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Abstract— We provide a Koopman operator based method
to estimate the region of attraction of equilibria in a purely
data-driven setting. The proposed method yields formal stability
certificates, while not requiring prior knowledge of the system
dynamics or online addition of data points along the way.
It consists in three steps. First, a candidate Lyapunov is
constructed through an approximated linear lifted dynamics.
Next, the validity domain of the Lyapunov function is assessed
from the data set. This validation step is performed with the
sole knowledge of a (possibly loose) second-order bound on the
flow, and without the usual a priori knowledge of a Lipschitz
constant. Finally, an inner approximation of the region of
attraction is obtained on an adaptive grid via a branch-and-
bound algorithm.

I. INTRODUCTION

Estimating regions of attraction (ROA) of stable equilibria
is an important problem in system analysis and control
design, and a crucial issue in safety-critical applications.
This problem has been the focus of intense research activity
(see e.g. [4], [13], [14]) and, in particular, recent years have
witnessed the development of ROA estimation methods in
a data-driven context. However, most data-driven methods
developed so far rely on adaptive sampling, that is, they use
data generated at will by a known dynamical system. This is
for instance the case of the work [2], which yields accurate
estimations of ROA with complex geometry, but at the
expense of adding data points when and where it is needed
as the algorithm proceeds. Along the same lines, recent
methods leveraging machine learning and neural networks
in particular (see e.g. [5], [12]) require data points that are
typically generated on the fly during the training process.
Alternatively, [16] computes a candidate Lyapunov function
from data, but utilizes the supposedly known dynamics to
validate that function.

In fact, there are surprisingly few methods addressing the
ROA estimation problem in a pure data-driven setting, that
is, where an unknown dynamical system is described by a
dataset given once and for all prior to any computation. Such
a setting is considered in [6], where the authors use semi-
definite programming and the so-called scenario approach
to obtain common Lyapunov functions in the specific case
of linear switched systems. In a similar setting, infinite-
dimensional linear programming is leveraged in [7] to es-
timate outer approximations of (controlled) invariant sets.
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These two methods mostly rely on probabilistic guarantees
and, to the authors’ knowledge, there is no similar method
which yields formal stability certificates associated with
inner approximations of the ROA.

In this paper, we present a novel method for the ROA
estimation problem which addresses the above-mentioned
limitations. Building on our previous work [9], we rely on
the Koopman operator framework, which is amenable to
both stability analysis (e.g. [8]) and data-driven techniques
(e.g. [15]). In particular, we construct a candidate Lyapunov
function from an approximation of the Koopman operator,
assess the validity of that function in a data-driven fashion,
and estimate the ROA with sublevel sets of the function.
Our approach is related to the recent works [5], [16] which
also rely on Koopman operator theory, but it differs in the
validation step, which in our case provides formal stabil-
ity certificates in the purely data-driven setting described
above (i.e. unknown vector field and no adaptive sampling).
Moreover, while data-driven methods providing strict sta-
bility guarantees usually require the knowledge of global
Lipschitz bounds of the flow map, we depart from such
an assumption. Instead, we require a (possibly loose) bound
on the Hessian matrix of the flow map and compute local
Lipschitz constants from the data, a technique which also
prevents us from obtaining conservative stability certificates
due to large Lipschitz bounds in instability regions.

The rest of the paper is organized as follows. In Section
II, we present our problem setting and introduce the Koop-
man operator framework with associated stability results.
Our data-driven method is described in detail in Section
III and illustrated with numerical examples in Section IV.
Concluding remarks and perspectives are given in Section
V.

II. PRELIMINARIES

A. Problem setting
We consider a continuous-time dynamical system on a

compact set X ⊂ Rn described by a flow map ϕ : R+×X →
X ⊂ Rn. We will make the following standing assumption.

Assumption 1: The dynamical system admits an asymp-
totically exponentially stable equilibrium x∗ ∈ X .

Assumption 2: The flow map ϕ(t,x) is continuous in t
and twice continuously differentiable in x.
With this second assumption, we can define the Hessian
bound of the flow map.

