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Abstract— This paper presents a closed-form notion of con-
trollability and observability for systems with communication
delays, actuation delays, and locality constraints. The for-
mulation reduces to classical notions of controllability and
observability in the unconstrained setting. As a consequence
of our formulation, we show that the addition of locality and
communication constraints may not affect the controllability
and observability of the system, and we provide an efficient
sufficient condition under which this phenomenon occurs. This
contrasts with actuation and sensing delays, which cause a
gradual loss of controllability and observability as the delays
increase. We illustrate our results using linearized swing equa-
tions for the power grid, showing how actuation delay and
locality constraints affect controllability.

I. INTRODUCTION

Sensor and actuator placement is a crucial problem in the
design of real world systems in application areas ranging
from power systems and traffic networks to environmental
monitoring. Taking power systems as an example, devices
such as generators and transformers can provide additional
inputs to actuate the system, while other devices like meters
report information about the system’s state. A system de-
signer may face the challenge of deploying a limited number
of such devices to different locations in a power system with
the goal of keeping the system stable or performing well
in other control tasks. While sensor and actuator placement
is an old problem that has been well studied [1], [2], the
proliferation of low-cost sensors and the decentralization of
control in large systems like power systems has led to new
challenges. Many real-world systems are subject to delayed
and information-constrained sensors that can significantly
impact the quality of the control. However, we currently lack
tools to rigorously characterize the performance loss under
various sensor configurations. This leads us to study the
problem of quantifying the quality of a set of controllers and
sensors in systems subject to actuation and sensing delays as
well as communication constraints.

While task-specific metrics like cost are commonly used
to measure the quality of a set of sensors and actuators, there
are many settings where the cost is unknown or time varying;
here task-agnostic notions of controllability and observability
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of dynamical systems [2], [3] offer a suitable proxy. Con-
trollability, defined as the determinant of the controllability
Gramian [4], is the volume over which a control input with
magnitude one can drive the state to the zero state. Likewise,
observability, defined as the determinant of the observability
Gramian, is the volume of the signal-to-noise ratio along
any direction in the state space. These metrics are used to
compare different sets of actuators and sensors for dynamical
systems; a system with larger controllability, given fixed
dynamics, is preferred to one with smaller controllability.
Although the notions of controllability and observability
are well-defined for classic control problems, new chal-
lenges arise from the decentralized control of modern large-
scale systems [5], [6], [7], [8], where the controllers may
face different constraints on communication speed, actuation
delays, and/or locality. Such constraints, which we refer
to as system level constraints, cannot easily be captured
in the classical formulations of controllability/observability
based on the Gramian or control inputs [4]. Fortunately, a
recently proposed framework called system level synthesis
(SLS) [9] handles system level constraints efficiently, where
the key technique is to formulate the original control problem
in terms of closed-loop maps. Some recent works address
controllability and observability in the specific setting of
systems with delays [10], [11], [12]; SLS allows for a much
broader class of constraints, including delays. Using SLS,
a recent work [13] shows sufficient conditions under which
locality constraints on model predictive control (MPC) leads
to no loss in optimality for any convex global cost function.
However, even with SLS, it is unclear whether one can
formally extend the notion of controllability and observ-
ability to include system level constraints faced by large-
scale networked systems, and whether such measures can
be computed efficiently to quantify the loss of performance
under different combinations of system level constraints.
Contributions. We propose a formal definition of control-
lability and observability subject to system level constraints
(Section III). Our definitions use the SLS framework and we
draw connections to classical distributed control, differential
privacy, and speed-accuracy tradeoffs in neurons. We provide
a provable closed-form solution for our definitions (Algo-
rithm 1, Proposition 6), which strictly generalize the classic
notions of controllability and observability (Theorem 4).
Importantly, we establish rank conditions for system level
constraints under which there is no performance loss com-
pared with the unconstrained system (Theorem 9). This rig-
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orously characterizes the empirical observation that locality
and communication constraints do not necessarily decrease
controllability and observability. In contrast, actuation delay
does not satisfy this condition, consistent with numerical
results showing a gradual decrease in controllability as actu-
ation delay increases. We perform numerical experiments on
a synthetic example and a real-world model of linearized and
discretized swing equations for the power grid (Section V).
Notation. Let N, € Z;, and N,, € Z, be the state and
input dimensions respectively. Let xy = 2(0) and zr =
x(T). A single index such as Z[i] indicates the i*" row or
block of rows of a matrix, and a double index such as A[i, j]
indicates the i'" row and j** column of a matrix. Let A[:
,j] or Ali,:] denote all rows or columns of A respectively,
and blkdiag([A, B, C]) denote a matrix with submatrices A4,
B, and C on the block diagonals. Brackets around a scalar
indicates the set of indices [a] := [1,...,a]. A vector over
a variable, such as gi;x, is the vectorization of matrix, where
the columns are stacked into a vector. A hat symbol over
a matrix indicates the vectorization of matrix multiplication,
that is, A is defined such that if Y = AX for two matrices
X and Y, then y = AZ. We define supp A to be an indicator
matrix such that (supp A)[i, j] = 0 if A[é, j] is constrained
to be zero. A is the Moore-Penrose pseudoinverse of A.

