

3475

following mixed-integer SDP problem is introduced, in order

to determine the communication edges in Gt0 :

Problem 1:

max
{bij},{cil},γ

γ (6)

s.t.: γ · I � L(Gt0) + γ · 11T , γ ∈ R (7)

bij ∈ {0, 1}, bij = bji, ∀i, j ∈ Nt0 (8)
∑

j∈Nt0

bij ≤ ni, ∀i ∈ Nt0 (9)

γ > ρ− 1 (10)

ni−
∑

j∈Nt0

bij≥l +m(cil−1), ∀l ∈ {1, . . . , ρ}, ∀i ∈ Nt0 (11)

∑

i∈Nt0

cil = 1, ∀l ∈ {1, . . . , ρ} (12)

ρ
∑

l=1

cil ≤ 1, ∀i ∈ Nt0 . (13)

Note that without the constraints (10) – (13), Problem 1

would be a standard problem for maximizing the second

largest eigenvalue λ2(L(Gt0)) of the Laplacian matrix: As

the eigenvalues of the (symmetric) matrix γ · 11T are

{0, 0, . . . , 0, γ}, the matrix inequality (7) ensures that γ

provides a lower bound of λ2(L(Gt0)) according to the

Weyl theorem [14]. By maximizing γ in (6), the eigenvalue

λ2(L(Gt0)) is thus also maximized, leading to a faster

convergence of (2) in case no agent is joining and leaving

the initial graph Gt0 .

The constraint (10) in Problem 1 defines a lower bound

of the optimized γ. This constraint aims at ensuring the

connectivity of the graph when agents are leaving the initial

graph. The notion of vertex connectivity of a graph is

introduced according to [15]:

Def. 1 (Vertex Connectivity): For an undirected and con-

nected graph G = (N , E), the vertex connectivity is defined

to κ(G) := ρ ∈ N
≥1, if at least ρ agents must be removed

from N in order to disconnect the graph.

Based on this definition, the following fact is established for

the initial graph Gt0 :

Theorem 1: For any graph Gt0 satisfying the constraints

(7) – (10) in Problem 1, the corresponding vertex connectiv-

ity satisfies κ(Gt0) ≥ ρ.

Proof. According to [12], it is known that if the undirected

graph Gt0 is connected, the relation:

λ2(L(Gt0)) ≤ κ(Gt0) (14)

between the Laplacian matrix L(Gt0) and the vertex connec-

tivity κ(Gt0) applies. As γ ≤ λ2(L(Gt0)) applies according

to (7), as well as ρ− 1 < γ according to (10), the following

inequalities must hold for Gt0 :

ρ− 1 < γ ≤ λ2(L(Gt0)) ≤ κ(Gt0). (15)

As the vertex connectivity κ(Gt0) is integer-valued according

to Def. 1, the relation κ(Gt0) ≥ ρ must apply according to

(15). �

The constraint (10) thus ensures that even if ρ−1 arbitrary

agents leave the initial graph Gt0 the remaining graph is still

connected.

Remark 1: The vertex connectivity is a lower bound

for the edge connectivity [12]. The latter can be defined

equivalently to κ(G) in Def. 1, but referring to the number

of edges to be removed to loose connectvity. The whole

procedure is therefore guaranteed to provide robustness with

respect to failures of communication edges as well.

With regard to the constraints (11) to (13) in Problem 1,

a set of additional binary variables cil ∈ {0, 1}, ∀l ∈
{1, . . . , ρ}, ∀i ∈ Nt0 is introduced. These constraints serve

the purpose of ensuring that a number of ρ different agents

exist, such that their local capacity of free edges ξl :=
nl −

∑

j∈Nt0

blj,t0 , l ∈ {1, . . . , ρ} in Gt0 satisfies:

ξl ≥ l, l ∈ {1, . . . , ρ}. (16)

As it is unknown in advance which agent from Nt0 needs

to satisfy (16), the latter constraint is encoded by binary

variables cil in (11) – (13): For each agent i ∈ Nt0 , a

number of ρ binary variables cil ∈ {0, 1}, ∀l ∈ {1, . . . , ρ}
are assigned, in order to identify if i belongs to one of the

ρ agents satisfying (16). The value cil = 0, ∀l ∈ {1, . . . , ρ}
implies that the agent i does not belong to any of the ρ

agents. The constraint (13) ensures that the agent i can only

be assigned to one of the ρ agents satisfying (16), while

the constraint (12) guarantees that for any l ∈ {1, . . . , ρ},

the condition ξl ≥ l in (16) is satisfied by at least one

agent in Nt0 . The constraint (11) adopts the so called Big-M

relaxation method [16] in order to ensure that the constraint

(16) is either satisfied or relaxed for each agent in Nt0 .

