
Data-Driven Distributionally Robust Coverage Control by Mobile Robots

Dimitris Boskos Jorge Cortés Sonia Martı́nez

Abstract— This paper provides a data-driven solution to the
problem of coverage control by which a team of robots aims
to optimally deploy in a spatial region where certain event
of interest may occur. This event is random and described
by a probability density function, which is unknown and can
only be learned by collecting data. In this work, we hedge
against this uncertainty by designing a distributionally robust
algorithm that optimizes the locations of the robots against
the worst-case probability density from an ambiguity set. This
ambiguity set is constructed from data initially collected by the
agents, and contains the true density function with prescribed
confidence. However, the objective function that the robots seek
to minimize is non-smooth. To address this issue, we employ the
so-called gradient sampling algorithm, which approximates the
Clarke generalized gradient by sampling the derivative of the
objective function at nearby locations and stabilizes the choice
of descent directions around points where the function may fail
to be differentiable. This enables us to prove that the algorithm
converges to a stationary point from any initial location of
the robots, in analogy to the well-known Lloyd algorithm for
differentiable costs when the spatial density is known.

I. INTRODUCTION

The deployment of multi-robot systems in realistic envi-
ronments will enable the realization of multiple tasks in a
variety of scenarios. Yet, this requires overcoming prominent
challenges; such as that of providing these systems with the
capability of operating in unknown environments.

Take the paradigmatic example of multi-robot coverage
control [5], by which a team of robots aims to navigate to
locations that can provide e.g. optimal assistance in emer-
gency situations. Here, the optimal locations maximize an
expected utility of coverage with respect to a spatial density
function. Ideally, the task is to be accomplished by robots by
means of distributed algorithms. More critically, the utility
depends on a model of the environmental events, which is
typically not available to robots.

Our goal in this paper is to obtain a data-driven and
optimal coverage control algorithm with rigorous guarantees
for unknown spatial density functions. To do this, robots
have access to a finite and independent collection of samples
taken from it. The guarantees that are sought are both of
performance—optimal positions via sampling should provide
quality solutions with respect to the true coverage control ob-
jective with quantifiable guarantees—and of convergence—
the algorithm should be stable.

Literature review: There has been extensive work on
coverage control during the last two decades. A continuous-
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time distributed Lloyd algorithm was introduced in [11],
which also established convergence of the algorithm to
stationary points using tools from the theory of dynamical
systems. Generalizations of this algorithm were derived in
[10], which considers limited interactions between the robots,
and [9], which provides distributed coordination protocols to
solve non-smooth locational optimization problems. Other
extensions of coverage control include the consideration of
visibility constraints [17] and time-varying densities [13].
Further results also consider inference tools to progressively
learn the spatial density in a data-driven manner using basis
functions [24] or interpolation methods [20]. However, these
works cannot directly handle uncertainty about the unknown
spatial density, which may not be correctly inferred when
the amount of data is not sufficiently large.

To hedge against distributional uncertainty in stochastic
decision making, distributionally robust optimization (DRO)
makes use of ambiguity sets of probability distributions
that contain multiple candidate models of the unknown
uncertainty [12], [21]. This enables the designer to make
robust decisions, which guarantees that optimality is not
significantly jeopardized when the uncertainty model turns
out to be the worst-case element from the ambiguity set. The
distributions in an ambiguity set are typically grouped using
moment constraints [22], relative entropy constraints [1],
and optimal transport metrics [3], [15] a.k.a. Wasserstein
distances. The latter have emerged as a popular choice for
data-driven problems. Among the reasons for this is that
they enjoy statistical guarantees of containing the true prob-
abilistic model [14] or an appropriate replacement of it [2]
with prescribed confidence. Typically, Wasserstein ambiguity
sets are centered at the empirical distribution of collected
data and therefore contain several distributions that are not
absolutely continuous with respect to the Lebesgue measure.
Nevertheless, in [4], we leverage results from wavelet density
estimation [25] to build ambiguity sets that only contain
densities and control their size in terms of the maximum
optimal transport discrepancy between their members.

