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Abstract— In this paper, we propose a new pressure-stabilized
proper orthogonal decomposition reduced order model (POD-
ROM) for the control of viscous incompressible flows. It is
a velocity-pressure ROM that uses pressure modes as well to
compute the reduced order pressure needed for instance in
the control drag and lift forces on bodies in the flow. We also
propose and analyze a decoupled time-stepping scheme that
uncouples the computation of velocity and pressure variables.
It allows us at each time step to solve linear problems,
uncoupled in pressure and velocity, which can greatly improve
computational efficiency. Numerical studies are performed to
discuss the accuracy and performance of the new pressure-
stabilized ROM in the simulation of control of flow past a
forward-facing step channel.

I. INTRODUCTION

Control of viscous fluid flows is an important application
area of tremendous benefits including drag reduction, lift
enhancement, mixing augmentation and flow induced noise
suppression. It can also improve agility and maneuverability
for military aircraft and weapons. Successful implementation
of flow control requires among other things efficient com-
putational algorithms for real-time simulation and control.
Modern nonlinear control system theoretic methods to flow
control is hindered by the fact that fluid flow systems are
nonlinear and high dimensional, see [5], [9]. Recognizing
this complexity, a great deal of effort has been put into
developing efficient computational methods for accurately
solving those problems. One of the major developments is
the nonlinear reduced-order controller approach [9], [11].
A popular method for constructing nonlinear reduced-order
model is based on finding a suitable low dimensional basis
by proper orthogonal decomposition (POD) and forming a
reduced-order model (ROM) by Galerkin projection of the
infinite dimensional model onto the basis, see[9].

For incompressible flows, the reduced order models gener-
ated via POD leads to velocity only reduced order models be-
cause in this framework, velocity POD modes are usually as-
sumed to be at least weakly divergence free. This assumption
holds true if, for instance, the POD modes are generated by
snapshots computed using inf-sup stable finite elements for
the velocity-pressure pair. However, the weakly divergence
free property does not hold for many popular finite element
discretizations of Navier-Stokes equations [7]. Despite the
appealing computational efficiency of velocity only reduced-
order models, the pressure is needed in many flow control
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problems such as minimizing drag or maximizing lift force
on bodies in the flow.

In this paper, we propose a pressure stabilized POD
reduced order model which is a coupled velocity-pressure
reduced order model that uses pressure modes as well to
compute the reduced order pressure. Also, unlike other
existing approached such as pressure Poisson equation ap-
proach that provides velocity pressure approximations, in our
approach the velocity modes do not have to be either strongly
or weakly divergence free. The new method draws inspiration
from successful pressure stabilization techniques used in the
context of finite element methods for incompressible flows
[2]. The main contribution of the present work is the study
of a decoupled time stepping scheme (uncouples velocity
and pressure) for the reduced-order optimality system for the
optimal control of Navier-Stokes equations. The scheme we
study allow us at each time step to solve linear problems, un-
coupled in pressure and velocity which can greatly improve
the computational efficiency. We prove error estimates for
the reduced basis discretizations of the pressure stabilized
reduced order optimality system from which control can be
computed. We also investigate numerically the new pressure
stabilized ROM in the simulation of control of flow past
forward facing step channel.

II. OPTIMAL CONTROL OF NAVIER-STOKES EQUATIONS

In this paper, we are concerned with the numerical
approximation of optimal control of incompressible flows
using pressure stabilized reduced-order models. We consider
the following optimal control problem constrained by the
unsteady Navier-Stokes equations:

Minimize
1
2

T∫
0

∥∇×u∥2 + γ∥g∥2
U dt ,

subject to
∂u
∂ t −ν∆u+u ·∇u+∇p = f , in Ω× (0,T ] ,

∇ ·u = 0 , in Ω× (0,T ]

with Navier boundary conditions [8] :

u ·n |Γ = 0 and (αu · τ +2νn ·D(u) · τ) |Γ = g · τ ,
and initial conditions: u |t=0 = u0(x)

(1)

where the spatial domain Ω ⊂ Rd (d ∈ {2,3}) is bounded
open convex polygon with Lipschitz boundary Γ, n and
τ denote the outward unit normal and tangent vectors,
respectively, α > 0 the coefficient of proportionality, γ > 0
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the relative weight, U := {g ∈ L2(Γ) : g ·n|Γ = 0 } the set
of admissible controls and g the tangential control input
function [4], [12]. Moreover, in (1), u(x, t) is the velocity
field, p(x, t) the kinematic pressure, ν > 0 the kinematic
viscosity of the fluid, f the density of external forces and
D(u) := (1/2)(∇u+(∇u)T ).

