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Abstract—Physics-informed learning is an emerging machine
learning technique driven by the desire to leverage known
physical principles in machine learning algorithms. Recent de-
velopments have produced physics-informed neural networks
(PINNs) which are neural networks designed to be constrained
by known physical principles. However, developing real-time
adaptive control methods with stability guarantees for PINNs
remains an open problem. This paper develops the first result
for a deep Lyapunov-based physics-informed neural network
(DeLb-PINN) architecture to adaptively control uncertain Euler-
Lagrange systems. Lyapunov-derived weight adaptation laws
provide continuous, online learning using the DeLb-PINN ar-
chitecture without the need for offline training. A nonsmooth
desired compensation adaptation law (DCAL) Lyapunov-based
analysis is provided to guarantee global asymptotic tracking
error convergence.

I. INTRODUCTION

Deep neural network (DNN)-based techniques are gaining
popularity to model and control practical engineering systems
[1]. Yet, motivation still exists to use classical modeling
techniques, because DNNs have typically been limited by
availability and quality of training data, and the resulting
outcomes may be difficult to correlate with physical insights
and constraints. If improperly trained, or in the presence of
unexpected dynamic behaviors, the use of DNNs can result in
unpredictable and damaging behavior when connected with a
physical system. However, if even feasible, the required effort
and cost associated with obtaining an accurate physics-based
model increases as system complexity increases, unlike black-
box models such as DNNs.

Physics-inspired neural networks (PINNs) are an emerging
tool that combine the approximation power of DNNs with the
physical plausibility of classical models [2]–[6]. The resulting
physics-inspired models are able to conform to the system’s
physics. Additionally, physical constraints can be used to
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reduce the possible solution space by eliminating invalid
solutions resulting from noisy data, and provide additional
training guidance for applications with sparse data [2]. Current
PINN methods have proven useful for approximating the
solution to differential equations, although limited results
are available that use physics-inspired methods in feedback
control algorithms [3], [6], [7].

Motivated by recent advances in physics-informed learning,
results such as [5], [8]–[10] develop PINNs suitable for
modeling and control of dynamical systems. Specifically, the
result in [5] develops a deep Lagrangian Neural Network
(DeLaN) which uses multiple DNNs based on the system’s
Lagrangian to form a model of the system. The DeLaN-based
controller demonstrates lower tracking error for all training
set sizes when compared to a single feedforward DNN-based
estimate. However, the DeLaN architecture developed in [5]
involves quasi-static weight updates based on training data
(i.e., updates that are essentially offline) using optimization-
based techniques, without stability guarantees.

Recent works in adaptive control literature have addressed
the need for continuous learning without the requirement
for training data [11]–[15]. Specifically, in [14] and [15],
continuous-time adaptation laws for all layers of DNN-based
controllers were derived from a constructive Lyapunov-based
analysis. Unlike offline learning methods that require rich
training datasets and involve static or quasi-static DNN weight
estimates, Lyapunov-based adaptation laws provide continual
learning of the system dynamics while providing stability
guarantees [15]. Although these results eliminate the need
for offline training data and allow for sustained learning,
they do not take advantage of known information obtained
from physics. Hence, motivation exists to develop adaptive
controllers using PINN architectures that leverage physical
knowledge of the system.

In the context of Euler-Lagrange dynamical systems, devel-
oping PINN-based adaptive controllers is challenging because
PINN architectures require multiple DNN representations
to approximate unknown matrix structures (i.e., inertia and
centripetal-Coriolis matrices) that are coupled with acceler-
ation and velocity-based terms. The result in [15] avoided
these complexities by using DNNs to compensate for only
uncoupled vector terms.
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This paper develops the first result for a deep Lyapunov-
based physics-informed neural network (DeLb-PINN)
architecture to adaptively control uncertain Euler-Lagrange
systems. The mathematical challenges in developing
Lyapunov-based adaptation laws are addressed by first using a
vectorized representation of the inertia and centripetal-Coriolis
matrices, and then invoking properties of vectorization and
Kronecker product operators. A nonsmooth Lyapunov-based
analysis is performed to constructively design the adaptation
laws. By using a desired compensation adaptation law
(DCAL) approach inspired by [16], the Lyapunov-based
analysis yields global asymptotic tracking error convergence.

Notation and Preliminaries: The vectorization operator is
denoted by vec (·) , i.e., given A ≜ [aj,i] ∈ Rn×m, vec(A) ≜

[a1,1, ..., a1,m, ..., an,m]
⊤
. The notation

a.a.t.