Statement of contributions: Our main contribution is the
development of a distributionally robust coverage control
algorithm for an unknown spatial density, which is data-
driven and enjoys rigorous optimality guarantees. To achieve
this result, we exploit Haar-wavelet ambiguity sets, which
are data-driven, contain only densities, and have the further
benefit of containing an appropriate approximation of the true
distribution with high probability. To build the ambiguity
sets, we first construct a wavelet density estimator from
the collected samples and then consider all densities whose
wavelet coefficients are sufficiently close to those of the
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estimator. Since the resulting optimization problem is non-
smooth, we design a variant of the so-called gradient sam-
pling algorithm, which guarantees convergence to a Clarke
stationary point. To this end, our second contribution is the
generalization of the gradient sampling algorithm to nested
optimization problems, where the objective function does not
have a closed-form formula and is only approximated by the
solution of an inner optimization problem. In particular, we
prove that our modified gradient sampling algorithm shares
the same convergence guarantees as the original one. Due
to space constraints, the proofs are omitted and will appear
elsewhere.

II. PRELIMINARIES ON HAAR WAVELETS AND
NON-SMOOTH ANALYSIS

We denote by ‖ · ‖ the Euclidean norm in Rn. We use
the notation [n1 : n2] for the set of integers {n1, n1 +
1, . . . , n2} ⊂ N ∪ {0} =: N0 and denote R̄≥0 := R≥0 ∪
{+∞}. Given d ∈ N and the index vector ` = (`1, . . . , `d) ∈
Nd, we denote Z` :=

∏d
l=1[0 : `l]. We denote by B(x, ε) the

ball with center x ∈ Rn and radius ε > 0. Given two sets
A,B ⊂ Rn we denote the smallest distance between their
elements by dist(A,B) := inf{‖x − y‖ |x ∈ A, y ∈ B}
and also use the notation dist(x,A) := dist({x}, A) when
considering single-element sets. The convex hull and closure
of a set A ⊂ Rn are denoted by conv(A) and cl(A),
respectively. Vectors will be interpreted as column vectors
in linear algebra operations unless indicated by a transpose.

Haar wavelets: Wavelets are used to construct bases of
function spaces that are suitable to approximate functions at
varying resolution levels. Here, we consider Haar wavelets
on R2 to approximate functions on bounded rectangular do-
mains, following the exposition in [8]. Throughout the paper,
we use boldface to compactly denote vectors of indices and
parameters. Consider the families of dyadic squares

Ij,k := [k12−j , (k1 + 1)2−j)× [k22−j , (k2 + 1)2−j),

in R2, where j ∈ N0, k := (k1, k2) ∈ Z2, and let ϕ := 1[0,1)

and ψ := 1[0,1/2) − 1[1/2,1). Define

ϕj,k(x) := 2jϕ(2jx1 − k1)ϕ(2jx2 − k2),

where x := (x1, x2). The function ϕj,0 is called the scaling
function and we can equivalently define ϕj,k = 2j1Ij,k .
Consider also the wavelets

ψrj,k ≡ ψεj,k(x) := 2jψε1(2jx1 − k1)ψε2(2jx2 − k2),

where ε := (ε1, ε2) ∈ {0, 1}2 \ 0, r ∈ [1 : 3] and ψ0 ≡ ϕ,
ψ1 ≡ ψ. Figure 1 shows the scaling function and wavelets
for j = 0.

Consider the rectangular domain Q` := [0, `1] × [0, `2]
with ` := (`1, `2) ∈ N2, a resolution index J ∈ N0

and let 2J` := (2J`1, 2
J`2). The functions {ϕ0,k}k∈Z`

∪
{ψrj,k}0≤j<J−1,k∈Z2j`,r∈[1:3], span the space

V `J := {f ∈ L2(Q`) | f is constant on IJ,k,k ∈ Z2J`},

comprising of the functions that are constant at scale
2−J . Namely, V `J is spanned by the scaling functions

𝜓0, 0,0
2

𝜓1, 3,1
2 = 𝜓1,𝒌1 𝒌

2

𝒌 = (13,7)
𝒌2 𝒌 = (6,3)
𝒌1 𝒌 = (3,1)
𝒌0 𝒌 = (1,0)

𝜑0 = 𝜑(𝑥)𝜑(𝑦) 𝜓0
1 = 𝜑 𝑥 𝜓(𝑦)

𝜓0
2 = 𝜓 𝑥 𝜑(𝑦) 𝜓0

3 = 𝜓 𝑥 𝜓(𝑦)

Fig. 1. The left plot shows the scaling function and the the wavelets at the
lowest resolution level. The right plot illustrates how to obtain the indices
of the squares that intersect the red one at the highest resolution.