In the sequel, L2(Ω) denotes the usual space of square-
integrable functions equipped with the usual L2-inner product
(·, ·) and L2-norm ∥u∥ := ∥u∥L2(Ω). We denote the norms on
Hilbertian Sobolev space Hk(Ω) and the trace space Hk(Γ)
by ∥ · ∥k and ∥ · ∥k,Γ, respectively. Moreover, let {Th}h>0
be a family of affine equivalent, conforming and regular
triangulation of Ω, formed by triangles or quadrilaterals
(d=2), or tetrahedra or hexahedra (d = 3). For any mesh
cell K ∈ Th, its diameter will be denoted by hK and h =
maxK∈Th hK . We denote conforming velocity and pressure
finite element spaces based on a regular triangulation of
spatial domain Ω having maximum triangle diameter h by
Xh ⊂X and Qh ⊂Q . Let the time interval [0,T ] be partitioned
as 0 = t0 < t1 < · · ·< tN = T , ∆t := tn − tn−1.

The fully discrete approximation of the optimal control
problem we will consider is to find un

h ∈ Xh, gn
h ∈ Uh and

pn
h ∈ Qh, n = 1,2, . . . ,N, such that

Minimize 1
2

N

∑
i=1

∥∇×un
h∥2 + γ∥gn

h∥2
U ,

subject to

(
un

h−un−1
h

∆t ,vh) + 2ν(D(un
h),D(vh))+ c(un−1

h ,un
h,vh)

+ α(un
h · τ,vh · τ)Γ − (pn

h,∇ ·vh)

= (gn
h · τ,vh · τ)Γ , ∀vh ∈ Xh

(2)

ε(
pn

h − pn−1
h

∆t
,φh)+(∇ ·un

h,φh) = 0 , ∀φh ∈ Qh , (3)

where the trilinear form c(·, ·, ·) is defined as c(u,v,w) :=
1
2 (u ·∇v,w)− 1

2 (u ·∇w,v) = (u ·∇v,w)− 1
2 ((∇ ·u)v,w) and

0 < ε ≪ 1 is the penalty parameter.
In (2), the term ∇pn

h can be eliminated by using

(pn
h,φ

n
h ) = (pn−1

h ,φh)−
∆t
ε
(∇ ·un

h,φh) , ∀φh ∈ Qh . (4)

therefore, the calculation of (un
h, pn

h) proceeds as follows:
given un

h and pn
h, solve for un

h:

(
un

h −un−1
h

∆t
,vh) + 2ν(D(un

h),D(vh))+ c(un−1
h ,un

h,vh)

+ α(un
h · τ,vh · τ)Γ +

∆t
ε
(∇ ·un

h,∇ ·vh)

= (gn
h · τ,vh · τ)Γ +(pn−1

h ,∇ ·vh) , ∀vh ∈ Xh

(5)
Perform an algebraic update for pn

h using (4).

III. PRESSURE STABILIZED POD REDUCED ORDER
MODEL

We briefly describe the POD method, following [9], and
apply it to the pressure stabilized finite element model (2)-
(3) to construct the reduced-order model. To compute the

snapshots, we use the stabilized FEM model (2)-(3). Let us
consider the velocity snapshot subspace Xdu := span{ui

h}
Nu
i=1,

pressure snapshot subspace Qdp := span{pi
h}

Np
i=1 , adjoint ve-

locity snapshot subspace Xdζ
:= span{ζ

i
h}

Nζ

i=1 and Qdσ
:=

span{σ i
h}

Nσ

i=1 with dimensions du, dp, dζ , and dσ , respec-
tively. The POD method then seeks a low-dimesional sub-
spaces Xu

