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Abstract— This article demonstrates that causal discovery
approaches can be applied to analog electronic circuits made
of Bipolar Junction Transistors (BJTs) to find out the causal
relationships among different variables of the circuit. Moreover,
the obtained causal relationship structure in the form of a
Directed Acyclic Graph (DAG), can be used for diagnosis and
analysis of such circuits. First, it is shown that the operation
process of a transistor has an inherent notion of causality,
which is then exploited to show that the various parameters
of a BJT circuit can be expressed in the form of Structural
Equation Models (SEM). The results demonstrated using data
generated using LTspice establishes that the causal structure
of a BJT circuit can be retrieved using data driven causal
discovery algorithms. This opens new horizons for analysis and
diagnosis of BJT circuits. An example case study of circuit
diagnosis is presented to showcase the capability and efficiency
of the proposed method.

I. INTRODUCTION

Modern integrated circuits (IC) comprise of a copious
and ever increasing number of components which makes the
diagnosis of such circuits a challenging task. Moreover, the
diagnosis of analog ICs is considerably more complicated
and challenging compared to its digital counter part [1].
In literature many different methods are proposed over the
years to perform circuit diagnosis [1], [2]. These methods are
primarily classified into two categories, namely; Simulation
Before Test (SBT) and Simulation After Test (SAT) [1].

SBT methods employ a large number of simulated fault
scenarios where the data generated is compiled to create
a fault library or a statistical database. Such databases are
used as a look up table against the actual test data to detect
faults. Some traditional SBT approaches include model based
identification [3] that utilizes mathematical model of system
and fault data, hierarchical method [4] that partitions the
circuit and then builds a hierarchy, and others use signal
analysis based approaches [5]. Few modern approaches of
SBT includes meta-heuristic optimization based approach,
such as, particle swarm optimization [6] and genetic al-
gorithm (GE) [7] based methods, machine learning based
approach [8], and hybrid approach [9] that combines meta-
heuristic and machine learning methods. In case of SBT
approach, even though, once the fault dictionary is built
the detection of commonly occurring faults becomes an
easier task, the process of building the fault dictionaries
and databases requires a large amount of data and complex
computations.
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SAT methods perform simulation of the circuit after test
data is obtained. The fault diagnosis problem is modeled via
non-linear equations whose parameters are identified using
the computed test data [1]. Some of these methods include
formulation of self-testing and component connection models
[10] where the authors repeatedly partition the subsystems in
two combinations and then test to see which combinations
produce reliable and which ones produce unreliable data.
After enough number of iterations the fault decision is
made. More modern SAT approaches include support vector
machines (SVM) [11] where SVMs are used to identify
non-linear relationships among fault indicator measurement
data, GE based approach [12] where the authors estimate
parameters using measurement data from circuit, and func-
tional mapping based method [13] which uses a non-linear
regression model to approximate the functional relationship
between parameters. Compared to the SBT methods, the
SAT methods are less resource consuming but the computa-
tional complexity, memory requirement, number of required
tests/measurements are still a concern as the circuit under
test scales up in component counts.

The contributions of this article are two fold: 1) Firstly,
it is shown that BJTs are causal devices and data generated
from a BJT circuit can be used to perform causal search
and identify causal relationships among the variables of
the circuit and thus reconstruct the underlying topology.
2) Secondly, it is experimentally shown that the identified
topology/structure of the network can alleviate the process
of fault diagnosis. The proposed causal graph based diag-
nosis technique can alleviate the problem of computational
complexity and memory requirement, and can minimize the
number of test required to identify faults.

The article is organized as follows. In Section II some
useful notions of graph theory and causal inference are
described. Section III establishes the causal relations in BJT
operation which is then used in Section IV to show that
equations of a BJT circuit can be posed as SEM. Sec-
tion V demonstrates the construction of representative causal
graph of a BJT circuit using simulation data. Section V
also presents a simple fault diagnosis technique using the
constructed graph. Finally, Section VI concludes the article
and makes comments on future works.

II. SOME BASIC NOTIONS OF GRAPH THEORY
AND CAUSAL INFERENCE

This section presents a few notions of graph theory and
causal inference [14], [15] that are used in this paper. First,
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some basic definitions of graph theory are presented then
some useful notions of causal inference are described.