Φ := {ϕ0,k}k∈Z`
at the lowest resolution and the wavelets

∪J−1j=0 Ψj , Ψj := {ψrj,k}k∈Z2j`,r∈[1:3], which capture the
fluctuations of the functions in VJ at the intermediate scales.
The wavelet basis Φ ∪

(
∪∞j=0 Ψj

)
is the orthonormal Haar

system on Q` and spans L2(Q`). We denote by D(V `j ) the
set of probability densities on V `j . Each function f ∈ L2(Q`)
can be expressed as

f(x) =
∑
ϕ∈Φ

αϕϕ(x) +

∞∑
j=0

∑
ψ∈Ψj

βψψ(x).

When f ∈ V `J , its constant value at each fine-grained interval
IJ,k, k ∈ Z2J` is evaluated through its nonzero wavelet
coefficients as

f |IJ,k = αk0(k) +

J−1∑
j=0

3∑
r=1

2jβrj,kj(k)
signrj(k). (1)

In (1), kj(k) are the indices of the unique 2−j-resolution
square that intersects IJ,k, and signrj(k) is the sign of the
wavelet ψrj,kj(k)

on the square Ij,kj+1(k), which takes values
in {−2j , 2j}, cf. Figure 1.

Non-smooth analysis: Consider a locally Lipschitz func-
tion f on Rn. It is known from Rademacher’s theorem
that f is differentiable almost everywhere. The Clarke
generalized gradient of f at x is defined as ∂̄f(x) :=
conv{limk∇f(xk) |xk → x, xk ∈ A} (following the nota-
tion of [7], [18], and [23]), where A is any full-measure sub-
set of a neighborhood of x where f is differentiable. A point
x ∈ Rn is called Clarke stationary for f if 0 ∈ ∂̄f(x), which
generalizes the notion of a stationary point for continuously
differentiable functions. The Clarke ε-subdifferential of f at
x is defined as ∂̄εf(x) := conv(∂̄f(B(x, ε))). Considering
any set Df of full measure on Rn where f is differentiable,
its Clarke ε-subdifferential can be approximated by the set

Gε(x) := cl(conv(∇f(B(x, ε) ∩ Df ))),

introduced in [7], since Gε(x) ⊂ ∂̄εf(x) and ∂̄ε1f(x) ⊂
Gε2(x) for 0 ≤ ε1 < ε2.

III. PROBLEM FORMULATION

Here, we present the formulation of the coverage opti-
mization problem following [5] and introduce the problem
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of interest in this paper. Consider a bounded domain Q ⊂
R2 and a probability density function ρ, supported on Q,
that captures the probability that a certain event of interest
may occur. Consider also a (non-decreasing) performance
function h : R≥0 → R≥0, that encodes the cost for the
locational discrepancy of an agent, like the travel time or
the required energy consumption to get from one place to
another. Our goal is to deploy M agents in Q so that the one
that is closest to the place where an event may occur will go
there to offer its service. Denoting the agents’ positions by
p1, . . . , pM , the cost of an event occurring at a certain x ∈ Q
is equal to the performance cost of the agent that is closest to
it, i.e., mini=1,...,M h(‖pi−x‖). Taking into account that the
locations of such events are randomly distributed according
to the density ρ, we seek to minimize the expected cost
function

Hρ(P ) :=

∫
Q

min
i=1,...,M

h(‖pi − x‖)ρ(x)dx, (2)

where we use the shorthand notation P = (p1, . . . , pM ).
Denoting Adiff := {(p1, . . . , pM ) ∈ A | pi 6= pj for all i 6=
j} for each A ⊂ R2M , for P ∈ QMdiff, the cost is equivalently
given as

Hρ(P ) :=

M∑
i=1

∫
Vi

h(‖pi − x‖)ρ(x)dx,

where Vi ≡ Vi(P ) is the Voronoi region of agent i defined
by Vi(P ) := {x ∈ R2 | ‖x − pi‖ ≤ ‖x − pj‖ for all j 6= i}.
Here we use the convention to define the Voronoi regions
over the whole space x ∈ R2 instead of only focusing on
the region Q since the density ρ(x) in the above integrals
vanishes when x is outside Q. This allows us later to also
consider agent positions that lie outside Q, which facilitates
proving convergence of the algorithm.