Definition 1: A Hessian bound of the flow map ϕ is a
function H : R+ → R+ that satisfies

‖∇2
xϕl(t,x)‖2 ≤ H(t)
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for all x ∈ X and for all l = 1, . . . , n, with the Hessian
matrix [∇2

xϕl(x)]ij = ∂2ϕl

∂xi∂xj
(t,x).

Our data-driven stability problem is defined as follows.
Data-driven stability problem: Suppose that we are given

1) a set of K data pairs (xk,yk = ϕ(∆t,xk)) ∈ X ×X ,
where ∆t > 0 is the sampling time,

2) the value of a Hessian bound H = H(∆t).
Then, we aim at finding the largest set X0 and the smallest
set X1, with X1 ⊂ X0 ⊂ X , such that X1 is attractive in
X0 according to the following definition.

Definition 2: A set X1 is attractive in X0 if, for all
x0 ∈ X0, there exists T > 0 such that ϕ(T,x0) ∈ X1.

Note that we are bound to consider convergence to a set and
not to a point due to the data-driven nature of the problem.

We will solve the above problem by constructing a can-
didate Lyapunov function V and by considering its sublevel
sets

Ωα = {x ∈ X|V (x) ≤ α}
Ωα,β = {x ∈ X|α ≤ V (x) ≤ β} .

In particular, we will rely on the following result.
Proposition 1: Let V : Rn → R be a continuous function

that satisfies V (x) ≥ 0 for all x ∈ X , and consider the set

X = {x ∈ X : V (ϕ(∆t,x)) < V (x)}.

Then, for all α1 < α0 such that Ωα1,α0 ⊂ X , Ωα1 is
attractive in Ωα0

. Moreover, if x ∈ Ωα1
and ϕ(t,x) /∈ Ωα1

for some t > 0, then ∃t0 ∈ [t, t + ∆t] such that ϕ(t0,x) ∈
Ωα1

.
Proof: The proof follows standard arguments in stabil-

ity theory and is given here for the sake of completeness.
Suppose that the set Ωα1

is not attractive so that, for some
x ∈ Ωα0 , ϕ(t,x) /∈ Ωα1 for all t ≥ 0. However, it is clear
that ϕ(t,x) ∈ Ωα0 (and therefore ϕ(t,x) ∈ Ωα1,α0 ) for all
t ≥ 0 since Ωα0

⊂ X . Moreover, the continuous function
∆V (·) := V (ϕ(∆t, ·))−V (·) attains its maximal value ∆M

on the compact set Ωα1,α0
, which satisfies ∆M < 0 since

Ωα1,α0
⊂ X . Then, we have

V (ϕ(N∆t,x) = V (x)+

N∑
k=0

∆V (ϕ(k∆t,x)) ≤ V (x)+N∆M .

For N > V (x)/|∆M |, it follows that V (ϕ(N∆t,x) < 0,
which is impossible. By contradiction, Ωα1 is attractive in
Ωα0 .

Now suppose that x ∈ Ωα1
and ϕ(t,x) /∈ Ωα1

. By
continuity of V (ϕ(·,x)) and the intermediate value theorem,
there exist times tk ∈ [0, t] such that V (ϕ(tk,x)) = α1, that
is ϕ(tk,x) ∈ Ωα1,α0

⊂ X . Therefore, V (ϕ(tk + ∆t,x)) ≤
α1 + ∆M < α1, so that ϕ(tk + ∆t,x) ∈ Ωα1

. The result
follows by setting t0 = maxk tk + ∆t and noting that
t0 ∈ [t, t+∆t] since maxk tk ≤ t and t0 > t (if t0 < t, then
there would exist a time t′ ∈ [t0, t], i.e. t′ > maxk tk, such
that V (ϕ(t′,x)) = α1, which is impossible).

B. Koopman operator framework and stability results

We briefly describe the Koopman operator framework that
we leverage in the context of data-driven stability analysis.
The Koopman operator associated with the discrete-time map
x 7→ ϕ(∆t,x) is the linear operator U : C(X) → C(X)
defined by (Uf)(x) = f ◦ ϕ(∆t,x) for all observables
f ∈ C(X).