Definition 1: (Directed, Undirected, and Partially Di-
rected Graph): A graph G := (V,E), where, V is a set
of nodes and E is the set of edges, is called a di-
rected graph if each element of E is an ordered pair
(i, j) ∈V ×V i.e. E ⊆ {(i, j)}∀i, j ∈V . If all the elements
of E are unordered then G is called an undirected graph, i.e.
E ⊆ {{i, j}}∀i, j ∈V . And if some of the edges of a graph is
oriented and others are unoriented then the graph is called a
partially directed graph i.e. E ⊆ {(i, j),{i, j}}∀i, j ∈V . Note
that, we denote the directed edge i → j by (i, j), and the
undirected edge i− j by {i, j}.

Definition 2 (Skeleton): The skeleton of a directed graph
G = (V,E), is obtained by removing the orientation of the
edges in E, and the skeleton is denoted by G = (V,E).

Definition 3 (Chain): Given a directed graph G, a chain
from node i to j is a sequence of vertices {πk}n

k=1, such that,
(πl ,πl+1) ∈ E holds ∀1 ≤ l ≤ n, where, π1 = i and πn = j.

Definition 4 (Cycle): In a directed graph G, a cycle is a
chain from a node i to i itself.

Definition 5 (Path): Given a graph G, a path from node
i to j is a sequence of vertices {πk}n

k=1, such that, ei-
ther (πl ,πl+1) ∈ E or (πl+1,πl) ∈ E or {πl+1,πl} ∈ E holds
∀1 ≤ l ≤ n, where, π1 = i and πn = j.

Definition 6 (Directed Acyclic Graph): A directed graph
G with finite number of nodes and no cycles is called a
directed acyclic graph (DAG).

Definition 7 (Parent and Child): Given a directed graph
G, node i is called a parent node of j if (i, j) ∈ E, and in
that case j is called a child of i.

Definition 8 (Ancestor and Descendant): In a directed
graph G, node i is called an ancestor of j if there is a directed
chain from i to j, and in that case j is called a descendant
of i. The symbolic representations an(x) and de(x) denotes
the set of ancestors and descendants of x respectively.

Definition 9 (Collider and Fork): Consider a directed
graph G, a path has a collider at node πl if (πl−1,πl) ∈ E
and (πl+1,πl) ∈ E holds. And a path has a fork at node πl
if (πl ,πl−1) ∈ E and (πl ,πl+1) ∈ E holds.

Definition 10 (Adjacent Nodes): In a graph G = (V,E),
two nodes x and y are said to be adjacent, if one of
the following conditions satisfy, 1)(x,y) ∈ E, 2)(y,x) ∈ E,
3){x,y} ∈ E. The notation ad j(x,y) denotes x and y are
adjacent, and ∼ ad j(x,y) denotes x and y are not adjacent.

Definition 11 (Adjacency): Adjacency(G,x) is defined as
the the set of nodes adjacent to x in the graph G.

Definition 12 (v-structure): A collider whose parents are
not adjacent is called a v-structure.

Definition 13 (Equivalence Class): DAGs are said to be
in the same equivalence class if they have the same skeleton
and same v-structures.

Definition 14 (d-Separation): Given a graph G := (V,E),
two nodes x and y are said to be d-separated by a set Z ⊂V
if at least one of the following holds,

1) The path contains a node p ∈ Z which is not a collider.

2) If the path contains a collider at a node q, then neither
q nor any of its descendants belong to the set Z.

The notation dsep(x,Z,y) indicates that x and y are d-
separated by Z. The sets X ⊂V , Y ⊂V , Z ⊂V are said to be
d-separated if dsep(x,Z,y) holds for every x ∈ X and y ∈ Y .

Following are a few more important notions.

A. Structural Equation Model

As stated in [15], a structural equation model (SEM) also
known as structural causal model (SCM) comprises of two
sets of variables U , V and a set of functions F , where, U is
the set of independent exogenous variables, and V is the set
of endogenous variable whose interdependence is of interest.
F is the set of functions that assigns value to each of the
variables in V based on other endogenous and at least one
exogenous variable.

Given an SEM we say that the variable x is a direct cause
of y, if x appears as an input to the function fy that assigns
value to y. An illustrative example for better understanding
is given below.