R := span{φ u
i }R

i=1 ⊂ Xh, Qp
M := span{ψ

p
i }M

i=1 ⊂ Qh ,

Xζ

R := span{φ
ζ

i }R
i=1 ⊂ Xh and Qσ

M := span{ψσ
i }M

i=1 ⊂ Qh ,
which optimally approximate the snapshot subspaces in
discrete L2-norms. Let Ku := (ku

i, j) ∈ RNu×Nu , Kζ := (kζ

i, j) ∈
RNζ×Nζ , Kp := (kp

i, j)∈RNp×Np and Kσ := (kσ
i, j)∈RNσ×Nσ be

the correlation matrices corresponding to snapshots, where
ku

i, j := 1
Nu
(ui

h,u
j
h) , kζ

i, j := 1
Nζ

(ζ i
h,ζ

j
h) , kp

i, j := 1
Np
(pi

h, p j
h) and

kσ
i, j := 1

Nσ
(σ i

h,σ
j

h ) Let {λ u
i }

du
i=1, {λ

p
i }

dp
i=1, {λ

ζ

i }
dζ

i=1, {λ σ
i }dσ

i=1
be the positive eigenvalues of Ku, Kp, Kζ and Kσ , respec-
tively. Then, the following error formula hold

1
Nu

Nu

∑
j=1

∥u j
h −

R

∑
k=1

(u j
h,φ

u
k )φ

u
k ∥2 =

du

∑
k=R+1

λ
u
k ,

1
Np

Np

∑
j=1

∥p j
h −

M

∑
k=1

(p j
h,ψ

p
k )ψ

p
k ∥

2 =
dp

∑
k=M+1

λ
p
k ,

1
Nζ

Nζ

∑
j=1

∥ζ
j
h −

R

∑
k=1

(ζ j
h,φ

ζ

k )φ
ζ

k ∥
2 =

dζ

∑
k=R+1

λ
ζ

k ,

1
Nσ

Nσ

∑
j=1

∥σ
j

h −
M

∑
k=1

(σ j
h ,ψ

σ
k )ψ

σ
k ∥

2 =
dσ

∑
k=M+1

λ
σ
k .

(6)

An analogous set of error formulae (albeit bounds) in ∥∇ · ∥
norm holds instead of ∥ · ∥ norm as in (6) due to inverse
inequality [6], [10]. In the sequel, we will denote by Pu

r , Pp
r ,

Pζ
r and Pσ

r the L2 orthogonal projections onto Xu
R , Qp

M , Xζ

R
and Qσ

M , respectively.
We will also need the following a priori bounds for the
orthogonal projections Pu

r un
h and Pζ

r ζ
n
h that can be ob-

tained from the finite element approximations and the
inverse inequality. Therefore in the sequel, we will as-
sume ∥∇Pu

r un
h∥L2d , ∥Pu

r un
h∥∞, ∥∇Pu

r un
h∥∞, ∥un

h∥∞, ∥∇un
h∥∞,

∥∇un
h∥L2d , ∥Pζ

r ζ
n
h∥∞, ∥∇Pζ

r ζ
n
h∥∞ , n = 1, . . . ,N , are bounded.

A. Pressure Stabilized Reduced Order Model Optimality
System

The pressure stabilized reduced-order optimality system
we consider is to find (un

r ,ζ
n
r ) ∈ Xu

R × Xζ

R, gn
r ∈ Ur and

(pn
r ,σ

n
r ) ∈ Qp

M ×Qσ
M , n = 1,2, . . . ,N, such that

(
un

r −un−1
r

∆t
,vr) + 2ν(D(un

r ),D(vr))+ c(un−1
r ,un

r ,vr)

+ α(un
r · τ,vr · τ)Γ − (pn

r ,∇ ·vr)

= (gn
r · τ,vr · τ)Γ , ∀vr ∈ Xu

R

ε( pn
r−pn−1

r
∆t ,φr) + (∇ ·un

r ,φr) = 0 , ∀φr ∈ Qp
M

(7)
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−(
ζ

n
r −ζ

n−1
r

∆t
,vr) + 2ν(D(ζ n−1

r ),D(vr))+ c(un
r ,vr,ζ

n−1
r )

+ c(vr,un
r ,ζ

n−1
r )

+ α(ζ n−1
r · τ,vr · τ)Γ − (σn−1

r ,∇ ·vr)

= (∇×un−1
r ,∇×vr) , ∀vr ∈ Xζ

R

ε(σn
r −σn−1

r
∆t ,φr) + (∇ ·ζ n−1

r ,φr) = 0 , ∀φr ∈ Qσ
M

(8)

(γgn
r + ζ

n−1
r , v̂r)Γ = 0 , ∀v̂r ∈ UR (9)

final condition ζ
N
r (x) = 0 and the initial condition u0

r (x) =
ur

0(x).