For a chosen subspace FN ⊂ C(X), the Koopman
operator U can be approximated by its compression UN =
PNU |FN

, where PN : C(X)→ FN is a projection operator.
The compression operator UN is finite-dimensional and can
therefore be represented by a matrix U. Note that, when data
are available, the matrix representation U can be obtained
through the extended dynamic mode decomposition (EDMD)
method [15] (see Section III-A). Moreover, for a set of N
basis functions {ψj}Nj=1 such that FN = span{ψj}Nj=1, the
dynamics of the lifted state Ψ(x) = (ψ1(x) . . . ψN (x))T

can be approximated by (see e.g. [10, Chapter 1])

Ψ(ϕ(∆t,x)) = UTΨ(x) + ε(x) , (1)

where ε(x) is the approximation error. As shown in [9],
this can be used to derive a candidate Lyapunov function V
for the system. Indeed, provided that the matrix U is stable
(i.e. its eigenvalues lie inside the unit circle) and that Ψ(x)
is injective at x∗, there exists a matrix Q � 0 such that
V (x) = ΨT(x)QΨ(x) is a candidate Lyapunov function.
More precisely, we have the following result, where the H∞
norm of a (discrete-time) transfer function G is defined by

‖G(z)‖H∞ = sup
ω∈R

s(G(eiω))

with s(G(eiω)) the largest singular value of the matrix
G(eiω).

Theorem 1: Let U be the matrix representation of the
Koopman operator U in the subspace spanned over {ψj}Nj=1

with Ψ(x) = 0 if and only if x = x∗. If there exist positive
semidefinite matrices Z, W such that

‖W1/2(zI −UT )−1Z−1/2‖H∞ < 1 (2)

and

sup
x∈X

‖Z1/2ε(x)‖2
‖W1/2Ψ(x)‖2

< 1 ∀x ∈ X ′, (3)

then the system admits on X
′ ⊆ X a Lyapunov function

of the form V (x) = ΨT(x)QΨ(x), with Q � 0, i.e.
V (ϕ(∆t,x)) < V (x) for all x ∈ X ′ \ {x∗}.

Proof: The function V (x) is positive on X for all
x 6= x∗. Moreover, we have

∆V (x) = ΨT(ϕ(∆t,x))QΨ(ϕ(∆t,x))−ΨT(x)QΨ(x).

Denoting y = Ψ(x), w = ε(x) and using (1), we obtain

∆V (x) = (UTy + w)TQ(UTy + w)− yTQy

= yT(UQTU−Q)y + 2yT(UQ)w + wTQw.

Next, we can use the inequality

2yT(UQ)w ≤ yTUQZ̃−1QUTy + wTZ̃w
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which is valid for any Z̃ � 0. For Z̃ = Z−Q with Z � Q,
we get

∆V (x) ≤ yT(UQUT −Q + UQ(Z−Q)−1QUT + W)y

+ wTZw − yTWy.

Now, if Z and W are such that
‖W1/2(Iz −UT)−1Z−1/2‖H∞ < 1, then there exists
Q such that (see e.g. [17, Corollary 21.17])

UQZ−1/2(I− Z−1/2QZ−1/2)−1Z−1/2QUT + W ≺ 0

or equivalently

UQUT −Q + UQ(Z−Q)−1QUT + W ≺ 0. (4)

Under the above condition, we then obtain ∆V (x) < 0 if
εT(x)Zε(x)) ≤ ΨT(x)WΨ(x).
This result can be recognized as a variation of the small-gain
theorem, and is a generalization of the result in [9], where
a continuous-time and non-weighted small gain result (i.e.,
W = Z = I) was considered.