II. MOTIVATION & BACKGROUND

We begin by introducing the problem of computing the
controllability and observability of a dynamical system and
illustrating the challenges that come from considering con-
straints in the classical formulation of the problem. We then
show how system level synthesis (SLS) offers a framework
for computing the controllability and observability of a
system while incorporating system-level constraints.

A. Classical Controllability and Observability

We consider linear systems with dynamics given by
z(t+1) = Az(t) + Bu(t), y(t)=Cz(t), (1)

where z(t) € RM:, u(t) € RM«, and y(t) € RM. A
system is said to be controllable in time T if it can be
driven from any state zo to any terminal state x7, which
holds when the controllability Gramian W, is full-rank.
The controllability Gramian provides additional information
about how easily the system is controlled in any direction,
and the controllability volume is denoted V,
T—1
W, = Z A'BBT (AT, V.=detW,. (2)
i=0
The magnitude of each eigenvalue of W, is the distance
in the direction of the eigenvector that one unit of control
provides (after accounting for the trajectory resulting from
the initial condition alone). The determinant of W, is then
the state space volume that is reachable with one unit of
control input. If the system is not controllable in a certain
direction, the volume is zero. However, this computational
method assumes that any sequence of control input can be
selected; this assumption is not true when information among

states is restricted, actuation is delayed, or controllers are
dependent on only local information.
Similarly, for an unconstrained system, one can define the
observability Gramian and observability respectively, as
T-1
W,=>» AT'cTcA’,
i=0

V, = det W, . 3)

The magnitude of each eigenvalue of the Gramian W, is the
signal-to-noise ratio for a state in the direction of the corre-
sponding eigenvector. The determinant of W, corresponds
to the ‘observability volume’ of the system. Similarly to
controllability, this method assumes instantaneous and global
observations for estimation. This does not apply to large-
scale systems where state estimation depends only on local
observation, and the observations are not immediate.

This paper proposes a new method for computing control-
lability and observability that accounts for delayed actuation
and observation, local control and information sharing. Crit-
ical to the proposed approach is the system level synthesis
(SLS) parameterization of the linear system. In what follows,
we consider the state estimation problem as the dual of the
control problem; in what follows, one can substitute

A< AT, BeCT.

to obtain the corresponding observability framework.