Note that if the initial graph Gt0 satisfies (16), a new

joining agent can be connected with Gt0 by constructing an

edge with any of the ρ agents. Furthermore, it will be shown

in the next section, that by a suitable selection of the edges

connecting with the new agent, the vertex connectivity of the

resulting graph can also be maintained in addition (which is

critical if the agents are leaving thereafter).

Remark 2: Communication costs can be straightfor-

wardly included in the cost function in Problem 1. To do so,

a scalar cost βij ∈ R
+ is assigned to each binary variable

bij . The cost values would be motivated by the underlying

problem and could encode, e.g., distances between agents.

The constraints (10) – (13) in addition ensure that the online

process (to be described next) is prepared with respect to

robustness and sufficient free capacity for additional edges.

IV. ONLINE PART FOR CHANGING SETS OF AGENTS

Agents can join or leave the initial graph Gt0 in the

online process. Two cases are considered, where agents can

only join the existing graph Gtk in the first case. In the

second case agents can join and leave the current graph Gtk ,

assuming that only a single agent is joining or leaving at any

time instance.

3476

2

22

2

2

22

2

2

33

tk+1

κ(Gtk) = 2 κ(Gtk+1
) = 1

Fig. 3: Due to a low capacity of free edges in Gtk , the new

agent can only join the graph in the shown manner, leading

to a decrease of vertex connectivity of the graph in tk+1. (ni

is stated next to each agent.)

A. Joining Agents

An online optimization method is proposed in the follow-

ing for the case that agents only join the network. Since using

a complete reconfiguration of the graph (as in the previous

section) is time-consuming, a simpler local change of the

initial graph is chosen. Two critical situations may occur

(and are addressed in the proposed solution):

1.) the present graph does not provide any free edge to

connect to the new agent;

2.) the joining of new agents may significantly worsen the

vertex connectivity of the graph, and thus makes the

latter fragile to the leaving of agents, see Fig. 3.

Let the initial graph Gt0 = (Nt0 , Et0) be given and assume

that a new agent s with ns ≥ 2ρ is joining at time t1. By

using a binary variable bsj(= bjs) ∈ {0, 1} to denote the

existence of a communication edge between s and any j ∈
Nt0 , the Laplacian matrix of the graph Gt1 is given by:

L(Gt1) =













L(Gt0) + diag(b1s, . . . , bNt0
s)







−b1s
...

−bNt0
s







[

−bs1 · · · −bsNt0

]
∑

j∈Nt1

bsj













.

(17)

Based on L(Gt1), the following optimization is solved to

determine the edges connecting with the agent s:

Problem 2:

max
{bsj},γ

γ (18)

s.t.: γ · I � L(Gt1) + γ · 11T , γ ∈ R, (19)

bsj , bjs ∈ {0, 1}, bsj = bjs, ∀j ∈ Nt0 (20)
∑

j∈Nt0

bsj ≤ ns (21)

∑

j∈Nt0

bsj ≥ ρ (22)

ξl ≥ l, l ∈ {1, . . . , ρ}, for ρ different agents in Nt1 . (23)

Note that without the constraints (22) and (23)1, the solution

1The constraint (23) can be similarly encoded by additional binary
variables as in Problem 1 and they are not shown here for brevity.

of Problem 2 once more aims at maximizing λ2(L(Gt1)) and

thus the convergence rate of (2). Considering the constraints

(22) and (23) in addition, leads to the following theorem:

Theorem 2: Let the initial graph Gt0 obtained from the

solution of Problem 1 be given. If ns ≥ 2ρ applies for the

new agent s, then Problem 2 has a feasible solution, and

the vertex connectivity of the graph Gt1 resulting from this

solution satisfies κ(Gt1) ≥ ρ.