(·) denotes the re-
lation (·) holds for almost all time (a.a.t.). The p-norm is
denoted by ∥ · ∥p, where the subscript is suppressed when
p = 2. The right-to-left matrix product operator is represented

by
↶∏

, i.e.,

↶
m∏

p=1
Ap = Am . . . A2A1 and

↶
m∏

p=a
Ap = 1 if

a > m. The Kronecker product is defined by ⊗. Function
composition is defined by ◦ where (f ◦ g) (x) ≜ f(g(x)). The
n×n identity matrix is denoted by In. Given any A ∈ Rp×a,
B ∈ Ra×h, and C ∈ Rh×s, vec(ABC) =

(
C⊤ ⊗A

)
vec (B)

[17, Proposition 7.1.9].

II. PROBLEM FORMULATION

A. Deep Neural Network (DNN) Background

Consider the family of feedforward DNNs Φi : Rmi ×
R

∑ki
j=0 Lj,iLj+1,i → RLk+1,i defined as

Φi(xi, θi) ≜ (V ⊤
k,iϕk,i ◦ ... ◦ V ⊤

1,iϕ1,i)(V
⊤
0,ixa,i), (1)

where i ∈ I denotes the index of a specific DNN within the
family of DNNs denoted by the set I, Vj,i ∈ RLj,i×Lj+1,i is
the matrix of weights and biases in the jth hidden layer, Lj,i ∈
N denotes the number of nodes within the jth hidden layer
for all j ∈ {0, ..., ki}, ki ∈ N denotes the number of hidden
layers, and L0,i ≜ mi+1, where m is the size of the input to
the DNN. All of the weights within Φi are represented by θi ∈
R

∑ki
j=0 Lj,iLj+1,i , where θi ≜

[
vec(V0,i)

⊤, ..., vec(Vk,i)
⊤]⊤,

the vector of smooth1 activation functions at the jth layer is
denoted by ϕj,i : RLj,i → RLj,i and is defined as ϕj,i ≜[
ςj,i,1 . . . ςj,i,Lj−1 1

]⊤
, where ςj,i,y : R → R denotes

the activation function at the yth node of the jth layer for
all j ∈ {1, ..., ki} and i ∈ I. The augmented input xa,i ∈
Rmi+1 is defined as xa,i ≜

[
x⊤
i 1

]⊤
, where xi ∈ Ωi denotes

the input to the DNN, where Ωi ⊆ Rmi denotes a compact
set for all i ∈ I. To incorporate a bias term into the DNN

1For notational simplicity, the DNN model in (1) only considers smooth
activation functions. To consider nonsmooth activation functions, the switched
systems analysis in [15] can be used with the subsequent control development.

model in (1), the input xi and the activation functions ϕj,i are
augmented with a 1 for all j ∈ {1, ..., ki} and i ∈ I.

To facilitate the development of the weight adaptation laws,
the DNN model in (1) can also be represented recursively
using shorthand notation Φj,i(xi, θi) as

Φj,i ≜

{
V ⊤
j,iϕj,i(Φj−1,i), j ∈ {1, ..., ki}

V ⊤
0,ixa,i, j = 0,

(2)

for all i ∈ I. The universal function approximation property
states that the space of DNNs given by (2) is dense in C(Ωi),
where C(Ωi) denotes a space of continuous functions over
Ωi [18, Thm 3.2]. Therefore, for any given fi ∈ C(Ωi) and
prescribed ε̄i ∈ R>0, there exist some ki, Lj,i ∈ N, and cor-
responding ideal weights and biases θ∗j,i ∈ RLj,i×Lj+1,i ,∀j ∈
{0, ..., ki}, such that supxi∈Ωi

∥fi(xi)−Φi(xi, θ
∗
i )∥ ≤ ε̄i, for

all i ∈ I.

B. Model Dynamics

Consider an uncertain Euler-Lagrange system modeled as

M(q)q̈ + Vm(q, q̇)q̇ +G(q) + F (q̇) + τd (t) = τ (t) , (3)

where q, q̇, q̈ : R≥0 → Rn are the generalized position,
velocity, and acceleration, respectively. The inertia matrix,
centripetal-Coriolis effects, generalized gravitational forces,
generalized dissipation effects, the time varying disturbances,
and the control input are denoted by M : Rn → Rn×n,
Vm : Rn × Rn → Rn×n, G : Rn → Rn, F : Rn → Rn,
τd : R≥0 → Rn and τ : R≥0 → Rn, respectively.
It is assumed the disturbance τd can be bounded as
∥τd (t) ∥ ≤ d where d ∈ R>0 denotes a known constant.
The system in (3) satisfies properties in [19, Sec. 2.3].