Example 1 (SEM):

U = {u1,u2,u3},V= {x,y,z},F = { fx, fy, fz} (1)
x= fx(u1) (2)
y= fy(u2) (3)
z= fz(x,y,u3) (4)

According to the SEM in (1) x, y are independent variables
and, x and y are both direct causes of z.

Every SEM has a graphical representation. The nodes of
the representative graph or DAG G, represent the variables
in the set V , and the edges are assigned based on the set F .
For example, if the function fx contains y as an input then
there is an edge from y to x. We often say “y is a direct
cause of x” to mean “y is a parent of x.” In Example 1, the
edge set would be E = {(x,z),(y,z)}.

If there are underlying causal relationships among the
variables of a data set then the interdependence of different
variables can be expressed as an SEM. In such cases standard
causal search algorithms can be used on the data set to unveil
causal relationship among variables. One such algorithm is
the Peter-Clark algorithm [16] which is described next.

B. Peter-Clark Algorithm

The PC algorithm, described in Algorithm 1 [16], can
be used for causal discovery on data sets with the help of
statistical independence test method. The algorithm takes a
data set D, as input and produces an equivalence class of
DAGs, with the variables in the data set forming the node
set V of the graphs in the equivalence class.

The PC algorithm has two distinct stages. In the first
stage it starts with a complete graph G and then gradually
learns the underlying skeleton by systematically removing
edges from G using a conditional independence test. In the
sequel we have used the Fisher Z-test as the conditional
independence test method, for further details on it the reader
is referred to [17]. The second stage of PC algorithm
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Algorithm 1 Peter-Clark Algorithm
Form a complete undirected graph G = (V,E) by connect-
ing every pair of nodes in V with an undirected edge.
Set n = 0.
repeat

repeat
Select an ordered pair of adjacent nodes x,y ∈V ,
such that, cardinality of Adjacency(G,x)\{y} ≥ n.
repeat

Select Z ⊆ Adjacency(G,x)\{y} with cardinality n.
if (x ⊥⊥ y|Z) holds then

Remove the edge between x and y in G.
Save Z as Zxy.
break.

end if
until all Z ⊆ Adjacency(G,x)\{y} with cardinality n
has been considered.

until all adjacent pairs of nodes x and y with cardinality
of Adjacency(G,x)\{y} ≥ n has been considered.
n = n+1.

until for all adjacent pairs of nodes x and y with cardinality
of Adjacency(G,x)\{y} ≤ n.
repeat

Choose a,b,c ∈V , such that, ad j(a,c), ad j(b,c), but
∼ ad j(a,b) in G.
if c /∈ Zab then

Designate c as a collier in the path from a to b in G.
end if

until all triplets a,b,c ∈V , such that, ad j(a,c), ad j(b,c),
but ∼ ad j(a,b) in G has been considered
repeat

if (a,b) ∈ E, and ad j(b,c), and ∼ ad j(a,c), and b is
not a child of another node then

Designate b as a parent of c
end if
if there is a directed path from a to b, and {a,b} ∈ E
then

Designate a as a parent of b
end if

until no more edges could be oriented.

reconstructs, whenever possible, the orientation of the edges.
Thus, the PC algorithm produces an equivalence class of
DAGs that describes some of the causal relationship among
the variables in the data set.

III. CAUSALITY IN TRANSISTOR OPERATION

In this section we describe the operating principle of BJTs
[18], [19] and then point out the causality in the described
process. Before discussing the operation of a BJT in active
region we discuss how the device reacts if a voltage bias is
applied between only two terminals at a time.

Consider an npn transistor as shown in Fig. 1(a) where
the base-emitter junction is forward biased but the collector
terminal is open. As a result of the applied forward bias the
depletion region in the base-emitter junction gets reduced

(a) (b)

(c) (d)
Fig. 1. (a) Carrier flow in BJT under forward biased Base-Emitter junction,
(b) Carrier flow in BJT under reverse biased Base-Collector junction, (c)
Carrier flow in BJT under forward biased Base-Emitter junction and reverse
biased Base-Collector junction (d) Common emitter transistor in voltage
divider bias configuration

and the device acts as a p-n junction diode in forward bias;
as a result, a heavy flow of majority carriers from the n-type
emitter to the p-type base occurs.