Proof. It is known from Problem 1 that a group of ρ agents

in Nt0 exists for which the capacity of free edges satisfies:

ξl ≥ l, l ∈ {1, . . . , ρ}. By connecting the new agent s to each

agent in this group, the free edge capacity of the latter then

satisfies: ξl ≥ l−1, l ∈ {1, . . . , ρ}. In addition, since ns ≥ 2ρ
applies for the new agent s, the capacity ξs ≥ ρ must hold

after connecting with the ρ agents in Nt0 . As a result, a

new group of ρ agents in Nt1 (including the new agent s)

is found, which satisfy the constraint (23) in Problem 2., i.e.

a candidate for a feasible solution of the latter problem is

found.

To show the vertex connectivity of Gt1 , recall from

Theorem 1 that by removing arbitrary ρ−1 agents from Gt0 ,

the remaining graph is still connected. Thus, by removing

arbitrary ρ − 1 agents from Gt1 , and in case all removed

agents are contained in the previous graph Gt0 , the remaining

agents in Gt0 together with the new agent s must be further

connected. This holds since the constraint (22) enforces that

the agent s connects with at least ρ agents in Gt0 . For the

different case in which the removed ρ − 1 agents contain

the new agent s, this is equivalent to removing ρ− 2 agents

from Gt0 . As a result, the remaining agents must also stay

connected. Accordingly, the vertex connectivity κ(Gt1) ≥ ρ

holds for the graph Gt1 from Problem 2. �

Note that Theorem 2 also applies for the case that more

than one agent enter the graph:

Corollary 1: Given the initial graph Gt0 obtained from

Problem 1, if the newly joining agent s in any following time

step tk, k ∈ {1, 2, . . .} satisfies ns ≥ 2ρ, then the Problem

2 (with Gt0 being replaced by Gtk−1
) remains feasible, and

κ(Gtk) ≥ ρ applies for the resulting graph Gtk .

Corollary 1 establishes a recursive guarantee for agents

joining into the graph, i.e., the time-varying graph always

has the capacity to accommodating new agents, while also

being robustly connected when agents are leaving.

B. Complexity of the Optimization Problems

The use of binary variables in Problem 1 and 2 makes

both of them NP-hard problems. Specifically, a number of

|Nt0 | × (ρ+ |Nt0 |) binary variables are used in Problem 1,

while reduced to |Nt0 |×(ρ+2) in Problem 2. As Problem 1

is solved in the offline phase, a longer computation time can

be regarded as acceptable and many heuristic or distributed

solution strategies developed in the last years can be applied

to accelerate the solution process (see for instance [8] or [9]).

For Problem 2, although only the edges connecting with

the new agent are optimized, the problem may still require

significant time for the solution process. In the worst case,

the new agent has to wait until Problem 2 is solved, before

3477

it can participate into the consensus process. Regarding this

problem, the feasible solution candidate of Problem 2, which

is described in the proof to Theorem 2, can be adopted to

reduce the waiting time. This is due to the fact that a feasible

solution only differs in the convergence rate comparing to

the optimal one, while all desired properties of the resulting

graph in Corollary 1 are preserved. After the optimum of

Problem 2 has been found, one can switch to the optimal

edges in order to attain faster convergence.

C. Joining and Leaving Agents

For the initial graph satisfying κ(Gt0) ≥ ρ from Problem

1, it is known that κ(Gtk) ≥ ρ − Nl, Nl < ρ, holds if Nl

agents have left in the time interval [t0, tk]. Assume now that

a new agent intends to join at time tk+1.

Lemma 1: For Gtk with κ(Gtk) ≥ ρ−Nl, if the joining

agent satisfies ns ≥ 2(ρ−Nl), then the problem:

Problem 3:

max
{bsj},γ

γ (24)

s.t.: γ · I � L(Gtk+1
) + γ · 11T , γ ∈ R, (25)

bsj , bjs ∈ {0, 1}, bsj = bjs, ∀j ∈ Ntk (26)
∑

j∈Ntk

bsj ≤ ns (27)

∑

j∈Ntk

bsj ≥ ρ−Nl (28)

ξl ≥ l, l ∈ {1, . . . , ρ−Nl}, for ρ−Nl agents in Ntk+1

(29)

has a feasible solution, and the resulting graph Gtk+1
satisfies

κ(Gk+1) ≥ ρ−Nl.