A typical problem is to choose the weights W and Z
so that the H∞ norm of the system is smaller than one.
This choice can be guided by the construction proposed
in [8] (and used in [5], [16]), where a Lyapunov function is
built with the eigenfunctions of the Koopman operator. These
eigenfunctions can be approximated by the eigenvectors of
U (see e.g. [10, Chapter 1]). Therefore, we can consider
the Lyapunov function ΨT(x)S∗ΣSΨ(x) for some positive
definite Σ, where the matrix S is a collection eigenvectors
of U such that SUT = ΛS with Λ = diag(λ1, . . . , λN )
the diagonal matrix containing the associated eigenvalues. In
this case, we have to set Q = S∗ΣS, which is a real-valued
positive definite matrix as long as U is diagonalizable. Also,
it can be shown that the weight matrices W and Z satisfying
the H∞ norm constraint and such that Q = S∗ΣS can be
chosen according to

W = δ S∗ΣS Z = δ−1S∗ΣS (5)

with δ ∈ (0, 1 − maxi |λi|). See Appendix A for detailed
developments.

III. DATA-DRIVEN METHOD FOR ROA ESTIMATION

We are now in a position to describe our data-driven
method for ROA estimation. We will consider the fol-
lowing steps. Using the data and relying on Theorem 1,
we construct a candidate Lyapunov function through the
Koopman operator framework. Then, instead of estimating
the possibly conservative region X

′
where condition (3)

is satisfied, we directly estimate the validity region X on
which the Lyapunov function is decreasing. Finally, we find
the largest value α0 and the smallest value α1 that satisfy
the assumptions of Proposition 1, so that that X1 = Ωα1

is attractive in X0 = Ωα0 , which stands for an inner
approximation of the ROA.

A. Construction of the Lyapunov function

We first use the EDMD method (see [15]) to obtain the
matrix approximation

U = Ψ†XΨY (6)

where † denotes the Moore-Penrose pseudoinverse and with
the N ×K data matrices

ΨX =

 ψ1(x1) · · · ψ1(xK)
...

. . .
...

ψN (x1) · · · ψN (xK)



ΨY =

 ψ1(y1) · · · ψ1(yK)
...

. . .
...

ψN (y1) · · · ψN (yK)

 .

We will consider monomial basis functions of the form
(x1 − x∗1)α1 · · · (xn − x∗n)αn , with α1 + · · ·+ αn < dmax.
Note that the number of basis functions should satisfy
N < K.

Next, using Theorem 1, we compute a candidate Lyapunov
function V (x) = ΨT(x)QΨ(x), through the Riccati equa-
tion (4) with Z, W given by (5), and with Σ = I (by default).
It is noticeable that the Koopman matrix U can possibly be
unstable (i.e. its spectral radius is larger than 1), in which
case one cannot solve (4) and obtain the Lyapunov function.
This can arise when many data points lie outside the basin
of attraction of the equilibrium x∗. To overcome this issue,
only data points (xk,yk) such that ‖xk − x∗‖ < Dmax

should be used with the EDMD method to construct the
data matrices ΨX and ΨY. The parameter Dmax is initially
set to a large value, which is gradually decreased until the
Koopman matrix becomes stable.

B. Validation of the Lyapunov function

In this section, we develop our method to estimate the
validity region of the Lyapunov function. To do so, we first
need to estimate the local Lipschitz constants of the flow
map.

1) Computation of local Lipschitz constants: We aim at
computing a function Ll : X → R+, l = 1, . . . , n, such that

‖∇xϕl(∆t,x)‖ ≤ Ll(x).

Consider two pairs of data-points (xi,yi) and (xj ,yj)
with i, j ∈ {1, . . . ,K} and the associated unit vector
eij = (xj − xi)/‖xj − xi‖. It follows from the mean value
theorem that

∇xϕl(∆t, x̃) · eij =
yj − yi
‖xj − xi‖

for some x̃ = xi + γ(xj − xi) with γ ∈ [0, 1]. Then, for
some x̄ = x + µ(x − x̃) with µ ∈ [0, 1], we obtain by
another application of the mean value theorem that

∇xϕl(∆t,x) · eij =
yj − yi
‖xj − xi‖

+ (x̃− x)∇2
xϕl(∆t, x̄)eij

≤ yj − yi
‖xj − xi‖

+H ‖xj − x‖ , Cij ,
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with the Hessian bound H = H(∆t) (see Definition 2)
and where we have assumed without loss of generality that
‖xj −x‖ > ‖xi−x‖. Next, we can rewrite ∇xϕl(∆t,x) =
‖∇xϕl(∆t,x)‖ e for some e such that ‖e‖ = 1. By consid-
ering a set I of pairs (i, j) chosen such that the data points
xi and xj are among the nearest neighbors of x, we write

‖∇xϕl(∆t,x)‖ ≤ min
(i,j)∈I

Cij
e · eij

.