IV. ERROR ANALYSIS

This section is devoted to deriving error estimates for the
reduced order optimality system (7)-(9).
Lemma 4.1. Let (un

h, pn
h) ∈ Xh × Qh be the solutions of

(2) and (un
r , pn

r ) ∈ Xu
R × Qp

M be the solutions of (7), for
n = 1,2, . . . ,N. Then, we have

∥un
h −un

r∥2 + ε∥pn
h − pn

r∥2 +
N

∑
i=1

∆t∥∇(ui
h −ui

r)∥2

≤ ∥u0
h −u0

r∥2 + ε∥p0
h − p0

r∥2

+C∆t

[
du

∑
i=R+1

λ
u
i +

dp

∑
i=M+1

λ
p
i +

N

∑
i=1

∥gi
h −gi

r∥2
0,Γ

]
,

(10)
where C is independent of h and ∆t.
Proof. To get the error bounds of the method, we decompose
the error as follows errors: en

u := un
r − Pu

r un
h , en

p := pn
r −

Pp
r pn

h , αn
u := Pu

r un
h −un

h and β n
p := Pp

r pn
h − pn

h . As the errors
αn

u and β n
p can be easily estimated from (6), we will only

estimate the errors en
u and en

p. It can be easily shown that the
pair (Pu

r un
h,P

p
r pn

h) satisfies

(
Pu

r un
h −Pu

r un−1
h

∆t
,vr) + 2ν(D(Pu

r un
h),D(vr))

+ c(Pu
r un−1

h ,Pu
r un

h,vr)

− (Pp
r pn

h,∇ ·vr)+α(Pu
r un

h · τ,vr · τ)Γ

= (gn
h · τ,vr · τ)Γ +2ν(D(αn

u ),D(vr))

− (β n
p ,∇ ·vr)+ c(Pu

r un−1
h ,Pu

r un
h,vr)

+ α(αn
u · τ,vr · τ)Γ

− c(un−1
h ,un

h,vr) , ∀vr ∈ Xu
R

ε(
Pp

r pn
h−Pp

r pn−1
h

∆t ,φr) + (∇ ·Pu
r un

h,φr) = (∇ ·αn
u ,φr) , ∀φr ∈ Qp

M .
(11)

For n = 1,2, . . . ,N, subtracting (11) from (7) and setting

(vr,φr) = ∆t(en
u,e

n
p) yields

1
2
(∥en

u∥2+ε∥en
p∥2)− 1

2 (∥en−1
u ∥2+ε∥en−1

p ∥2)+1
2∥en

u − en−1
u ∥2

+ ε

2∥en
p − en−1

p ∥2 +2∆tν∥∇en
u∥2 +α∆t∥en

u · τ∥2
0,Γ

= ∆t[(c(Pu
r un−1

h ,Pu
r un

h,e
n
u)− c(un−1

r ,un
r ,en

u))

+ 2ν(D(αn
u ),D(en

u))− (β n
p ,∇ · en

u)

− (c(Pu
r un−1

h ,Pu
r un

h,e
n
u)− c(un−1

h ,un
h,e

n
u))

− (∇ ·αn
u ,e

n
p)+((gn

h −gn
r ) · τ,en

u · τ)Γ

+ α(αn
u · τ,en

u · τ)Γ] =:
7

∑
i=1

Σi .

(12)
We now proceed to estimate the terms on the right-hand side
of (12). For the first term we use the skew symmetry to obtain

|Σ1| ≤ |∆tc(en−1
u ,Pu

r un
h,e

n
u)|

≤ C∆t[∥∇Pu
r un

h∥∞∥en−1
u ∥

+ ∥en−1
u ∥∥Pu

r un
h∥∞]∥∇en

u∥

≤ C∆t∥en−1
u ∥2 + ν∆t

4 ∥∇en
u∥2 .

(13)

For the second term, we have

|Σ2| ≤
ν∆t

4
∥∇en

u∥2 +C∆t∥∇α
n
u∥2 . (14)

For the third term, we have

|Σ3| ≤
ν∆t

4
∥∇en

u∥2 +C∆t∥∇β
n
p∥2 . (15)

For the fifth term, we first rewrite it as

Σ5 := ∆t(∇ ·αn
u ,e

n
p)

= ∆t(∇ ·αn
u ,e

n
p − en−1

p )+∆t(∇ ·αn
u ,e

n−1
p ) .