B. System Level Synthesis (SLS)
The SLS parametrization of the state dynamics in (1) is
¢w (t + 1) = A¢w(t) + B¢u(t) ) (4)
where z(t) = ¢.(t)zo and u(t) = &, (H)xo, ¢(t) €
RNexNe gy (1) € RN«*Ne and ¢,(0) = I. Let the closed-
loop maps ¢, ¢, and ¢ be defined as
¢2(0) ¢u(0) 5
Gy = y Qu = 7¢—|:m:|-
Pu

¢w (T'l) ¢u(T'1)

A prior result from [9, Theorem 2] guarantees that the
subspace defined by ¢ parameterizes all possible system
responses; optimizing over the state feedback controller
u(t) = K(t)x(t) is equivalent to optimizing over ¢.

This parameterization allows us to explicitly write con-
straints on ¢, and ¢, which encode the communication,
actuation, and sensing constraints. To enforce that the ith
entry of o does not affect the j* entry of the state or
input at time ¢, we set ¢, (¢)[f,4] = 0 or ¢,(t)[j,i] = 0
respectively. We write the system level constraints as
where S, (S, resp.) has a single nonzero entry in each row,
with the column corresponding to the entry of ¢, (¢, resp.)
that is constrained to be zero. We define the set of closed-
loop maps that satisfy (5) as S, such that ¢ € S. Equipped
with the ability to specify system level constraints, in the next
section we present the definitions of controllability under
these constraints.
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III. CONSTRAINED SYSTEMS

Our focus in this paper is systems that are subject to
actuation delay, communication delay and restrictions, and
locality constraints. As discussed in the previous section,
these constraints can be expressed as support constraints on
the closed-loop maps ¢, and ¢,,.

We formally define the different types of constraints
considered in this work as follows. We assume the system
is formed by a network of nodes, and each entry of the
system state x(t) corresponds to the local state of a node.
The network is characterized by a directed graph whose
adjacency matrix G[i,j] is defined such that G[i,j] = 1 if
Ali,j] # 0; G[i,j] = 0 otherwise. We denote the graph
distance between two nodes i and j as distg(, 7).

« Actuation delay: The system is subject to a 7-step actua-
tion delay if the actuator can react to state information at
least 7 steps after, i.e., ¢,,(t) =0, for t < 7.

« Communication speed: The communication speed is v if
the propagation of communication signals is v times the
dynamics, i.e., supp ¢, (t) = supp G and supp ¢, (t) =
supp (| BT |supp ¢.(t)), so that z(t)[j] cannot depend on
xold] if distg(i,7) > vt. Likewise, u(t)[i] cannot depend
on xq[j] if B[k, i] = 0 for all k such that distg(j, k) < vt.

o Locality: The system is subject to a locality constraint
with radius 7 if the state of a node can only be affected
by the states of its r-hop neighbors, i.e., ¢, (t)[j, 7] = 0
if distg(é,7) > r, and a controller uses information from
the nearest r-hops away from the states on which it acts,
specified as supp ¢, = supp (|B"|supp ;).

We formulate the definition of controllability and observ-
ability for constrained systems using SLS operators. We
consider the magnitude of any zy such that one unit of
control can drive the state to the origin, again scaled by the
effect of the dynamics without any control. Using this notion
of controllability from (2), we define the controllability with
constraints in Definition 1.

Definition 1: The controllability Y, of (1) with constraints
(5) is given by

Y, = volume { A"z :
T-1

he(wo) = rg,inxg (Z ¢u(l)—r¢u(l)> Zo (6)
“ i=0

s.t. Sepy +Co = 0.

The function h, is the squared norm of the input signal, and
ATz is the scaled set of initial conditions. The constraint
for the terminal state condition, zr = 0, as well as support
constraints for ¢, and ¢, are specified by the form of S,
and C.. Recall that we use the hat symbol over a matrix
to indicate the vectorization of matrix multiplication. The
constraint matrices S, and C. are given by

he(zo) < 1}, where

-

S, 0 Sa[11
Se= |Dy 5 C.= })1 y U1 = )
D, ATI S, [T-1]AT T

Sz[2]B
Dl = . )
S, [T-11AT2RB B
Dy = [AT_IE - E} .