Since e is unknown, we finally obtain the Lipschitz bound
by maximizing over e:

‖∇xϕl(∆t,x)‖ ≤ max
‖e‖=1

min
(i,j)∈I

Cij
e · eij

, Ll(x).

2) Estimating the validity region: We approximate the
validity region of the Lyapunov function with the set

Xballs =

K⋃
k=1

B(xk, rk) ∩X ⊆ X (7)

where B(xk, rk) is a ball of radius rk and centered at the
sample point xk. We can note that

|ϕl(∆t,x)− ϕl(∆t,xk)| = |ϕl(∆t,xk)− yk|
≤ rk max

x∈B(xk,r)
‖∇xϕl(∆t,x)‖

≤ rk
(
Ll(xk) + rk max

x∈B(xk,r)
‖∇x (‖∇xϕl(∆t,x)‖2)‖2

)
≤ rk Ll(xk) + r2kH

where we used the fact that ‖∇(‖∇f‖2)‖2 < ‖∇2f‖2.
Therefore,

x ∈ B(xk, rk)⇒ ϕ(∆t,x) ∈ R(yk, rk) (8)

with the hyperrectangle

R(yk, rk) , {x ∈ X : |x(l)−y(l)k | ≤ rk Ll(xk)+H r2k ∀l},

where x(l) denotes the lth component of x. It follows from
(8) that the largest radius rk of a ball B(xk, rk) satisfying
(7), i.e. B(xk, rk) ⊂ X , is the solution r∗ to the following
optimization problem:

max r s.t. max
y∈R(yk,r)

V (y)) ≤ min
x∈B(xk,r)

V (x) . (9)

If one can compute bounds Vmin(r) and Vmax(r) such
that maxy∈R(yk,r) ≤ Vmax(r) and minx∈B(xk,r) V (x) ≥
Vmin(r), the above problem can be relaxed to

max r s.t. Vmax(r) ≤ Vmin(r) .

Since the functions Vmin(r) and Vmax(r) are monotone de-
creasing and increasing, respectively, the solution r∗ satisfies
Vmax(r∗) = Vmin(r∗) and can be computed by using a
bisection method.

In the case of monomial basis functions, lower and upper
bounds Vmin(r) and Vmax(r) could be computed using
polynomial optimization (i.e. SOS programming). However,
this is computationally expensive since these bounds are
computed for a possibly large number K of balls. Instead,
we use the methods detailed in Appendix B.

C. Finding the largest region of attraction

Now it remains to find the largest value α0 and the smallest
value α1 such that the sublevel set Ωα1,α0

is contained
in Xballs (see (7)). This amounts to solving the following
problem:

max
α0,α1

(α0 − α1)

s.t. ∀x ∈ X \ X̄balls, α0 < V (x) or α1 > V (x)

0 ≤ α1 ≤ α0 < min
x∈∂X

V (x) ,

(10)

where the constraint α0 < minx∈∂X V (x) ensures that
Ωα0
⊂ X . This problem is solved via a bisection algorithm.

The first constraint is equivalent to the ball covering con-
dition Ωα1,α0 ⊂ X̄balls and is verified with a branch-and-
bound method inspired by [1]. This is done by building an
adaptive grid and by checking whether every cell of the grid
either has an empty intersection with Ωα1,α0

or is contained
within a single ball B(xk, r) for some k. When a cell does
not satisfy this condition, it is divided into smaller cells
until they either satisfy the above condition or reach a preset
minimal grid size. In the latter case, one concludes that the
region Ωα1,α0

is not covered by the validity region X̄balls and
a smaller sublevel set Ωα1,α0

(with smaller α0 or larger α1)
is considered at the next iteration of the bisection algorithm.