Employing the extended Cauchy-Buniakowskii-Schwarz in-
equality [3] yields

|Σ5| ≤ η∆t∥∇α
n
u∥∥en

p − en−1
p ∥+η∆t∥∇α

n
u∥∥en−1

p ∥

for some constant η ∈ [0,1). Therefore by the Young’s
inequality we have

|Σ5| ≤ ε∆t
2 ∥en−1

p ∥2 + η2∆t2

2ε
∥∇αn

u∥2 + ε

2∥en
p − en−1

p ∥2

+ η2∆t
2ε

∥∇αn
u∥2 .

(16)
To bound the fourth term, we use Sobolev embedding and
Holder’s inequality

|Σ4| ≤ ∆t|c(Pu
r un−1

h ,αn
u ,en

u)+ c(αn−1
u ,un

h,e
n
u)|

≤ ∆t[∥Pu
r un−1

h ∥
L

2d
d−1

∥∇αn
u∥∥en

u∥L2d

+ ∥Pu
r un

h∥L
2d

d−1
∥∇en

u∥∥αn
u∥L2d ]

+ ∆t[∥αn−1
u ∥

L
2d

d−1
∥∇un

h∥∥en
u∥L2d

+ ∥αn
u∥

L
2d

d−1
∥∇en

u∥∥un
h∥L2d ]

≤ ν∆t
4 ∥∇en

u∥2 +C∆t[∥∇αn
u∥2 +∥∇αn−1

u ∥2] .

(17)
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Finally, we estimate the sixth and seventh terms using trace
inequality as follows

|Σ6| ≤
α∆t

2
∥en

u · τ∥2
0,Γ +C∆t∥gn

h −gn
r∥2

0,Γ (18)

and
|Σ7| ≤

α∆t
2

∥en
u · τ∥2

0,Γ +C∆t∥∇α
n
u∥2 . (19)

Inserting (13)-(18) into (12) yields

(∥en
u∥2 + ε∥en

p∥2)− (∥en−1
u ∥2 + ε∥en−1

p ∥2)+∥en
u − en−1

u ∥2

+ ε

2∥en
p − en−1

p ∥2 +2∆tν∥∇en
u∥2

≤ C∆t(∥en−1
u ∥2 + ε∥en−1

p ∥2)+ η2∆t
2ε

∥∇αn
u∥2(1+∆t)

+C∆t
[
∥∇αn

u∥2 +∥∇β n
p∥2 +∥∇αn−1

u ∥2 +∥gn
h −gn

r∥2
0,Γ

]
.

Finally summing from n = 1 to n = N and applying discrete
Gronwall inequality we obtain the desired result. ■
Before we proceed to derive the error bounds for reduced
order approximations of adjoint variables, we observe that by
applying inverse inequality and the error bounds in Lemma
4.1, we obtain that ∥un

r∥∞ is bounded.
Let en

ζ
:= ζ

n
r −Pζ

r ζ
n
h , en

σ := σn
r −Pσ

r σn
h , αn

ζ
:=Pζ

r ζ
n
h−ζ

n
h

and β n
σ := Pσ

r σn
h −σn

h . It can be easily shown that the pair
(Pζ

r ζ
n
h,P

σ
r σn

h ) satisfies

− (
Pζ

r ζ
n
h −Pζ

r ζ
n−1
h

∆t
,vr)+2ν(D(Pζ

r ζ
n−1
h ),D(vr))

+c(Pu
r un

h,vr,P
ζ
r ζ

n−1
h )+ c(vr,Pu

r un
h,P

u
r ζ

n−1
h )

+α(Pζ
r ζ

n−1
h · τ,vr · τ)Γ−(Pp

r σ
n−1
h ,∇ ·vr)

=α(αn−1
ζ

· τ,vr · τ)Γ − (β n−1
σ ,∇ ·vr)

+2ν(D(αn
ζ
),D(∇vr))+ c(Pu

r un
h,vr,P

ζ
r ζ

n−1
h )

+c(vr,Pu
r un

h,P
ζ
r ζ

n−1
h )

+(∇×Pu
r un−1

h ,∇×vr)− (∇× en
u,∇×vr)

−c(un
h,vr,ζ

n−1
h )− c(vr,un

h,ζ
n−1
h ) , ∀vr ∈ XR

ε(
Pσ

r σn
h −Pσ

r σ
n−1
h

∆t
,φr)+(∇ ·Pζ

r ζ
n
h,φr)

= (∇ ·αn
ζ
,φr) , ∀φr ∈ QM .