The observability is likewise stated in Definition 2.
Definition 2: The observability Y, of (1) with constraints
(5) is given by

Y, = volume {ATT.IQ 0 ho(xg) < 1}, where

T-1
rgin g (Z qﬁu(z)—r(bu(z)) Zo )
“ i=0

s.t. SO$U +C,=0,
The matrices S, and C, again utilize the terminal constraint
zp = 0, with S, and C, defined analogously to S, and C..

Example 1 (Distributed Control): In large-scale systems
with fast propagation of the dynamics, such as the power
grid, the speed at which sensors send information can be
on the same order of magnitude as the dynamics [14] and
understanding controllability and observability with delays
is an important problem [15]. This means that information
about a distant state may not be available for a number of
time steps, and controllers must be designed accounting for
this lack of information. Additionally, if a large disturbance
hits a system, ensuring that the disturbance will not propagate
further than r neighbors ensures that distant states will not
be affected by a disturbance about which they only have
delayed information [9]. The sensor and actuator co-design
problem with constraints [16] is important for addressing
these new challenges; comparing the controllability and
observability of sensors and actuators for large-scale systems
with these delays and constraints helps designers understand
how much faster or more densely-placed hardware improves
performance.

Example 2 (Sensorimotor control): In neurophysiology, a
nerve is made up of several heterogeneous communication
channels formed by different types of axons. To achieve the
control objective, the design of the communication channels
faces a strict speed-accuracy trade-off [17] over channels
with lower delay and less information or a channel with
longer delay and more information. Our constrained ob-
servability problem (7) provides a method to compare the
observability of different sets of axons that satisfy a fixed
metabolic cost.

Example 3 (Privacy as Observability): The problem of
preserving privacy in decentralized control of large-scale net-
worked systems has received considerable attention recently,
including privacy through the perspective of observability
[18], [19], [20], [21], [22]. Using the interpretation of
observability as a signal-to-noise ratio of an observer, less
observability potentially corresponds to less noise needed
for obtaining some fixed level of privacy. In particular, our
method provides tools for analyzing this signal-to-noise ratio
with sensing delay and locality of sensors.

ho(xg) :
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IV. RESULTS

This section presents our main three technical results. The-
orem 4 states that the controllability volume given by (6) is
equivalent to classical controllability (2) when the constraint
set is empty. Algorithm 1 offers a provably correct closed-
form solution for controllability, and Theorem 9 provides
conditions under which adding constraints to the closed-loop
map ¢ does not change the set of feasible states and inputs.
As a consequence, the controllability does not change with
the addition of the constraints (Corollary 10).

A. Connection to classical methods

Our first result shows that, in the setting without support
constraints, the generalized definition of controllability (Def-
inition 1) reduces to the classical definition (2). This shows
that the formulation is consistent with classical controllabil-
1ty.

Theorem 4: When S, = 0 and S, = 0, Y2 =V, for all
A€ RNaXNe B ¢ RNeXNu,

Proof: When the constraint set is empty, that is, when
S and S, are zero, the remaining constraint in S, and C
is the terminal constraint x7 = 0. Using u = ¢,x(, we can
rewrite the objective of (6) as Hu||2 The constraint chgu +
C, = 0 can be written as ATxzq + Du = 0. Here, D takes
the form D = [AT'B ... B] and u = [u(0),...,u(T-1)].
The optimal w is given by

uw=—D'ATz,.
Plugging this into h.(x¢) results in
he(xo) = xg <ATT D’LTDTAT) T
DA

To compute the volume of all xg such that h.(z¢) < 1, note
that the volume in terms of a new variable y = A7 2y is the
volume of an ellipse defined by D:

he(zg) < 1} = volume{y ||D]Ly||2 < 1}
=+Vdet DDT,

and using the definition of D results in Y2
S ABBT(AT) =V, n

volume{ATxo

B. Computing Constrained Controllability

Our second contribution is a novel algorithm (Algorithm
1) to calculate controllability with constraints in closed form.
Algorithm 1 starts by eliminating the linear constraints in (6)
to reformulate it as an unconstrained optimization problem.
We first decompose Sc(,z;u + C. = 0 as n independent sets
of linear constraints S;®, + C; = 0, for ¢ € [N, ] in Step 1.
Here, ®; € RTNu contains the entries in d_;u that correspond
to ¢, (t)[i,:] for t < T. Such decomposition can always be
implemented due to the special structure of the support con-
straints induced by actuation delay, communication speed,
and locality constraints. We state this result in Lemma 5.