If the base-collector junction is reverse biased and the
emitter is left open as shown in Fig. 1(b) the depletion region
at the base-collector junction widens and the device acts as a
reverse biased diode. Under such conditions there will be no
majority carrier flow from the collector to base and a very
small minority carrier flow from the base to the collector.

Now, consider an npn transistor as shown in Fig. 1(c)
operating in active region i.e. the base-emitter junction is
forward biased and the base-collector junction is reverse
biased. Owing to the biasing conditions, the depletion region
in the base-emitter junction gets very narrow where as the
depletion region the the base-collector junction becomes
wider. Due to the forward bias voltage applied at the base-
emitter junction, a large number of majority carriers/electrons
from the n-type emitter region gets injected into the base
region which are then considered to be the minority carriers
in the p-type base region. These injected carriers now have
two paths to flow into; either into the base terminal or into
the collector region. Since the sandwiched base material has
a vary small width, it presents a high resistance path for
the carriers to flow into the base terminal, whereas, the path
from the base to the collector region presents a low resistance
due to the fact that, all minority carriers in the depletion
region will cross the reverse biased junction. Thus, most of
the injected carriers flow into the collector region from the
base. This results in a flow of current from the collector
terminal to the emitter terminal. In summary, the forward
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bias voltage at base-emitter terminals results in injection of
majority carriers from emitter in base which further leads
to the collector current flow. Thus, the collector current is
a direct result of the forward bias voltage applied at the
base-emitter terminals which can be considered as “causing”
bias voltage. Although, there is a small current flow at the
collector due to minority carrier flow from base to collector
as shown in Fig. 1(c), this current is negligible compared to
the current due to majority carriers injected from emitter.

Now that the BJT is established to have a notion of causal
relationship between its input and output, one can postulate
that under certain assumptions, data generated from a BJT
based circuit can be leveraged to learn the underlying causal
relationship among the circuit variables (currents/voltages).

Next, the equivalence of a few useful variables are estab-
lished. Consider the BJT circuit in Fig. 1(d). The base and
collector voltages are given by

VB =
R2

R2 −R1
Vcc −

R2R1

R2 −R1
IB, (5)

VC =Vcc − ICR3. (6)

It can be observed that the base voltage VB is a scaled
and translated version of the base current IB according to
(5). Similarly, VC is a scaled and translated version of IC.
These statements also hold true in a more complex circuit
given that the load at the collector terminal is small. Hence,
VC and IC can be considered equivalent variables representing
the collector terminal from causality point of view, and same
is true for VB and IB.

IV. STRUCTURAL EQUATION MODEL OF
CASCADED BJT AMPLIFIER

This section establishes that the relationship among vari-
ous voltage and currents in a cascaded direct coupled BJT
amplifier can be posed as SEMs.

Fig. 2. Two Stage Direct Coupled BJT Amplifier

We first show that the collector current equations of the
circuit shown in Fig. 2 takes the form of an SEM and then
we show that the same statement holds true for the collector
voltages also. In both of the cases the temperature of the
BJTs are considered as the exogenous variables.

A. SEM of Collector Currents

Consider the circuit shown in Fig. 2. The collector current
equations of the two transistors can be expressed as

IC1= β1IB1, (7)

IC2= β2

(
Vcc −VC1

R3
− IC1 −

VB2

R6

)
, (8)

where βi is the current gain of the ith transistor [19]. Con-
sider IC1, IC2 as endogenous variables, and the temperature
T1, T2 of BJT Q1, and Q2 respectively as exogenous variables
then the following conclusions can be drawn.

From the configuration of the circuit in Fig. 2 and physics
of BJT, it can be inferred that IB1 only depends on T1, and it is
well known that the current gain (β ) of a transistor depends
on its temperature and none of the endogenous variables
considered here. Which means that IC1 can be expressed as
a function of T1 as in (9) below:

IC1 = f1(T1). (9)

IC1, VC1 can be considered equivalent variables represent-
ing the collector from causality point of view, VB2 depends
on IC1 and T2, and Vcc is a constant. This implies that IC2
can be written as a function on IC1 and T2 as in (10) below:

IC2 = f2(IC1,T2). (10)

Hence, we conclude that the collector current equations of
the BJT circuit takes the form of an SEM.