Property 1. The inertia matrix M(q), satisfies m1∥ζ∥2 ≤
ζ⊤M(q)ζ ≤ m2∥ζ∥2 for all ζ, q ∈ Rn, where m1,m2 ∈ R>0

denote known constants.
Property 2. The time-derivative of the inertia matrix and

centripetal-Coriolis matrix satisfy the skew-symmetry relation,
ζ⊤(Ṁ(q)− 2Vm(q, q̇))ζ = 0, for all q, q̇, ζ ∈ Rn.

III. CONTROL LAW DEVELOPMENT

A. Control Objective

The control objective is to design a DeLb-PINN control ar-
chitecture to asymptotically track a user-defined, time-varying
desired trajectory qd : R≥0 → Rn. To quantify the control
objective, let the tracking error e : R≥0 → Rn and auxiliary
tracking error r : R≥0 → Rn be defined as

e ≜ q − qd, (4)

r ≜ ė+ αe, (5)

respectively, where α ∈ R>0 denotes a user-selected con-
stant control gain. Quantitatively, the objective is to ensure
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∥e(t)∥ → 0 as t → ∞. The desired trajectory and its time-
derivative are designed to be continuously differentiable such
that qd(t), q̇d(t), q̈d(t) ∈ Q, for all t ∈ R≥0 where Q ⊆ Rn

denotes a known compact set.
Taking the time-derivative of r, pre-multiplying by M(q),

and using (3)-(5) yields

M(q)ṙ = τ (t)− Vm(q, q̇)q̇ −G(q)− F (q̇)− τd (t)

−M(q)q̈d +M(q)αė. (6)

After some algebraic manipulation, (6) can be re-written in
the advantageous form

M (q) ṙ = τ (t)− τd (t)− Vm (q, q̇) r

+ (Me −M (qd)) (q̈d − αė)

+ (Vme − Vm (qd, q̇d)) (q̇d − αe)

+Ge −G (qd) + Fe − F (q̇d) , (7)

\left(x_{F}\right)where Vme, Me, Ge, and Fe are defined
as Vme ≜ Vm(qd, q̇d) − Vm(q, q̇), Me ≜ M(qd) − M(q),
Ge ≜ G(qd)−G(q), and Fe ≜ F (q̇d)− F (q̇), respectively.

B. DeLb-PINN Neural Network Architecture

PINN architectures have grown in recent popularity due
to their ability to leverage known physical properties of the
system to improve model accuracy and the ability to general-
ize beyond training data. Within the DeLb-PINN architecture,
DNNs are used as adaptive real-time feedforward approxima-
tions of the unknown terms M(qd), Vm(qd, q̇d), G(qd), and
F (q̇d) (see Figure 1). Compared to traditional DNN control
techniques, the use of DeLb-PINN is motivated by the desire
to integrate the known physics of (3) into the control architec-
ture. The implementation of multiple DNNs within the DeLb-
PINN structure involves various mathematical challenges due
to the M(q) and Vm(q, q̇) terms being matrices multiplied
by a vector. This, and the fact that the result in (2) does
not apply for matrix approximations motivates the use of the
vectorization operator which results in additional technical
challenges when developing the weight adaptation laws for
M and Vm.

Based on the universal function approximation property,
and the unknown terms M (qd) , Vm (qd, q̇d) , G (qd) , and
F (q̇d) can be modeled using the DNN formulation in (1) as2

vec (M (qd)) = ΦM (xM , θ∗M ) + εM (xM ) , (8)

vec (Vm (qd, q̇d)) = ΦVm

(
xVm , θ∗Vm

)
+ εVm (xVm) , (9)

G(qd) = ΦG (xG, θ
∗
G) + εG (xG) , (10)

F (q̇d) = ΦF (xF , θ
∗
F ) + εF (xF ) , (11)

2Motivated by the DCAL strategy in [16], the functions in (8)-(11) are
expressed in terms of qd and q̇d which are continuous bounded trajectories,
and hence, the functions lie on the space of continuous functions over Q.
Therefore, the universal function approximation property can be applied
without restrictions on the initial conditions of the state of the system which
facilitates a global result in the subsequent stability analysis.