Lemma 5: For any k, the constraint (Scé’u +C.)k] =0
cannot depend on entries from both ®; and ®; (i # j).

Algorithm 1 Constrained Controllability
Require: Horizon T'; Constraint matrices S, and C..
1: Decompose SC$M+CC =0as S;®,+C; =0, i € [N,].
> ®, contains the entries in $u that correspond to x[i].
2: Compute the general solution ®; = w; + V;\;, @ € [N].
>\ € R and V; € RTNu)X7i hag full column rank.
3: Define M = [V4,Va, -+, V,] € RANIX(EZE ),
4: Define N = [wi,wy, - ,wy]| € RUNu)XNe,
5: Return the volume

det(AT)/y/det((~MMIN + N)T(~MMIN + N)).

Proof: Under the definitions of constraints on actuation
delay, communication speed, and locality in Section III, the
constraint (S, + C,)[k] = 0 corresponds to either ¢, [r] =
0 or ¢[r] = 0 for some index 7 € [TN,N,]. In the first
case, it satisfies the statement of Lemma 5.

Otherwise, (S.¢u + C.)[k] = 0 must correspond to
¢2[r] = 0 for some index 7 € [T'N,N,]. Suppose it is
converted from ¢, (t)[j,i] = ¢, where ¢ € {0,1}. By (4),
we see that ¢, (7 + 1)[:,i] = Ad.(7)[:, 1] + B (7)[:, ] for
all 7 < t. Therefore, ¢ (t)[j,¢] can be expressed as a linear
combination of {¢,(7)[:,4] | 0 < 7 < t}. Since all entries
in ¢, (7)[:,4] are in By, (Sey + C.)[k] = 0 only involves
entries from ®;. |

After the decomposition, Step 2 solves the general solution
®, = w; + V; - \; of each constraint set S;®; + C; = 0,
so we can change the variables from ¢, to {Xitien,) in
the optimization problem (6). With the matrices M and N
defined in Steps 3-4, we see h.(xo) can be expressed as

min N T2 ®)

ALy AN,

HN{EO + M(xo[l])\l, e

Finally, we conclude the discussion with a proposition that
shows the output of Algorithm 1 is equal to the constrained
controllability Y, defined in (6).

Proposition 6: The constrained controllability Y, satisfies
Y. = volume { A%aq : ||(~MMTN + N)wo|; <1}, which
is the output of Algorithm 1.

Proof: By (8), we see h.(zo) = min, | Nxo + Myll;
holds for all x that satisfies zg[i] # O for all ¢ € [N,],
because we can do the change of variables

Y = (1‘0[1])\1, ce

Since this equation holds almost everywhere, we obtain that

’IO[NT])\NT)T e sz\gﬁ T

Y. = volume {ATIO :min |[Nzo + Mylf5 < 1}
y

— volume { AT ¢ |(~-MMTN + N)ao; < 1},

which is equal to the return value of Algorithm 1. [ ]

It is worth noting that the time complexity of Algorithm 1
can grow polynomially in time horizon 7" and system di-
mensions (N, N,,). In Section V-B, we show that the rank
condition is faster than the volume computation, with the gap
increasing as the state size increases.
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C. Maintaining Performance Under Constraints

An important question for system design is whether the
performance of the unconstrained system is preserved after
imposing additional constraints on actuation delay, commu-
nication speed, and locality. While a straightforward answer
is to compute the constrained controllability Y, analytically
with Algorithm 1, it can be inefficient for large-scale sys-
tems with high-dimensional state spaces. To address this
challenge, we provide sufficient conditions under which

1) adding constraints does not decrease controllability;

2) constrained systems achieve the optimal unconstrained

convex cost.