Throughout the paper, we take1 Q to be the rectangle
Q` = [0, `1]×[0, `2] defined by positive integers ` = (`1, `2).
The challenge we address here is having the agents optimize
Hρ when the density ρ is unknown. Instead, we only have
access to N i.i.d. samples X1, . . . , XN taken from ρ. Since
the number of these samples is typically limited in many
practical scenarios, it is not possible to accurately infer the
distribution of the data, resulting in model misspecification.
We assume the unknown density is bounded as follows.

Assumption 3.1: (Upper and lower density bounds).
There exist ρlow : Q→ R≥0, ρup : Q→ R̄≥0 with

0 ≤ ρlow(x) ≤ ρ(x) ≤ ρup(x) ∀x ∈ Q. (3)

This assumption enables us to embed prior knowledge
when inferring the unknown density from data. For instance,
we may know beforehand that the (unknown) probability
does not exceed a threshold p? > 0 over a subset A of
Q and that no point of A is c ≥ 1 times more likely to be
sampled than any other point in A, where c encodes how far
from uniform the distribution is on this set. Then, we can

1Although our analysis can be generalized to higher dimensions, we focus
on R2 to simplify the exposition.

pick ρup(x) := cp?

area(A) for x ∈ A and ρup(x) := +∞ ∈ R̄≥0
to indicate that there are no density constraints outside A.

To hedge against uncertainty about the density, instead of
(2), we solve the distributionally robust coverage problem

min
P∈QM

max
ρ∈P

∫
Q

min
i=1,...,M

h(‖pi − x‖)ρ(x)dx, (4)

where P is a data-driven ambiguity set of probability den-
sities that contains the true density with high probability
and respects Assumption 3.1. The construction of P is a
main goal of this work and is essential to obtain a tractable
algorithm to solve (4). To this end, we use the Haar wavelet
ambiguity sets introduced in [4]. These sets are data-driven
and, unlike the commonly used Wasserstein balls for such
problems, they only contain densities and can incorporate
assumptions like Assumption 3.1 in a direct way.

IV. WAVELET ESTIMATOR-BASED COVERAGE DRO

In this section, we follow the wavelet estimator construc-
tion of [4] to build an ambiguity set of probability densities
for the true density ρ. Using the N independent samples
X1, . . . , XN , we select a resolution threshold 2−J and build
the wavelet density estimator

ρ̂(x) =
∑
ϕ∈Φ

α̂ϕϕ(x) +

J−1∑
j=0

∑
ψ∈Ψj

β̂ψψ(x),

with

α̂ϕ :=
1

N

N∑
i=1

ϕ(Xi), ϕ ∈ Φ, (5a)

β̂ψ :=
1

N

N∑
i=1

ψ(Xi), ψ ∈ ∪J−1j=0 Ψj . (5b)

The Haar wavelet basis Φ ∪ {Ψj}∞j=0 is the one described
in Section II. To define the ambiguity set, we consider
all densities in V `J whose wavelet coefficients are within
prescribed bounds from the coefficients of the estimator. We
compactly denote by α and βj the coefficients of the scaling
functions and the wavelets at each scale j, and α̂, β̂j the
corresponding coefficients of the estimator. Given the radii
ε = (ε0, . . . , εJ), the ambiguity set is determined through the
wavelet coefficients (α,β0, . . . ,βJ−1) ∈ RK , K := 4J`1`2,
that satisfy

‖α− α̂‖2 ≤ ε0, ‖βj − β̂j‖2 ≤ εj+1, j ∈ [0 : J − 1] (6)

and the following constraints:
• Unit mass. Each density from the ambiguity set should

integrate to one. Equivalently, the coefficients αk of the
scaling functions need to satisfy∑

k∈Z`

αk = 1. (7)

• Upper and lower density bounds. Since the true density
should satisfy the bounds of Assumption 3.1, these are
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captured at resolution 2−J by the linear constraints

min
x∈IJ,k

ρlow(x) ≤ αk0(k) +

J−1∑
j=0

3∑
r=1

2jβrj,kj(k)
signrj(k)