B. SEM of Collector Voltages

The collector voltages in Fig. 2 can be expressed as in
(11) and (12). Similar to the previous case, if the collector
voltages, VC1 and VC2 are considered to be the endogenous
variables then under certain assumptions the system equa-
tions can be expressed as an SEM as described below:

VC1 =Vcc − (IC1 + IB2 + IR6)R3, (11)

VC2 =Vcc −

(
VC1 −Vcc + IC1R3 +

VBE2R3
R6

R3R8 (R6 +β2 +1)

)
β2R6R7, (12)

where VBE2 is the base to emitter voltage of transistor
Q2 which is only dependent on T2 [18]. It is to be noted
that although (11) shows the dependence of VC1 on IC1, IB2,
and IR6, the magnitude of IB2 and IR6 compared to IC1 is
several orders of magnitude smaller based on the biasing
conditions, which implies that effect of IB2, and IR6 on VC1
can be neglected and it can be consider to be dependent only
on IC1 which further implies that VC1 can be expressed as a
function of T1 as described below:

VC1 = f3(T1). (13)

By similar reasoning as in case of IC2, VC2 can be
considered to be a function of VC1 and T2 as in (14). Hence,
the equation of VC2 takes the form:

VC2 = f4(VC1,T2). (14)

With collector current and voltage equations posed as
SEMs, voltage and current measurement data from a given
BJT circuit can be used to learn the causal relationship
between them using some causal discovery algorithms such
as PC algorithm.
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TABLE I
SIMULATION MODEL PARAMETERS

Parameters Value
R1 200 KΩ

R2 100 KΩ

R3 30 KΩ

R4 22 KΩ

R5 10 KΩ

R6 5 KΩ

R7 4.7 KΩ

Vcc 12 V

Parameters Mean Standard
Deviation

T1 50◦C 6◦C
T2 50◦C 5.6◦C
T3 50◦C 5.3◦C
T4 50◦C 5◦C
T5 50◦C 5.5◦C
T6 50◦C 4.44◦C
T7 50◦C 4.1◦C
T8 50◦C 2.6◦C
T9 50◦C 5.5◦C
T10 50◦C 4.2◦C
T11 50◦C 4.3◦C

V. RESULTS AND DISCUSSION

This section presents the process of data generation using
spice simulation, causal discovery with the generated data,
and circuit diagnosis using causal structure of the network.

A. Spice Simulation and Data Generation

A direct coupled BJT circuit consisting of eleven 2N2222
npn BJTs [20] interconnected as shown in Fig. 3 was
simulated in LTspice [21] for data generation. The circuit
parameters of the simulation model are listed in Table I
where Tn corresponds to the temperature of BJT Qn. During
the simulation the temperatures of the transistors were varied
around a mean value and the DC operating point voltages and
currents were measured at each temperature. The measured
currents and voltages are annotated in Fig. 3, the currents
were measured in nA scale and the voltages were measured in
µV scale. Each of the temperature variables of the transistors
were considered to be an independent Gaussian random
variable with the same mean value but different standard
deviation as listed in Table I. From the simulation, a data
set consisting of 30,000 data points in each variable was
generated, which was further used for causal discovery.

B. Causal Search and DAG Identification

The generated data set was used to perform two separate
causal search process; first, considering {I1, I2, I3, I4, I5, I6, I7}
as the variables, and the second causal search considering
{VC1,VC2,VC3,VC4,VC5,VC6,VC7} as the variables. Both of
the search process was performed using the PC algorithm
in Tetrad [22]. The Fisher Z-test [17] with a threshold of
0.01 was used for testing conditional independence of the
variables in the data sets. The results obtained from Tetrad
are depicted in Fig. 4. It can be observed that the generated
DAG in both the cases come out to be the same as described
below. A close inspection of the simulation schematic in
Fig. 3 along with the DAGs in Fig. 4 reveals that the DAGs
are in agreement with the layout of the circuit, i.e. the DAGs
represent the causal structure one would expect considering
the BJTs to be causal devices. This leads to some important
implications for circuit diagnosis as described next.