Remark 1 (Adaptive sampling): The branch-and-bound
method described above is amenable to addition of data
points on the fly (although this is not permitted in our
original problem setting). When a cell of minimal size does
not satisfy the disk covering condition, one could possibly
add a new data point at the center of that cell and compute
the radius of the associated ball. If the added ball covers
the cell, then the algorithm can proceed.

IV. NUMERICAL EXPERIMENTS

In this section, we illustrate our data-driven method with
two numerical examples.

A. Two-dimensional system

We consider a damped pendulum described by

ẋ1 = x2

ẋ2 = − sin(x1)− x2

which admits a stable equilibrium at the origin and two
saddle nodes at (±π, 0). We consider to test cases: (i) 10000
data points are uniformly randomly distributed over [−4, 4]2,
(ii) data points are distributed over a uniform 100×100 grid
in [−4, 4]2. All data points are generated with a sampling
time ∆t = 3. The Hessian bound is equal to H = 7.12
(estimated numerically). The basis functions are monomials
of total degree up to 3 and the Koopman matrix is constructed
with Dmax = 2. The approximation validity region Xballs

of the Lyapunov function is shown in Fig. 1(a) in the case
of randomly distributed points. The approximation Ωα1,α0

of the ROA, shown in Fig. 1(b), is larger with data points
distributed over a uniform grid (solid curves) than with
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randomly distributed points (dashed curves). It can also be
seen in Fig. 1(a) that the intersection of the balls (disks)
can be large so that fewer data points would be sufficient.
Numerical simulations (not shown here) demonstrate that one
could indeed obtain similar results with fewer data points
if adaptive sampling were permitted (see Remark 1). They
also suggest that better results are obtained with our choice
of matrices Z and W, compared with a generic choice
Z = W = I.

(a) Validity region of the Lyapunov function

(b) Approximation of the ROA

Fig. 1. Estimation of the ROA of the origin for the pendulum dynamics.
(a) The union of the red disks provide an inner approximation Xballs of
the validity region X for the Lyapunov function (shown here in the case
of randomly distributed data points). (b) The method shows that Ωα1 (red
curves) is attractive in the inner approximation Ωα0 (blue curves) of the
ROA (black curve). Solid curves: randomly distributed data points; dashed
curves: data points over a uniform grid.

Remark 2: The effect of an overestimated Hessian bound
on the performance is very moderate. In the above example,
if we use a loose bound 50% higher than the true value
(i.e. H = 10.68 instead of H = 7.12), the area of
the estimated ROA decreases by only 2.2%. This can be
explained by the second order effect of the Hessian bound
in our computations, which mostly affects the radius of large
balls and not so much the radius of smaller balls, the latter
being more critical to the size of the estimated ROA.

B. Three-dimensional system
We consider the Lorenz system in the regime where it

admits a stable origin:

ẋ1 = 10 (x2 − x1)

ẋ2 = x1 (0.5− x3)− x2

ẋ3 = x1 x2 −
8

3
x3.

Data points are distributed over a uniform 50 × 50 × 50
grid in [−3, 3]3, and generated with the sampling time ∆t =
1.5. The Hessian bound is equal to H = 1.19 (estimated
numerically). A good approximation of the ROA is obtained
(Figure 2(b)), but the attractive set is quite large (Figure
2(a)). This could be improved with a larger number of
data points around the equilibrium. However, the method
is computationally expensive in this three-dimensional case,
mostly due to the possibly large number of required data
points and the use of an adaptive grid. It should therefore be
adapted to tackle higher-dimensional systems (see Section
V).

(a) Attractive set (b) Approximation of the ROA

Fig. 2. For the Lorenz dynamics, the method shows that Ωα1 (blue set in
(a)) is attractive in the inner approximation Ωα0 (yellow set in (b)) of the
ROA. Both subfigures are on the same scale

V. CONCLUSION

We have developed a novel method for ROA estimation
in a purely data-driven setting, where both construction
and validation of a Lyapunov function are performed on
a pre-defined dataset generated by an unknown flow map.
The Lyapunov function is obtained through a data-driven
approximation of the Koopman operator associated with the
flow map, and the validation step relies on the computation
of bounds on the gradient of the Lyapunov function and the
estimation of local Lipschitz constants of the flow map from
the data. This method provides formal stability certificates
with the sole knowledge of a (possibly loose) bound on the
norm of the Hessian matrix of the flow map.