For the free capacity in Gtk , (29) holds for ρ − Nl agents

in Ntk . To show this consider first that none of the leaving

agents are part of (16), implying directly (29) for Ntk . Now

consider that all Nl agents belong to the set satisfying (16).

Since the maximal value of l in Gtk is ρ−Nl and ξi > ξj for

i > j, (29) holds for ρ−Nl agents in Ntk . Based on these

two extreme cases all other possibilities of leaving agents can

be shown trivially. With this property for Gtk together with

ns ≥ 2(ρ−Nl), the vertex connectivity and the guarantee of

a feasible solution for Problem 3 can be shown analogously

to the proof of Theorem 2 and Corollary 1. Lemma 1 ensures

that worst-case robustness (i.e., κ(Gtk) − ρ = 1) is always

preserved if some agents leave the graph.

If the worst-case robustness gets 1, Problem 1 can be used

to reconfigure the graph.

V. NUMERICAL EXAMPLE

In this section, the effectiveness of the proposed opti-

mization problems is shown for a numeric example. For

online optimization, the proposed optimization problem is

compared with the ’Best Algebraic’ (BA) approach by [10],

which results from Problem 2 by omitting the constraints

(22) and (23).

In the offline optimization Nt0 = 7 agents are considered.

Fig. 4: Resulting Graph Gt0 from Problem 1.

The maximal number of edges for every agent i ∈ Nt0 is

chosen as ni = 6, and the parameters ρ = 3 and m = 20 are

used. The resulting graph is shown in Fig. 4 and has a second

smallest eigenvalue λ2(Gt0) = 3, and a vertex connectivity

of κ(Gt0) = 3. Solving Problem 1 with YALMIP [17] took

35.79s using a processor with 16-GB RAM and a 4-GHz

Intel core i7-4790K.

Considering the online process, Theorem 2 and Corollary 1

apply for ns ≥ 6. Solving Problem 2 ten times in a row with

ns = 7 leads to the graph in Fig. 5. The graph resulting from

the BA approach is shown in Fig. 6 for comparison. Both

the second smallest eigenvalue and the vertex connectivity

are plotted in Fig. 7 over the number of joined agents for

the two approaches. BA is a greedy approach where as many

edges as possible are established in each tk to maximize the

eigenvalue of the resulting graph, leading to larger values for

both properties for the first joining agents. The capacity of

free edges in the graph decreases after the first agents join

the graph, leading to the case where agents can only establish

few edges to the existing graph, For example, agent 11 in

Fig. 6 establishes two edges to Gt3 , resulting in an immense

decrease of the second smallest eigenvalue (see λ2(Gt4) in

Fig. 7a). Therefore, vertex connectivity is also reducing to

two, as deleting the agents 10 and 8 disconnects the graph,

see Fig. 6.

The graph obtained from solving Problem 2, however,

always satisfies κ(Gtk) = 3 and performs better in the long

run in terms of λ2(Gtk) (see Fig. 7). The computation times

for Problem 2 range here from 21ms to 421ms, showing the

low configuration effort needed for the online process. The

results for ns = 6 for both methods are shown in Fig. 8.

In this case the BA method is infeasible after three agents

have joined the graph, since the graph has no free capacity

anymore (Gt3 is shown in Fig. 8b). In contrast, the solution

from Problem 2 in Fig. 8a stays feasible and guarantees a

vertex connectivity κ(Gtk) ≥ 3, since the condition ns ≥ 2ρ
from Corollary 1 holds.

VI. CONCLUSION

This paper proposes a novel offline-online scheme to

provide guarantees for graphs with time-varying agents and

communication constraints. In the offline phase, the topology

is optimized in terms of its second smallest eigenvalue of the

Laplacian matrix, which provides guarantees for robustness

3478

Fig. 5: Resulting graph Gt10 from the proposed method after

10 agents joined the graph with ns = 7.

Fig. 6: Resulting graph Gt10 from the BA method from [10]

after 10 agents joined the graph with ns = 7.