More importantly, they can be verified efficiently. Our result
is inspired by a recent work [13] on comparing local-
ized/global model predictive control (MPC), with the critical
difference that we require x7 = 0 in (6). While [13] requires
that one must check the conditions hold for each zg, we
prove that if our conditions are satisfied, the performance is
maintained for xy almost everywhere (a.e.).

First, we define sets S(xg) and T (xg) as the set of all
feasible states and control inputs under the dynamics (1) and
initial condition xg, without and with constraints. Let

I 0
—A I -B 0
ZABo = )
—A T -B 0
—_A —B]
such that Z,py € RN=TX(NotNu)T ] et Zy = ZI‘&BO é ’

Zp = 1— ZLBOZABO' Let Zb* = blkdiag(Zy, ..., Zn),
repeated N, times. The indices R are defined as the indices
of (; where the entry is constrained to be zero. Denote
the matrix F' = Z;’L”C[R]; due to the structure of fok, F
has the form F' = blkdiag({Zx[R;i]}ic[n,]). Where each R;
is the subset of indices in R that corresponds to the ‘"
block of Zb*. Define x¢ = [zo[1]] xo[2]] ... xo[N.]I].
We use the results of the following lemmas to prove the
main results. Finally, let H := [H;,...,Hy,| where H; =

I FIR]FIR,].

Lemma 7: The dimension of S(zg) is given by
dim §(x¢) = rank (Zp,) .

Lemma 8: The dimension of 7T(xp) is given by

dim 7 (z¢) = rank (Z,xo(I — F1F)) .
See the appendix for proofs, which follow closely from [13].

Theorem 9 (Optimality of Constrained Systems): For any
constraint set .S, Sy, if there exists a feasible solution ¢ € S
satisfying (4), zr = 0, and rank (Z;,) = rank (Z, H), then
S(xg) = T (xo) for all xg almost everywhere.

Proof: Note that F' is a block-diagonal matrix; the

product Zyxzo(I — F1F) is therefore

Znao(I — FTF) = [Zpao[1)(I — Zn|R1]TZu[R1)) ..
Znwo[No|(I = Zu[Rw, " Zn[RN,])] -

Let a = rank (Z;, H). The matrix Z, H can be row-reduced
into a matrix H, where the first a rows of H are linearly

independent and the last N, —a rows are linearly dependent
on the first a rows. Select A € R® such that

ZAJ[HIU]P'-’I:INIUH =0.

Then because the first a rows of H are linearly independent,
Aj =0 for j € [1,...,a]. For any xy, define Ty as xg re-
weighted by the row-reduction used to define f{ from H. If
Zg satisfies Zg[i] # 0V i € [N,], then, for any A\ € R* such
that

S NilZo[U L[], ... Zo[No]H, [j] = 0,
7=0

we have that \;Zg[i] = 0 for all i € [N,] and j € [a].
Because Z[i] # 0 for all i € [N,], so \; = 0 for all j € [a].
This results in the desired rank condition rank (Z,zoH) =
rank (Z},) for all x such that Z[i] # O for all ¢ € [IV,]. Note
that we do not analyze the linearly dependent rows of H
because they will remain linearly dependent when rescaled
by Zo. By Lemmas 7 and 8, dim S(zp) = dim 7 (xg) for
xo almost everywhere. Since 7 (z9) C S(zg), the same
dimensionality implies that the sets are equal. [ ]
Finally, we present a corollary of Theorem 9 that gives
criteria for optimality conditions.