𝑞𝑑 − 𝛼𝑒
𝑇 ⊗ 𝐼𝑛 𝑞𝑑 − 𝛼 𝑒 𝑇 ⊗ 𝐼𝑛

Figure 1. A diagrammatic illustration of the DeLb-PINN architecture which
leverages the known structure of the dynamics in (3), and uses DNN-based
adaptive estimates of vec(M), vec(Vm), G, and F given by Φ̂M , Φ̂Vm ,
Φ̂G, and Φ̂F , respectively.

respectively. The ideal DNN estimate is denoted Φi ∈ RLki+1

for i ∈ {M,Vm, F,G} and the input to the DNNs are defined
as xM ≜ qd, xVm

≜ [qd, q̇d]
⊤, xG ≜ qd, and xF ≜ q̇d. The

unknown function approximation errors are εM : Rn → Rn2

,
εVm

: R2n → Rn2

, εG : Rn → Rn, and εF : Rn →
Rn for ΦM (xM , θ∗M ) , ΦVm

(
xVm

, θ∗Vm

)
, ΦG (xG, θ

∗
G) , and

ΦF (xF , θ
∗
F ), respectively. The ideal weights of the DNN,

number of hidden layers, and number of nodes in the jth

layer are denoted by θ∗i ≜
[
vec(V0,i)

⊤, ..., vec(Vki,i)
⊤]⊤ ∈

R
∑ki

j=0 Lj,iLj+1,i , ki ∈ N, Lj,i ∈ R>0 for all i ∈
{M,Vm, G, F} and j ∈ {0, ..., ki}, respectively. The follow-
ing assumption is made to facilitate the subsequent develop-
ment.

Assumption 1: There exists a known constant θ̄i ∈ R>0

such that the unknown ideal weights can be bounded as
∥θ∗i ∥ ≤ θ̄i for all i ∈ {M,Vm, G, F} [20, Assumption 1].

To ensure the output of the DNN is of appropriate di-
mension, the vectorization operator is applied to M(qd) and
Vm(qd, q̇d). Applying the vectorization operator on M(qd) and
Vm(qd, q̇d), using properties of the vectorization operator, and
substituting in (8)-(11) into (7) yields

M (q) ṙ = τ (t)− τd (t)− Vm (q, q̇) r + Ñ

−
(
(q̈d − αė)

⊤ ⊗ In

)
ΦM (xM , θ∗M )

−
(
(q̇d − αe)

⊤ ⊗ In

)
ΦVm

(
xVm , θ∗Vm

)
− ΦG (xG, θ

∗
G)− ΦF (xF , θ

∗
F )− εG (xG)

−
(
(q̈d − αė)

⊤ ⊗ In

)
εM (xM )− εF (xF )

−
(
(q̇d − αe)

⊤ ⊗ In

)
εVm

(xVm
) , (12)

where the auxiliary function Ñ : Rn×Rn×Rn×Rn → Rn is
defined as Ñ (e, r, q̇d, q̈d) ≜ Me (q̈d − αė)+Vme (q̇d − αe)+
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Ge + Fe. Since q̇d and q̈d are bounded, Ñ can be bounded
as ∥Ñ∥ ≤ ρ(∥z∥)∥z∥, where z ≜

[
e⊤, r⊤

]⊤
and ρ : R≥0 →

R≥0 denotes a known strictly increasing function based on the
mean value theorem-based inequality in [21, Appendix A].

C. Control Design

The DeLb-PINN control design uses adaptive estimates of
the involved DNNs while also utilizing knowledge of the
model structure through the developed architecture in Figure
1. Based on the subsequent stability analysis, the control input
is designed as

τ (t) =
(
(q̇d − αe)

⊤ ⊗ In

)
Φ̂Vm + Φ̂G + Φ̂F

+
(
(q̈d − αė)⊤ ⊗ In

)
Φ̂M − k1r − e

− sgn(r)
(
ρ(∥z∥)∥z∥+ k2 + k3∥(q̇d − αe)⊤ ⊗ In∥

)
(xF )

− k4sgn(r)∥(q̈d − αė)⊤ ⊗ In∥, (13)

where k1, k2, k3, k4 ∈ R>0 are user-defined control gains,
and the adaptive estimate of each DNN is denoted as
Φ̂i ≜ Φi(xd,i, θ̂i) for all i ∈ {M,Vm, G, F}, where
the estimated weights and biases are denoted by θ̂i =[
vec(V̂0,i)