(20)
Lemma 4.2. Let (ζ n

r ,σ
n
r ) ∈ Xζ

R ×Qσ
M be the solutions of (8)

and (ζ n
h,σ

n
h ) ∈ Xh ×Qh be the corresponding finite element

solutions, for n = 1,2, . . . ,N. Then, we have

(∥ζ
n
h −ζ

n
r∥2 + ε∥σn

h −σn
r ∥2)+

N

∑
i=n+1

∆t∥∇(ζ i
h −ζ

i
r)∥2

≤ C∆t

 du

∑
i=R+1

λ
u
i +

dp

∑
i=M+1

λ
p
i +(1+

η̂2

ε
)

dζ

∑
i=R+1

λ
ζ

i

+
dσ

∑
i=M+1

λ
σ
i +

N

∑
i=1

∥gi
h −gi

r∥2
0,Γ

]
,

(21)

where C is independent of h and ∆t.
Proof. For n = 1,2, . . . ,N, subtracting (20) from (8) and
setting (vr,φr) = ∆t(en−1

ζ
,en−1

σ ) yields

−1
2
(∥en

ζ
∥2+ε∥en

σ∥2)+1
2 (∥en−1

ζ
∥2 + ε∥en−1

σ ∥2)+1
2∥en

ζ
− en−1

ζ
∥2

+ ε

2∥en
σ − en−1

σ ∥2 +2∆tν∥∇en−1
ζ

∥2+α∆t∥en−1
ζ

· τ∥2
0,Γ

= ∆t[(c(Pu
r un

h,e
n−1
ζ

,Pζ
r ζ

n−1
h )− c(un

r ,e
n−1
ζ

,ζ n−1
r ))

+ (c(en−1
ζ

,Pu
r un

h,P
ζ
r ζ

n−1
h )− c(en−1

ζ
,un

r ,ζ
n−1
r ))

− (c(Pu
r un

h,e
n−1
ζ

,Pζ
r ζ

n−1
h )− c(un

h,e
n−1
ζ

,ζ n−1
h ))

− (c(en−1
ζ

,Pu
r un

h,P
ζ
r ζ

n−1
h )− c(en−1

ζ
,un

h,ζ
n−1
h ))

+ 2ν(D(αn−1
ζ

),D(en
u))− (β n−1

σ ,∇ · en−1
ζ

)

+ (en−1
σ ,∇ ·αn

ζ
)− (∇×αn−1

u ,∇× en−1
ζ

)

+ (∇× en−1
u ,∇× en−1

ζ
)

+ α(αn−1
ζ

· τ,en−1
ζ

· τ)Γ] =
10

∑
i=1

Σ̂i .

(22)
We will bound the terms on the right hand side of (22). We
first note that using the skew-symmetry property, we get

|Σ̂1| = ∆t|c(en
u,e

n−1
ζ

,Pζ
r ζ

n−1
h )|

≤ C∆t(∥∇Pζ
r ζ

n−1
h ∥∞ +∥Pζ

r ζ
n−1
h ∥∞)∥en

u∥∥∇en−1
ζ

∥

≤ ν∆t
7 ∥∇en−1

ζ
∥2 +K1∆t∥en

u∥2 .
(23)

For the second term, we obtain

|Σ̂2| = ∆t|c(en−1
ζ

,en
u,P

ζ
r ζ

n−1
h )+ c(en−1

ζ
,un

r ,e
n−1
ζ

)|

≤ C∆t(∥∇Pζ
r ζ

n−1
h ∥∞ +∥Pζ

r ζ
n−1
h ∥∞)∥en

ζ
∥∥∇en−1

u ∥

+ C∆t∥un
r∥∞∥en

ζ
∥∥∇en−1

ζ
∥

≤ ν∆t
7 ∥∇en−1

ζ
∥2 +K2∆t∥∇en

u∥2 +K3∆t∥en−1
ζ

∥2 .
(24)