Corollary 10: If there exists a feasible solution ¢ € S
and rank (Z;,) = rank(Z,H), then for any convex cost
function f(z, ), the unconstrained cost is achieved under the
constraints ¢ € S for xy almost everywhere, with V, = Yf.

Proof: By Theorem 9, the theorem assumptions imply
that S(xg) = T (zo) for o almost everywhere. Therefore
any optimization problem over the constrained set obtains
the same value as the unconstrained problem for zy almost
everywhere.

Now select f(z,u) = ||u|\§ The above result implies that
the optimization h.(xg) in (6) is over the same set with
and without constraints, so the solution is the same for xz
almost everywhere. Because the volume of an ellipse does
not change over a measure-zero set, the volume over all z is
also the same. The result V., = Y2 then holds by Theorem 4.

|

From this result, we conclude that for commonly-used cost
functions such as quadratic cost, the addition of constraints
does not necessarily hurt the performance of the controller.
This contrasts with some recent results on control [5], [6] and
reinforcement learning [23], [24], where localized policies
are less optimal than global policies. While this may seem
surprising, it is worth noticing that we allow the controller
to decide the (constrained) mapping 5u based on the initial
state zo, which is easier than committing to a policy before
xo is sampled or picked by an adversary. Further, the SLS
formulation allows us to consider a more general policy class
u(t) = K(t)x(t) than the static policy u(t) = Kx(t) in [5].

We show in the following numerical results how locality
constraints satisfy this rank requirement and the controlla-
bility correspondingly does not change within this region.
In contrast, actuation delay does not satisfy this condition
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Fig. 1. When actuation delay is zero, the addition of locality constraints on
the system does not change the controllability volume for locality greater
than five. The controllability decreases with increasing actuation delay.

and we observe a decrease in the controllability. In addition
to explaining the contrasting behavior of different types
of constraints, computing the rank condition is faster and
simpler to implement compared with computing the volume.
We show a comparison in computation times in the numerical
results.

Remark 1: While the formulation of h.(z() might suggest
one needs global knowledge of x(y to solve ¢,, one can
show when locality constraints are enforced, the value of
each entry of ¢, depends only on the local entries of zg.
For example: let A be a tri-diagonal matrix (i.e., A[i,j] =0
if i —j] > 1), B=1,T =1 and the locality constraint
include only the immediate neighbors. Then supp ¢,,(t) is
also tri-diagonal. Let ¢, denote ¢,(0) in this setting with
only one time step. The objective H(;Suxoﬂ2 is

[ duzoll” = (6u[0. 0lo[0] + $u[0, Lo [1]))*+
3 (6l - 1Jaoli1) + Gulsssleolil + guls +1Jaol+1])

+ (¢u[Ne-1, Np-2]20[Np-2] + ¢u[No-1, Np-1]z[N,-1])2 .

Note that each ¢, [j] depends only on zg[j-1] to zp[j+1]. As
this objective is row-separable and the dynamical constraints
are column separable, ¢,, can be computed locally using the
alternating direction method of multipliers (ADMM), where
at each iteration, a node only needs information from its
direct neighbor. See [9, Section 5.5] for details.

V. NUMERICAL RESULTS

A. Distributed Control of Linearized Swing Equations

To illustrate our results concretely, we consider the setting
of the linearized swing equations, as used in [13], which
models power generation at multiple substations connected
together in a power grid. This example allows us to illustrate
how controllability changes based on actuation delay and
locality constraints. The model is given by

> Ayt + Bou(t)[i]

J:G[4,5]=1

a(t+1)[i] =

“1501 — volume
Q
£ 100 Rank
'—
o )
£ 50
o
9] 01 -
5 10 15

Ny

Fig. 2. As the state dimension grows, the amount by which the rank
condition computation time is faster than the controllability volume time
increases.