⊤, ..., vec(V̂k,i)
⊤
]⊤

∈ RLj,i×Lj+1,i , for all (j, i) ∈
{0, ..., ki} × {M,Vm, G, F}, where V̂j,i ∈ RLj,i×Lj+1,i is
the subsequently designed estimated matrix of weights and
biases in the jth hidden layer for all j ∈ {0, ..., ki} and
i ∈ {M,Vm, G, F}. The following shorthand notations are
introduced for brevity in the subsequent analysis Φ∗

i ≜
Φi(xd,i, θ

∗
i ), Φ̃i ≜ Φ∗

i − Φ̂i, and Φ̃i ≜ Φ∗
i − Φ̂i for all

i ∈ {M,Vm, G, F}. Substituting the control input in (13) into
(12) yields the closed-loop error system

M (q) ṙ = −
(
(q̇d − αe)⊤ ⊗ In

)
Φ̃Vm − Φ̃G − Φ̃F

−
(
(q̈d − αė)⊤ ⊗ In

)
Φ̃M − k1r − e

− sgn(r)(ρ(∥z∥)∥z∥+ k2 + k3∥(q̇d − αe)⊤ ⊗ In∥)
− k4sgn(r)∥(q̈d − αė)⊤ ⊗ In∥ − τd (t)

− Vm (q, q̇) r + Ñ −
(
(q̈d − αė)⊤ ⊗ In

)
εM (xM )

− εG (xG)− εF (xF )−
(
(q̇d − αe)⊤ ⊗ In

)
εVm (xVm) .

(14)

IV. DNN WEIGHT ADAPTATION LAWS

The implementation of real-time Lyapunov-based adapta-
tion laws allows the DeLb-PINN architecture to continuously
adapt in real-time. Based on the subsequent analysis, the
weight adaptation laws are designed as

˙̂
θM = −proj

(
ΓM Φ̂′⊤

M

(
(q̈d − αė)⊤ ⊗ In

)⊤
r
)
, (15)

˙̂
θVm

= −proj

(
ΓVm

Φ̂′⊤
Vm

(
(q̇d − αe)

⊤ ⊗ In

)⊤
r

)
, (16)

˙̂
θF = −proj

(
ΓF Φ̂

′⊤
F r

)
, (17)

˙̂
θG = −proj

(
ΓGΦ̂

′⊤
G r

)
, (18)

where Γi ∈ R
∑ki

j=0 Lj,iLj+1,i×
∑ki

j=0 Lj,iLj+1,i is a positive-
definite adaptation gain matrix for i ∈ {M,Vm, G, F}. The
operator proj(·) denotes the projection operator defined in
[22, Appendix E, Eq. E.4], which is used to ensure that
θ̂i(t) ∈ Bi ≜

{
θi ∈ RΣ

ki
j=0Lj,iLj+1,i : ∥θi∥ ≤ θ̄i

}
, for all

t ∈ R≥0 and i ∈ {M,Vm, G, F}. The Jacobian of the DNN
Φ̂′

i can be represented as Φ̂′
i ≜

[
Φ̂′

0,i, ..., Φ̂
′
j,i

]
, where the

shorthand notation Φ̂′
j,i is defined as Φ̂′

j,i ≜
∂Φj,i(xi,θ̂i)

∂θ̂i
, for

all j ∈ {0, ..., ki} and i ∈ {M,Vm, G, F}. Using (2), the
chain rule, and the properties of the vectorization operator
the terms Φ̂′

0,i and Φ̂′
j,i can be expressed as

Φ̂′
0,i ≜


↶
ki∏
l=1

V̂ ⊤
l,i ϕ̂

′
l,i

(
IL1,i

⊗ x⊤
a,i

)
,

Φ̂′
j,i ≜


↶
ki∏

l=j+1,i

V̂ ⊤
l,i ϕ̂

′
l,i

(
ILj+1,i ⊗ ϕ̂⊤

j,i

)
, (19)

for all j ∈ {1, ..., ki} and i ∈ {M,Vm, G, F}, respectively,
where the shorthand notation ϕ̂j,i ≜ ϕj,i(Φj−1(xi, θ̂i)) and
ϕ̂′
j,i ≜ ϕ′

j,i(Φj−1(xi, θ̂i)) denotes DNN activation function at
the jth layer and its Jacobian, respectively and the gradient of
the activation function can be represented by ϕ′

j,i : RLj,i →
RLj,i×Lj,i and is defined as ϕ′

j,i(y) ≜
∂
∂ϱϕj,i(ϱ)|ϱ=y , for all

y ∈ RLj,i , i ∈ {M,Vm, G, F}, and j ∈ {1, ..., ki}.