For the third term, we first note that using skew symmetry
of the tri-linear form we get

|Σ̂3| = ∆t|c(αn
u,e

n−1
ζ

,Pζ
r ζ

n−1
h )+ c(un

h,e
n−1
ζ

,αn−1
ζ

)|

≤ C∆t(∥∇Pζ
r ζ

n−1
h ∥∞ +∥Pζ

r ζ
n−1
h ∥∞)∥∇αn

u∥∥∇en−1
ζ

∥

+ C∆t∥un
h∥∞∥∇en−1

ζ
∥∥∇α

n−1
ζ

∥

≤ ν∆t
7 ∥∇en−1

ζ
∥2 +K4∆t∥∇αn

u∥2 +K5∆t∥∇α
n−1
ζ

∥2 .
(25)

For the fourth term, we obtain

|Σ̂4| = ∆t|c(en−1
ζ

,en
u,P

ζ
r ζ

n−1
h )+ c(en−1

ζ
,un

h,α
n−1
ζ

)|

≤ C∆t(∥∇Pζ
r ζ

n−1
h ∥∞ +∥Pζ

r ζ
n−1
h ∥∞)∥en−1

ζ
∥∥∇en

u∥

+ C∆t(∥un
h∥∞ +∥∇un

h∥∞)∥en−1
ζ

∥∥∇α
n−1
ζ

∥

≤ ν∆t
7 ∥∇en−1

ζ
∥2 +K6∆t∥∇en

u∥2 +K7∆t∥α
n−1
ζ

∥2 .
(26)
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For the fifth term, we obtain

|Σ̂5| ≤ K8∆t∥∇en−1
u ∥2 +K9∆t∥α

n−1
ζ

∥2 . (27)

For the sixth term, we obtain

|Σ̂6| ≤ ν∆t
7 ∥∇en−1

ζ
∥2 +K10∆t∥β n−1

σ ∥2 . (28)

For the seventh term, we obtain

|Σ̂7| ≤ ε∆t
2 ∥en−1

σ ∥2 + η̂2∆t
2ε

∥∇αn
ζ
∥2 . (29)

For the eighth and ninth terms, we obtain

|Σ̂8| ≤ ν∆t
7 ∥∇en−1

ζ
∥2 +K11∆t∥∇αn−1

u ∥2 . (30)

and

|Σ̂9| ≤ ν∆t
7 ∥∇en−1

ζ
∥2 +K12∆t∥∇en−1

u ∥2 . (31)

Finally, we estimate the tenth term using trace inequality as
follows

|Σ̂10| ≤ α∆t∥en−1
ζ

· τ∥2
0,Γ +C∆t∥∇α

n−1
ζ

∥2 . (32)

Combining all inequalities, dropping unneeded terms on the
left-hand side and summing from n = m+1 to N yield

(∥em
ζ
∥2 + ε∥em

σ∥2)+2∆t
N−1

∑
i=m

ν∥∇ei
ζ
∥2

≤ C1∆t
N−1

∑
i=m

(∥em
ζ
∥2 + ε∥em

σ∥2)

+ C2∆t

 du

∑
i=R+1

λ
u
i +

dp

∑
i=M+1

λ
p
i +(1+

η̂2

ε
)

dζ

∑
i=R+1

λ
ζ

i

+
dσ

∑
i=M+1

λ
σ
i +

N

∑
i=1

∥gi
h −gi

r∥2
0,Γ .

]
(33)

Finally desired result follows by applying discrete Gronwall
inequality. ■

Notice that from (9), we easily have
N

∑
i=1

∆t∥gi
h −gi

r∥2
0,Γ ≤C

N

∑
i=1

∆t∥ζ
i
h −ζ

i
r∥2 .

Therefore combining Lemma 4.1 and Lemma 4.2, we have
the following theorem.
Theorem 4.3. Let (un

h, pn
h,ζ

n
h,σ

n
h ) be the finite element

solutions of optimality system associated with (2) and
(un

r , pn
r ,ζ

n
r ,σ

n
r ) be the corresponding ROM solutions, for

n = 1,2, . . . ,N. Then, we have

(∥uh − ur∥2
l∞(0,T ;L2(Ω))

+ ε∥ph − pr∥2
l∞(0,T ;L2(Ω))

)

+ (∥ζ h −ζ r∥2
l∞(0,T ;L2(Ω))

+ ε∥σh −σr∥2
l∞(0,T ;L2(Ω))

)

+ ∥gh −gr∥2
l2(0,T ;L2(Γ)) ≤C∆t

[
du

∑
i=R+1

λ
u
i +

dp

∑
i=M+1

λ
p
i

+ (1+
η̂2

ε
)

dζ

∑
i=R+1

λ
ζ

i +
dσ

∑
i=M+1

λ
σ
i

 .