We envision several perspectives for future research. Since
the validation step relies on a branch-and-bound method
based on an adaptive grid, it does not scale well with system
dimension and cannot be used with high-dimensional sys-
tems. For these cases, the validation step could be performed
through the probabilistic scenario approach [3]. The use of
other basis functions (possibly well-suited to high dimen-
sions, such as radial basis functions) could be investigated,
but would require to adapt the validation step. Moreover,
the shape of sublevel sets of Lyapunov functions does not
properly adapts to the geometry of the ROA. This could be
improved by considering an additional optimization step on
the weight matrix Σ. Finally, the method could be extended
to systems with outputs and used to compute controlled
invariant sets.
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APPENDIX

A. Computation of the matrices W and Z in (5)
We need to find the weighting matrices satisfying

Q−UQUT −W −UQ(Z−Q)−1QUT � 0.

Let us set Z = (δ−1Z + 1)Q, W = δWQ and then choose
positive δZ , δW small enough to satisfy the constraints above.
We have

0 ≺ Q−UQU−W −UQ(Z−Q)−1QUT

= S∗ΣS− S∗Λ∗ΣΛS− δWS∗ΣS− δzS∗Λ∗ΣΛS.

This leads to the inequality (1 − δW )Σ � Λ∗ΣΛ(1 + δZ)
and, since all the matrices are diagonal and Σ is positive
definite, we have maxi |λi|2 < (1 − δW )/(δZ + 1). On the
other hand, if we use the condition

1 ≥ ‖W1/2(Iz − LT)−1Z−1/2‖H∞

= max
ω

λ

(
δWΣ(Iejω − Λ)−1

δZ
1 + δZ

Σ−1(Iejω − Λ)−∗
)

=
δZδW
1 + δZ

∣∣∣1−max
i
|λi|
∣∣∣−2

we get the bound maxi |λi| ≤ 1−
√
δZδW /(1 + δZ).

Since we have chosen a specific ma-
trix Q, our bounds relate according to

(1− δW )/(δZ + 1) ≤
(

1−
√
δZδW /(1 + δZ)

)2
, which is

equivalent to 0 ≤ ((1 + δZ)δW − δZ)
2. Furthermore, the

equality is achieved when δW = δZ/(1 + δZ) and, in this
case, we have maxi |λi| ≤ 1− δW . It follows that we have
finally W = δWQ, Z = (δ−1Z + 1)Q = δ−1W Q and we
obtain (5) with δ = δW .

B. Computation of the bounds Vmax and Vmin
a) Computation of Vmax: It follows from the triangular

inequality that

max
x∈R(yk,r)

V (x) ≤
∑
i,j

max
x∈R(yk,r)

(Qijψi(x)ψj(x)) , Vmax .

(11)
In the case of monotone functions ψi (e.g. monomials), the
maximal value of each term is attained at the vertices of
R(yk, r) (except if |y(l)k | ≤ rk Ll(xk) + H r2k for some
l = 1, . . . , n, in which case 0 could be the maximal value).

b) Computation of Vmin: The minimal value of V over
the ball B(xk, r) lies on the boundary ∂B(xk, r), provided
that the function V has no stationary point inside the ball
(only the origin in the case of monomial basis functions). It
follows that one can compute the values of V at uniformly
distributed sample points zj ∈ ∂B(xk, r) and get

min
x∈B(xk,r)

V (x) ≥ min
j

zj − h max
x∈B(xk,r)

‖∇V (x)‖

with the filling distance h = maxx∈∂B(xk,r) minj ‖x− zj‖.
The second term is a margin that takes into account the
inaccuracy due to the sampling. The maximal value of the
norm ‖∇V (x)‖ over B(xk, r) is obtained with (11) by
considering a hyperrectangle xk + [−r, r]n ⊃ B(xk, r) and
noting that ‖∇V (x)‖ = Ψ̃T Q̃Ψ̃ where Ψ̃ is a vector of
monomials of the form ∂ψi

∂xl
ψj and Q̃ � 0.
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