V. STABILITY ANALYSIS

Theorem 1. For the dynamical system in (3), the controller
in (13) and the adaptation laws developed in (15)-(18) ensure
global asymptotic tracking in the sense that ∥e(t)∥ → 0 and
∥r(t)∥ → 0 as t → ∞, provided the following gain conditions
are satisfied

k2 > d̄+ ∆̄G + ∆̄F + ε̄G + ε̄F ,

k3 > ∆̄Vm + ε̄Vm ,

k4 > ∆̄M + ε̄M . (20)

Proof: Let the states w : R≥0 → RΨ be defined

as w ≜
[
r⊤, e⊤, θ̃⊤Vm

, θ̃⊤G, θ̃
⊤
F , θ̃

⊤
M

]⊤
, where Ψ ≜ 2n +

Σi∈IΣ
ki
j=0Lj,i × Lj+1,i and I ≜ {M,Vm, F,G}. Consider

the candidate Lyapunov function VL : RΨ → R≥0 defined as

VL(w) ≜
1

2
r⊤M(q)r +

1

2
e⊤e+

1

2
θ̃⊤Vm

Γ−1
Vm

θ̃Vm

+
1

2
θ̃⊤GΓ

−1
G θ̃G +

1

2
θ̃⊤F Γ

−1
F θ̃F +

1

2
θ̃⊤MΓ−1

M θ̃M . (21)
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The candidate Lyapunov function in (21) satisfies the inequal-
ity β ∥w∥2 ≤ VL (w) ≤ β ∥w∥2, where β, β ∈ R≥0 are known
constants. Taking the time-derivative of VL(w), applying the
chain rule for differential inclusions in [23, Thm 2.2] and
applying (14) and (15)-(18) yields

V̇L

a.a.t.
∈ r⊤

(
−
(
(q̇d − αe)⊤ ⊗ In

)
Φ̃Vm

− Φ̃G − Φ̃F −
(
(q̈d − αė)⊤ ⊗ In

)
Φ̃M

− k1r − e−K [sgn] (r)
(
k2 + k4∥(q̈d − αė)⊤ ⊗ In∥

)
−K [sgn] (r)

(
k3∥ (q̇d − αe)⊤ ⊗ In∥+ ρ(∥z∥)∥z∥

)
− τd (t)− Vm (q, q̇) r + Ñ −

(
(q̈d − αė)⊤ ⊗ In

)
εM (xM )

− εG (xG)− εF (xF )−
(
(q̇d − αe)⊤ ⊗ In

)
εVm (xVm)

)
+

1

2
r⊤Ṁr + e⊤(r − αe) + K[proj]

(
ΓGΦ̂

′⊤
G r

)⊤
Γ−1
G θ̃G

+K[proj]
(
ΓF Φ̂

′⊤
F r

)⊤
Γ−1
F θ̃F

+K[proj]

(
ΓM Φ̂′⊤

M

(
(q̈d − αė)⊤ ⊗ In

)⊤
r

)⊤

Γ−1
M θ̃M

+K[proj]

(
ΓVmΦ̂′⊤

Vm

(
(q̇d − αe)⊤ ⊗ In

)⊤
r

)⊤

Γ−1
Vm

θ̃Vm .

(22)

To facilitate the calculation of Φ̃i, a first-order Taylor series
approximation-based error model is given by [20, Eq. 22]

Φ̃i = Φ̂′
iθ̃i +O2(∥θ̃i∥), (23)

for i ∈ {M,Vm, G, F}, where O2
(
∥θ̃i∥

)
denotes the higher

order terms which can be bounded by ∆̄i ∈ R>0 such that
∥O2

(
∥θ̃i∥

)
∥ ≤ ∆̄i for i ∈ {M,Vm, G, F}. Substituting

(23) into (22), applying Property 2, combining like terms, and
bounding yields

V̇L

a.a.t.
≤ r⊤

(
−

(
(q̈d − αė)⊤ ⊗ In

)(
Φ̂′

M θ̃M +O2(||θ̃M ||)
)