≤ max
x∈IJ,k

ρup(x) ∀k ∈ Z2J`, (8)

with kj(k) and signrj(k) as given in (1).
Note that the right-hand-side constraint in (8) becomes

trivial when maxx∈IJ,k ρup(x) = +∞. In addition, (8)
always implies the non-negativity constraint for the density
ρ, which in the absence of any further density constraints
is equivalent to setting ρlow(x) ≡ 0 and ρup(x) ≡ +∞. We
refer to the thresholds ε0, . . . , εJ in (6) as the ambiguity
radii, which can be tuned so that the ambiguity set contains
the projection of the true density to the space D(V `J )
with prescribed probability [4, Theorem 5.2]. We compactly
denote by θ ≡ (α,β0, . . . ,βJ−1) the Haar coefficients of
a distribution in V `J and by Θ the set of parameters θ that
satisfy the constraints (6), (7), and (8). By parameterizing
the ambiguity set through θ ∈ Θ, the DRO problem is
equivalently written

min
P∈QM

max
θ∈Θ

∫
Q

min
i=1,...,M

h(‖pi − x‖)ρθ(x)dx

= min
P∈QM

diff

max
θ∈Θ

M∑
i=1

∫
Vi

h(‖pi − x‖)ρθ(x)dx, (9)

with ρθ the parameterized distributions. Using the compact
notation F (P,θ) :=

∫
Q

mini=1,...,M h(‖pi − x‖)ρθ(x)dx,
f(P ) := maxθ∈Θ F (P,θ), the DRO problem is written as

min
P∈QM

f(P ) = min
P∈QM

max
θ∈Θ

F (P,θ). (10)

Note that this problem is non-smooth and non-convex. De-
noting ρθ(x) ≡

∑K
k=1 θkφk(x) with φk ≡ ϕ for some ϕ ∈ Φ

or φk ≡ ψ for some ψ ∈ Ψ , F can be expressed as

F (P,θ) = 〈c(P ),θ〉, (11)

for all P ∈ QMdiff, where c(P ) := (c1(P ), . . . , cK(P )) and

ck(P ) :=

M∑
i=1

∫
Vi

h(‖pi − x‖)φk(x)dx. (12)

Remark 4.1: (Closed-form expressions for the integrals
in (12)). All the Haar wavelets take constant values across the
squares at the lowest resolution. Since the Voronoi regions
are convex polygons, the integrals (12) are finite sums of the
integrals of h(‖pi−x‖) across polygonal regions and can be
computed analytically for polynomial h. •

V. GRADIENT SAMPLING FOR COVERAGE CONTROL

In this section we provide the optimization algorithm
to solve the DRO problem (10). Given its nonsmoothness,
we build on a modification of the Gradient Sampling (GS)
algorithm, introduced in [7] to optimize locally Lipschitz
functions.

A. Modified GS sampling algorithm for nested cost functions

Here, we assume the objective function f : Rn → R takes
the form

f(x) = max
θ∈Θ

F (x, θ), (13)

where Θ ⊂ Rd, and denote by Df the set on which it is
continuously differentiable. We further assume throughout
the section that Df is an open set of full measure in Rn
(hence also dense)2. The main reason why we modify the
algorithm is that one cannot directly determine the value
of the objective function at any given point, given its
definition through the solution of a maximization problem,
which can typically only be solved approximately. As a
result, we cannot compute the gradients of the function
exactly at points where it is differentiable to approximate
its Clarke ε-subdifferential. Neither can we actually check
differentiablility of f at a specific point, which is required
in the original algorithm. The third issue is that not knowing
the exact values of the function poses challenges on how to
perform line search to determine the stepsize.

For the function f in (13), we denote

θ?(x) := argmaxθ∈Θ F (x, θ),

for each x ∈ Rn. We also assume that each θ?(x) is
nonempty and consider access to an oracle, representing an
optimization algorithm that carries out the maximization of
F with respect to θ and returns, for each x and user-defined
accuracy δ, a value θ? at a distance dist(θ?, θ?(x)) < δ.
We make the following assumption about the differentiability
properties of F .

Assumption 5.1: (Regularity of F ). The function x 7→
F (x, θ) is continuously differentiable for all x ∈ Df .
In addition, for each compact S ⊂ Rn, there exist
LF (S), LFx(S) > 0, such that for each x′ ∈ S ∩ Df
the functions θ 7→ F (x′, θ) and θ 7→ ∇xF (x′, θ) are
globally Lipschitz with respect to θ with constants LF (S)
and LFx

(S), respectively.
Here we provide our modification of the GS algorithm for

functions of the form (13) that satisfy Assumption 5.1.
(Modified) Gradient Sampling Algorithm
Step 0: (Initialization)
Select x1 ∈ Rn, α, β, γ ∈ (0, 1), ε1, ν1 > 0, µ, ϑ ∈ (0, 1],
m ∈ {n+1, n+2, . . .}, and approximation parameters δk ↘
0. Set k := 0.
Step 1: (Approximation of the Clarke ε-subdifferential by
gradient sampling)
Sample xk1, . . . , xkm independently and uniformly from
B(xk, εk) and set

Gk := conv({∇xF (xk1, θk1? ), . . . ,∇xF (xkm, θkm? )}),

where

‖θki? − θ?‖ ≤ δk for some θ? ∈ θ?(xki), i = 1, . . . ,m.