(34)
where C is independent of h and ∆t.

V. NUMERICAL EXPERIMENTS

In this section, we perform a numerical investigation of
the pressure stabilized ROM algorithm in the simulation of
control of flow separation over a forward-facing step channel.
The step of unit height is located at a distance of two units
from the entrance. The width of the channel is three units
and the length is sixteen units. At the channel entrance
the flow is prescribed to be fully developed parabolic flow:
u(x = 0,0 ≤ y ≤ 3) = 4y(3 − y)/9, v(x = 0,0 ≤ y ≤ 3) =
0 and at the outflow, a psuedo stress-free condition is
applied. The computational grid was nonuniform in both
the stream-wise and cross-flow coordinate directions and
a fine grid was used in regions where sharp variations in
velocities were expected. All the computations were done
with 51x51 grid and a time step size t = 1/20 for the
Reynolds’ number 2000. For this configuration, separation
and re-attachment occur at two places. One on the lower
wall in front of the step and another behind the step. But
the latter leads to significantly larger wake spread. After the
re-attachment on the lower wall behind the step, the flow
slowly recovers towards a fully developed Poiseuille flow.

Figure 5.1. Controlled and uncontrolled u-velocity (left)
and v-velocity (right) profiles at x = 2.5

Figure 5.2. Controlled and uncontrolled u-velocity (left)
and v-velocity (right) profiles at x = 3

Figure 5.3. Controlled and uncontrolled u-velocity (left)
and v-velocity (right) profiles at x = 3.5
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Figure 5.4. Controlled and uncontrolled u-velocity (left)
and v-velocity (right) profiles at x = 4

Figure 5.5. Controlled and uncontrolled u-velocity (left)
and v-velocity (right) profiles at x = 4.5

Figure 5.6. The computed optimal control as function of
non-dimensional time

In the numerical investigation of the new pressure
stabilized-ROM, we first showed that the new ROM yields
accurate velocity and pressure approximations that are close
to the direct numerical simulation results. Next, we employed
this ROM to compute a reduced-order controller. The pur-
pose of the controller is to alleviate flow separation and
reduce wake spread in the channel. Therefore, we formulate
an optimal control problem that minimizes the enstrophy of
the flow. The control action (actuation) is effected through
tangential blowing through a single slot on a part of the
boundary: 2 ≤ x ≤ 3 and y = 1. Ten POD spatial basis
functions (equal number of pressure and velocity modes)
are determined by the POD at this Reynolds number Re =
2000. A Galerkin projection is then employed to obtain
suitable reduced-order dynamic models. Optimal controller is
computed using a sequential quadratic programming (SQP)
method. For the ROM construction for control, we employed
g(t) = t/10 in [0,T ] = [0,10] in the control action to gen-
erate the snapshots. Computed controls at various actuator
positions are shown in Fig. 5.6. The resulting horizontal

and velocity velocity profiles with and without control at
various stations in the channel are shown in Fig. 5.1-5.4.
They clearly indicate that flow separation is mitigated by
the control action. Substantial reduction in the wake spread
is also seen. The re-attachment length has been reduced by
more than 80% compared to the uncontrolled case.

VI. CONCLUDING REMARKS

In this paper, we proposed a new pressure-stabilized
proper orthogonal decomposition reduced order model
(POD-ROM) for the control of viscous incompressible flows.
The new pressure stabilized ROM is a velocity-pressure
ROM and it does not require the fulfillment of the inf-sup
condition, which can be prohibitively expensive with current
ROM approaches [1]. Moreover, the present method does
not require weakly divergence free snapshots. We proposed
and rigorously analyzed a decoupled time-stepping scheme
that uncouples the computation of velocity and pressure
greatly improving computational efficiency. In the numerical
investigations, we provided a numerical comparison of the
new pressure-stabilized ROM in the simulation of control
of flow past on a forward-facing step channel. Our results
showed the feasibility of proposed scheme and yields an
efficient control approximations.
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