0 2 4 6 8 10 12 14 16 18 20

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

λ
2
(
G

t
k
)

tk

(a) λ2(Gtk
)

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

4

5

6

κ
(
G

t
k
)

tk

(b) κ(Gtk
)

Fig. 7: Comparison of the graphs in Fig. 5 (blue) and Fig. 6

(red) with up to 20 joining agents.

against agent failures for the resulting graphs. In the online

phase, agents can join and/or leave the graph. First the

case of only joining agents, the proposed scheme provides

a guarantee for the fact that the vertex connectivity of the

graph and the feasibility of problem solution is preserved

if the joining agents fulfill certain conditions. These results

are extended to the general case of joining and leaving

agents using a modified version of optimization problem to

be solved online, and it discussed and shown for examples

that the computational effort for the online part is moderate.

For future work, the extension to directed graphs as well as

techniques for edge rewiring to increase the value of λ2(Gtk)
are matter of research.

(a) From Problem 2. (b) BA Method from [10].

Fig. 8: Comparison of both methods for Gt0 from Fig. 4

and with ns = 6 for all joining agents. The BA method gets

infeasible for t4.

REFERENCES

[1] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in
multivehicle cooperative control,” IEEE Control Systems Magazine,
vol. 27, no. 2, pp. 71–82, 2007.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and
cooperation in networked multi-agent systems,” Proceedings of the

IEEE, vol. 95, no. 1, pp. 215–233, 2007.
[3] Y. Kuriki and T. Namerikawa, “Consensus-based cooperative forma-

tion control with collision avoidance for a multi-UAV system,” in 2014

American Control Conf., pp. 2077–2082, IEEE, 2014.
[4] M. Rafiee and A. M. Bayen, “Optimal network topology design in

multi-agent systems for efficient average consensus,” in IEEE Conf.

on Decision and Control, pp. 3877–3883, 2010.
[5] D. Groß and O. Stursberg, “Optimized distributed control and net-

work topology design for interconnected systems,” in IEEE Conf. on

Decision and Control and European Control Conf., pp. 8112–8117,
2011.

[6] R. Dai and M. Mesbahi, “Optimal topology design for dynamic
networks,” in IEEE Conf. on Decision and Control and European

Control Conf., pp. 1280–1285, 2011.
[7] R. K. Ramachandran, N. Fronda, and G. S. Sukhatme, “Resilience

in multirobot multitarget tracking with unknown number of targets
through reconfiguration,” IEEE Transactions on Control of Network

Systems, vol. 8, no. 2, pp. 609–620, 2021.
[8] A. Ghosh and S. Boyd, “Growing well-connected graphs,” in IEEE

Conf. on Decision and Control, pp. 6605–6611, 2006.
[9] T. Anderson, C.-Y. Chang, and S. Martinez, “Maximizing algebraic

connectivity of constrained graphs in adversarial environments,” in
European Control Conf., pp. 125–130, IEEE, 2018.

[10] S. Stüdli, Y. Yan, M. M. Seron, and R. H. Middleton, “Plug-and-
play networks: Adding vertices and connections to preserve algebraic
connectivity,” in IEEE Conf. on Decision and Control, pp. 4823–4828,
2021.

[11] S. Stüdli, Y. Yan, M. M. Seron, and R. H. Middleton, “Plug-and-
play network reconfiguration algorithms to maintain regularity and
low network reconfiguration needs,” IEEE Control Systems Letters,
vol. 6, pp. 3451–3456, 2022.

[12] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak Mathe-

matical Journal, vol. 23, no. 2, pp. 298–305, 1973.
[13] Y.-Q. Xia, Y.-L. Gao, L.-P. Yan, and M.-Y. Fu, “Recent progress

in networked control systems — a survey,” International Journal of

Automation and Computing, vol. 12, no. 4, pp. 343–367, 2015.
[14] K. Fan, “On a theorem of weyl concerning eigenvalues of linear

transformations i,” Proceedings of the National Academy of Sciences,
vol. 35, no. 11, pp. 652–655, 1949.

[15] F. Harary, Graph theory. Addison-Wesley series in mathematics,
Reading, Mass.: Addison-Wesley, 4. print ed., 1995.

[16] H. P. Williams, Model building in mathematical programming. John
Wiley & Sons, 2013.

[17] J. Löfberg, “YALMIP : A toolbox for modeling and optimization in
MATLAB,” in In Proceedings of the CACSD Conference, 2004.

3479