2This is required to prove convergence of the gradient sampling algorithm,
as clarified in the recent paper [6].
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Step 2: (Search direction computation)
Find the optimizer gk of the quadratic program

min ‖g‖2

s.t. g ∈ Gk.

Step 3: (Sampling radius update)
If ‖gk‖ ≤ νk, set tk := 0, νk+1 := ϑνk, and εk+1 := µεk,
and go to Step 5.
Else, set νk+1 := νk, εk+1 := εk, and dk := −gk/‖gk‖.
Step 4: (Limited Armijo line search)
(i) Choose an initial step size t ≡ tk,init ≥ tk,min := γεk/3.
(ii) Set the tolerance level ck := γ(1−α)‖gk‖εk/3, pick θ?
satisfying

dist(θ?, θ?(x
k)) ≤ ck

4LF ({xk})
,

and set θk? := θ?.
(iii) Pick θ′? satisfying

dist(θ′?, θ?(x
k + tdk)) ≤ ck

4LF ({xk + tdk})
,

and set (θk?)′ := θ′?.
(iv) If

F (xk + tdk, θ′?) ≤ F (xk, θ?)− βtk‖gk‖+
ck
2
,

set tk := t and go to Step 5.
(v) If γt < tk,min, set tk := 0 and go to Step 5.
(vi) Set t := γt and go to (iii).
Step 5: (Update)
Set xk+1 := xk + tkd

k, k := k + 1 and go to Step 1.

Step 0 of the GS algorithm contains the initialization of
the decision variable and the initial tuning of the parameters.
These parameters include the tolerances εk for the gradient
sampling radius and νk for the size of the minimum-norm
element of Gk. The initial values of these tolerances are set
in Step 1 and their subsequent values are obtained using the
discount factors µ and ϑ in Step 3 of the algorithm. Step 1
approximates the Clarke εk-subdifferential of f through the
set Gk generated by approximations of sampled gradients
of F , while Step 2 computes the minimum-norm element
of this set. Step 3 is responsible for reducing the sampling
radius and minimum-norm element tolerance when getting
closer to Clarke stationarity. Step 4 performs a line search
to determine the gradient step using approximations of the
objective function. Finally, Step 5 updates the values of xk

based on the chosen stepsize and search direction.

B. Convergence of the GS algorithm

The following result establishes convergence of the GS
algorithm under Assumption 5.1.

Theorem 5.2: (Convergence of the GS algorithm). As-
sume f of the form (13) is locally Lipschitz, lower bounded,
and continuously differentiable on Df , which is an open

set of full measure in Rn. Assume further that F satisfies
Assumption 5.1. Then, with probability one, the GS algo-
rithm does not stop and νk, εk ↘ 0. In addition, every
accumulation point of {xk} is Clarke stationary for f . •

Remark 5.3: (Variants of the GS algorithm). Appropriate
adjustments of the GS algorithm which account for the issues
of not computing the derivative of f and avoiding its differ-
entiability check have appeared in the literature. Specifically,
[16] resolves the differentiablility check by randomly per-
turbing the gradient direction whereas [18] and [19] avoid it
by allowing empty steps. which is also the approach that we
consider here. A non-derivative version of the algorithm is
further considered in [19], which approximates the gradient
of f by Steklov averages. Nevertheless, these adjustments are
not sufficient to deal with the objective functions we consider
here, since they are defined implicitly though the solution of
an inner maximization problem, and thus, both their values
and their derivatives need to be approximated by different
methods. •