1 At 0 0 0
Aii = AL 1- %At}’ Aij = {%At 0} » Bi= H

The state z(t)[¢{] = [0;(¢);w;(t)] is the phase angle and
frequency deviations at node i. The parameters k;;, mi_l,
and d; are coupling, inertia, and damping parameters, with
ki =>" 10l =1 ki;. In the numerical implementation, the
discretization step is At = 0.1, T" = 12. There are nine two-
state subsystems with one actuator per subsystem, resulting
in N, = 18 and N,, = 9. The subsystems are arranged in a
3 x 3 grid, with possible neighbors of a particular subsystem
being the other subsytems to the left, right, top or bottom.
The coefficients were sampled uniformly k;; ~ [0.5,1],
m;t ~ [0,2], di ~ [1,1.5]. In Figure 1, we observe
that the settings where rank condition and feasibility hold
coincides with the maximum controllability; importantly, we
see no decrease in controllability with locality constraints
until the system is no longer controllable. The controllability
decreases with increasing actuation delay, and as expected,
the rank condition does not hold for any non-zero actuation

delay. Large delay renders the system not controllable.

B. Computation of Rank Condition Versus Volume

The rank condition, which rigorously explains why com-
munication speed and locality constraints may not result in
decreased controllability, is easier to implement and faster
to compute for large systems. We recorded the total time
required to compute the controllability volume for all possi-
ble combinations of communication and locality constraints
for a system where the dynamics matrix A is given by
a tri-diagonal stochastic matrix, B is filled with one and
zero entries with actuation density 0.75 relative to the state
dimension, the time horizon is set to 1" = 10, and 40 trials
were recorded for each combination of constraints. As seen
in Figure 2, the time is comparable for N, ranging from
5 — 10, but the volume computation becomes increasingly
slower with larger N,,, with up to 6x speedup using the rank
condition instead of the total volume. Users can compute the
controllability volume for the unconstrained system and then
compute the rank condition and feasibility of the locality-
and communication-constrained system to determine the con-
trollability, which will either be equal to the unconstrained
system or possibly zero if the condition is not satisfied.
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VI. CONCLUDING REMARKS

This work proposes notions of constrained controllability
Y, and constrained observability Y, using SLS, and shows
they reduce to classic definitions for unconstrained systems.
We provide closed-form solutions for computing Y.,Y,
and an efficient criteria to check whether a certain set of
constraints can cause performance loss. In future work, we
aim to apply this framework to solve real-world sensor and
actuator problems, including air and water quality sensor
placement for environmental monitoring, and investigate
methods for computing the controllability in a distributed
fashion for large-scale systems, which would greatly improve
the range of settings in which this method can be used.

APPENDIX
A. Proof of Lemma 7

To prove Lemma 7, we first show that the set S(z() can
be written as

S(zo) ={s:s= Zyxo + ZpzoA, X € ]R(N“JFN”“)N“T},
where s = [x; u]. Using the dynamics and terminal constraint
zr = 0, the closed-loop map ¢ can be written as

Zamao = g - ©)

é} (I 2! o Zamo) A, where A
is a free variable. Using the definitions of Z, and Z,, results
in ¢ = Z, + Z,A . Then the state and input signals x and
u result are given by s = ¢z, and we use the matrix zg
to switch the multiplication of Az to z¢gA. The dimension
of S(zp) is given by the degrees of freedom of s, which is
rank (Zpxo) = rank (Z}) because zg is full row-rank.

This results in ¢ = ZLBO

B. Proof of Lemma 8

This proof proceeds similarly to that of Lemma 7, except
now the constraint on ¢ is defined in terms of ¢. Fr0r£1 (9) and
the additional requirements that S, ¢, = 0 and S, ¢, = 0,

Eﬂ (Zp * th) =0 = Z,[R]+ Zy[RIA,

resulting in A being parameterized as
K = =Zu[R)"Z,[R] + (I — Zu[R]' Zy[R))p,

for a free variable y1. Using the definition of F' and noting
that Z,[R] = Z}'*|R], the dimension of 7 (zo) is given by
rank (Z;La:o(l — FTF))
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