−
(
(q̇d − αe)⊤ ⊗ In

)(
Φ̂′

Vm
θ̃Vm +O2(||θ̃Vm ||)

)
−

(
Φ̂′

Gθ̃G +O2(||θ̃G||)
)
−

(
Φ̂′

F θ̃F +O2(||θ̃F ||)
)

− k2K [sgn] (r)− k3K [sgn] (r)∥(q̇d − αe)⊤ ⊗ In∥
− k4K [sgn] (r)∥(q̈d − αė)⊤ ⊗ In∥ − τd (t)− k1r

−
(
(q̈d − αė)⊤ ⊗ In

)
εM (xM )− εG (xG)

− εF (xF )−
(
(q̇d − αe)⊤ ⊗ In

)
εVm (xVm )

)
− e⊤αe

+K[proj]
(
ΓGΦ̂′⊤

G r
)⊤

Γ−1
G θ̃G +K[proj]

(
ΓF Φ̂′⊤

F r
)⊤

Γ−1
F θ̃F

+K[proj]

(
ΓM Φ̂′⊤

M

(
(q̈d − αė)⊤ ⊗ In

)⊤
r

)⊤
Γ−1
M θ̃M

+K[proj]

(
ΓVm Φ̂′⊤

Vm

(
(q̇d − αe)⊤ ⊗ In

)⊤
r

)⊤
Γ−1
Vm

θ̃Vm . (24)

Using [22, Lemma E.1.IV] and the fact that K[proj](·) is the
set of convex combinations of proj(·) and (·), the projection

operator terms can be bounded as

K[proj]
(
ΓGΦ̂

′⊤
G r

)⊤
Γ−1
G θ̃G ≤ r⊤Φ̂′

Gθ̃G, (25)

K[proj]
(
ΓF Φ̂

′⊤
F r

)⊤
Γ−1
F θ̃F ≤ r⊤Φ̂′

F θ̃F , (26)

K[proj]
(
ΓM Φ̂′⊤

M

(
(q̈d − αė)⊤ ⊗ In

)⊤
r
)⊤

Γ−1
M θ̃M

≤ rT
(
(q̈d − αė)⊤ ⊗ In

)
Φ̂′

M θ̃M , (27)

K[proj]

(
ΓVm

Φ̂′⊤
Vm

(
(q̇d − αe)

⊤ ⊗ In

)⊤
r

)⊤

Γ−1
Vm

θ̃Vm

≤ rT
(
(q̇d − αe)

⊤ ⊗ In

)
Φ̂′

Vm
θ̃Vm .

(28)

Using (25)-(28), the fact that r⊤K[sgn](r) = ∥r∥1, and pro-
vided the gain conditions in (20) are satisfied, (24) can be
bounded as

V̇L(w)
a.a.t.
≤ −k1∥r∥2 − α∥e∥2. (29)

Then, (29) can be further bounded as V̇L (w)
a.a.t.
≤

−min (k1, α) ∥z∥2. Using (21) and the fact that V̇L(w) ≤ 0
implies e, r, θ̃Vm , θ̃M , θ̃G, θ̃F ∈ L∞. Due to the use of
the projection algorithm, θ̂Vm

, θ̂M , θ̂G, θ̂F ∈ L∞. The fact
that qd, q̇d, e, r ∈ L∞ implies q, q̇ ∈ L∞. Using (13) and
the fact that qd, q̇d, q̈d, e, r, θ̂Vm

, θ̂M , θ̂G, θ̂F ∈ L∞ implies
τ ∈ L∞. Therefore, the control input τ is bounded. Us-
ing the extension of LaSalle-Yoshizawa theorem for non-
smooth systems in [24, Theorem 1], we can conclude that
lim
t→∞

∥e (t) ∥ = 0 and lim
t→∞

∥r (t) ∥ = 0.

VI. CONCLUSION

In this paper, an adaptive DeLb-PINN architecture is de-
veloped for the control of general Euler-Lagrange systems.
Specifically, this paper provides the first result on Lyapunov-
derived adaptation laws for the weights of each layer of a
DeLb-PINN adaptive controller. The mathematical challenges
associated with developing Lyapunov-based adaptation laws
for matrices were addressed using a vectorized representation
of the matrix and then invoking properties of vectorization and
Kronecker product operators to inform the adaptive update law
design. Future work would include constraining the output of
the DNNs further respect the positive definite property of the
inertia matrix such as results in [5].
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