C. Application of the GS algorithm to coverage optimization

Here, we show how the distributionally robust coverage
control problem (10) fits into the framework described in
Section V and is amenable to the Gradient Sampling algo-
rithm, cf. Theorem 5.2. To this end, we henceforth assume
that the function h in (4) is continuously differentiable. From
[5, Theorem 2.16](i), each function ck in (12), which is
equivalently given by the expression

ck(P ) =

∫
Q

min
i=1,...,M

h(‖pi − x‖)φk(x)dx

that is valid for all P ∈ R2M , is globally Lipschitz on
QMc for any bounded set Qc ⊂ R2. Thus, the same holds
also for each function F (P,θ) =

∑K
k=1 θkck(P ). In fact,

since Θ is bounded, the functions P 7→ F (P,θ) have a
uniformly bounded Lipschitz modulus and it follows from
[23, Proposition 9.10, Page 356] that f is globally Lipschitz
on QMc . Hence, it is also locally Lipschitz on R2M and
therefore differentiable almost everywhere. We henceforth
assume that f is continuously differentiable on a set Df ,init
of full measure. Establishing this fact in general for arbitrary
h is challenging, albeit easily satisfied for specific choices
(e.g., h = const). This assumption is needed to guarantee
convergence of the algorithm but it is not necessary to
guarantee differentiability at sampled points of the auxiliary
function F with probability one, which we establish next, by
showing that F satisfies Assumption 5.1.

To this end, we obtain from [5, Theorem 2.16](ii) that
each function ck(P ) is continuously differentiable on R2M

diff ,
which is open and of full measure (hence also dense) and its
partial derivatives are given by

∂

∂pi
ck(P ) =

∫
Vi

∂

∂pi
h(‖pi − x‖)φk(x)dx.

This convenient expression is a result of the fact that the
derivatives of the integrals in (12) with respect to changes
in the boundaries of the Voronoi cells vanish. The intuition
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behind this is that any infinitesimal increase of an agent’s
integral due to the shift of a boundary face is deducted from
the integral of its neighbor along that face. As a result, we
get that ∇PF (P,θ) = c′(P )θ for all P ∈ R2M

diff , where

c′(P ) :=


∂
∂p1

c1(P ) · · · ∂
∂p1

cK(P )
...

...
∂

∂pM
c1(P ) · · · ∂

∂pM
cK(P )


and therefore that f and each θ → F (P,θ) are continuously
differentiable on the full-measure set Df := Df ,init ∩ R2M

diff .
In addition, we get that for any P ′ ∈ Df it holds that

‖∇PF (P ′,θ1)−∇PF (P ′,θ2)‖ ≤ ‖c′(P ′)‖‖θ1 − θ2‖,

which implies existence of a Lipschitz constant LFP
(S) for

∇FP with respect to θ for every compact S ⊂ R2M . The
same Lipschitz property for θ → F (P,θ) follows directly
from (11) and continuity of P 7→ c(P ). Hence, Assump-
tion 5.1 is fulfilled for F and it follows from Theorem 5.2
that every accumulation point of the GS algorithm for the
coverage objective function is also Clarke stationary. It is
worthwhile noting that the inner optimization problem of the
distributionally robust coverage algorithm is a linear program
and can be numerically solved up to high accuracy using
commercial solvers.

Remark 5.4: (Coverage cost-function domain). Extend-
ing the domain of the coverage cost function f from QM

to R2M facilitates proving the convergence of the algorithm.
Future research will include the verification that executions
of the algorithm starting inside QM will remain sufficiently
close to it for all iterations, and that dist(xk, QM ) will
always approach zero for large k. Such an invariance result
is justified by the fact that placing agents outside QN incurs
a higher cost, as all the probability mass is inside the set,
which makes the negated gradient of the objective function
point towards QN . •

VI. CONCLUSIONS

This paper proposes a distributionally robust coverage
control problem, for the optimal deployment of a group
of robots in an uncertain environment. In particular, our
formulation employs Haar-wavelet parameterized ambiguity
sets that are accompanied by rigorous statistical guarantees
and conveniently incorporate prior information about the
property of interest. To solve this problem, we propose a
variant of the GS algorithm, which can handle objective
functions that are implicitly defined through the solution of
an inner optimization problem.

Our future work will include the derivation of distributed
algorithms for the solution to the inner optimization to solve
the distributionally robust coverage control problem in a
decentralized manner. We further aim to provide invariance
guarantees for the GS algorithm to provably restrict its
evolution over bounded domains, to identify costs where
continuous differentiablility over an open set of full measure
can be rigorously established, and to experimentally validate
the approach.
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