C. Circuit Diagnosis Using DAG

Since the generated DAGs closely represent the actual
construction and signal flow in the BJT circuit, the DAGs can
be used to perform various kinds of analyses of the circuit

with the help of various notions of causal inference, such
as Front Door Criteria, Back Door Criteria, and Markov
Blankets [15], [17]. One such application is fault diagnosis.
An example case of fault diagnosis for the circuit considered
here is discussed.

Consider VC7 to be the output and VB1, VB2 to be the
inputs of the circuit in Fig. 3. The inputs are considered
to be sinusoidal voltages with 128 mV of peak to peak
amplitude, 770 mV of DC offset, and a frequency of 5 KHz.
Assume that a deviation of the output from expected result
has occurred as shown in Fig. 5(a) due to failure of BJT Q7
which has caused an open circuit fault, but these specific fault
conditions are unknown to the user. The user is provided with
the DAG representation of the circuit as in Fig. 4(b). Under
such conditions, the user may develop test strategies with the
help of the DAG of the network and standard causal inference
notions to optimize number of required test, sensors etc.

A strategy of successive Markovian parent identifi-
cation can be used to uncover faults. Markovian par-
ents of a node v ∈V is defined as the smallest set
of nodes Π ∈V such that (v ⊥⊥V \ (v∪de(v))|Π) i.e.
given Π , v is independent of its non-descendants [16].
From the DAG of Fig. 4(b) it can be observed that
dsep(VC7,{VC2,VC3,VC6},{VC1,VC4,VC5}) holds which im-
plies that under the assumption that the graph is faithful
to the data, (VC7 ⊥⊥ {VC1,VC4,VC5}|{VC2,VC3,VC6}) holds
i.e. {VC2,VC3,VC6} are Markovian parents of VC7. Voltage
measurement at these nodes reveal that the measured value
of VC2, VC3 are as expected as shown in Fig. 5(b) and
Fig. 5(c), where as, the measured value of VC6 is erro-
neous as shown in Fig. 5(d). This implies that under the
assumption that only one fault has occurred, the fault must
be somewhere among the ancestors of VC6 and itself. As a
logical next step VC5 is identified as the Markovian parent of
VC6, since dsep(VC6,VC5,{VC1,VC2,VC3,VC4}) holds. Again,
measurement shows that measured value of VC5 is erroneous
as in Fig. 5(e). Which again implies that the fault must be
somewhere among its ancestors and itself. We now identify
VC4 as the Markovian parent of VC5 using d-separation on
the DAG of Fig. 4(b) and observe that measurement at VC4
is as expected as shown in Fig. 5(f). Which implies that
there is no fault among its ancestors. Hence, the fault must
somewhere between the node VC4 and VC5 which corresponds
to the region pointed out by dotted red square in Fig 3. Thus,
using only 5 tests it is possible to identify the faulty region,
which is a significant improvement over traditional methods.

D. Discussion
It is to be noted that, although this article only presents

the topology identification and fault diagnosis method for
NPN BJT network, preliminary experimental results show
that the method is equally applicable to PNP BJT, N-channel
MOSFET, and P-channel MOSFET networks as well. Due
to space limitations these results are not presented here.

VI. CONCLUSION AND FUTURE WORK
This study has shown that BJTs can be considered to be

causal devices. It has been corroborated that the current and
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Fig. 3. Simulation Schematic

(a) (b)

Fig. 4. Identified DAGs (a) Considering {I1, I2, I3, I4, I5, I6, I7} as the
variables (b) Considering {VC1,VC2,VC3,VC4,VC5,VC6,VC7} as the variables

Fig. 5. Measured collector voltages under normal and fault conditions (a)
VC7 (b) VC2 (c) VC3 (d) VC6 (e) VC5 (f) VC4

voltage equations of a direct coupled BJT amplifier can be
posed as SEMs and traditional causal discovery methods can
be used on a BJT circuit to identify the causal structure of
the network and construct a DAG representation. It was also
demonstrated that the constructed DAG can further be used
for fault diagnosis.

As part of the future work, development of similar meth-
ods for electronic circuits containing dynamics and feedback
loops is under progress. Development and analysis of other
topology informed fault diagnosis algorithms are underway.
Application of the topology identification method to circuits
containing uncertainties and noisy elements is also part of
future endeavours.
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