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Abstract— This paper presents a new formulation of data-
driven, learning-based optimal control with the Hamilton-
Jacobi theory. In contrast to the common practice of rein-
forcement learning for dynamical systems, where the control
policy is parameterized by deep neural network and the control
parameters are optimized directly, we propose to adopt the
indirect optimal control where the necessary conditions for
optimality are first constructed by Pontryagin’s minimum prin-
ciple. Then, the resulting two-point boundary value problem
is solved by learning the generating function associated with
the optimality conditions that are considered as a Hamiltonian
system. Further, it is shown that the sampling efficiency can be
improved when there exists an invariance in the dynamics. The
foremost benefit is that this provides a set of optimal controls for
varying boundary conditions, which cannot be systematically
addressed in the policy gradient.

I. INTRODUCTION

Deep reinforcement learning has been successfully applied
to various fascinating and challenging problems. For dy-
namic systems with continuous action and state spaces, the
most common approaches include Trust Region Policy Opti-
mization (TRPO) to gradually update the control policy [1],
Proximal Policy Optimization (PPO) to achieve the goal of
TRPO with less computational load [2], and soft actor-critic
(SAC) to balance exploration and exploitation [3].

Despite various successful applications, there are several
obstructions in utilizing the above policy gradient methods
for continuous dynamics that commonly appear in robotics
or aerospace engineering. The foremost limitation is that
multiple control objectives should be consolidated into a
single reward function to be optimized. While this is natural
for certain types of MDPs like Atari games or chess, we
often encounter multiple objectives in practice, such as
the boundary condition, inequality constraints, or control
regulation beyond the principal goal. When there are multiple
control objectives, the reward is often chosen as a weighted
sum of several components, and the functional form of
each objective function and the corresponding weighting
parameters should be selected by trial-and-error to achieve
reasonable performance, resulting in the reward engineering
problem. Next, as the control policy is represented by deep
neural networks with a large capacity of function approxi-
mation, the control input may exhibit unintended behaviors
such as high-frequency chattering. This motivates additional
consideration to improve smoothness of the control, such as
a regularization approach presented in [4]. Finally, our prior
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knowledge of the optimal control of dynamic systems is not
well reflected in the learning process.

These are not surprising, considering that the policy gra-
dient methods are direct optimal control. As a numerical
optimization technique is applied to construct a sequence of
improving approximation to the optimal solution iteratively,
it is unclear how the iterations evolve. Nor is the structure
of the converged solution comprehensible.

To address these, we present an alternative formulation
of learning-based controls in the framework of indirect
optimal control, referred to as G-learning. Assuming that the
dynamics are given, we first construct necessary conditions
for optimality with the variational principle, which are repre-
sented by a two-point boundary value problem for the state
and the co-state. According to the Hamilton-Jacobi theory, it
can be solved in a single step once the associated generating
function is constructed [5], [6], [7], thereby yielding optimal
feedback controls. This has been extended to discrete-time
systems [8] with the discrete Hamilton-Jacobi theory [9]. In
these works, the generating function was constructed by a
Taylor series expansion or a quadratic form recursively. As
such, there is a limitation in applying this method for higher-
dimensional systems.

In this paper, we propose to construct the generating func-
tion iteratively by machine learning. Specifically, we generate
a set of optimal trajectories for varying boundary conditions,
which are used to train a neural network representing the
generating function. Then, the optimal control is directly
constructed by the learned generating function.

Compared with the policy gradient, this provides optimal
controls for varying boundary conditions from a learned
generating function, i.e., there is no need for retraining
or transfer learning. Further, as the boundary condition
is enforced by the optimality condition, we do not have
to augment the reward or the objective function with an
additional penalty term representing the error in satisfaction
of the boundary conditions. Also, this is well-suited to
incorporate other types of equality or inequality constraints
easily in the optimality conditions by alternating the type of
the generating function. In addition, we extend this to an
equivariant G-learning to show that the sampling efficiency
of the learning can be improved if there exists any symmetry
in the underlying dynamics and the objective function.

In short, this paper presents a new formulation of data-
driven optimal controls, based on the indirect optimal control
and the Hamilton-Jacobi theory, which is complementary to
the policy gradient of reinforcement learning.
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II. PROBLEM FORMULATION

Consider a discrete-time dynamic system defined by

qk+1 = f(qk, uk), (1)

where q ∈ Q is the state in the configuration space Q and
u ∈ Rm is the control input.

We formulate an optimal control problem to minimize the
cost function:

J (u0, . . . uN ) =

N−1∑
k=0

L(qk, uk) (2)

for a running cost L : Q × Rm → R with the given initial
and terminal states (q0, qN ) over a fixed finite period N .
While we focus on hard terminal constraints in this paper, the
subsequent developments are readily extended to other types
of soft constraints or state equality/inequality constraints.

A. Necessary Conditions for Optimality

Here we briefly summarize the optimality conditions for
discrete-time systems [10]. Define an augmented cost func-
tion:

J =

N−1∑
k=0

pk+1 · qk+1 −H(qk, pk+1, uk),

where the Lagrange multiplier or the co-state is denoted by
pk ∈ T∗Q, and the Hamiltonian is

H(qk, pk+1, uk) = −L(qk, uk) + pk+1 · f(qk, uk). (3)

Here · denotes the pairing between the tangent space and the
cotangent space, and it is interpreted as the usual dot product
assuming T∗Q ≃ Q × Q. Under any discrete trajectory
satisfying (1), we have J = J .

It is well known that the optimal control is obtained by

uk = argmax
ũ

H(qk, pk+1, ũ). (4)

We assume that H is regular such that the unique optimal
control can be determined as a function of the state and the
co-state, i.e.,

uk = U(qk, pk+1) (5)

for U : Q×T∗Q → Rm. Substituting this into (3), we obtain
the optimal Hamiltonian

H(qk, pk+1) ≜ H(qk, pk+1, U(qk, pk+1)). (6)

The necessary conditions for optimality are given by the
following discrete Hamilton’s equations:

qk+1 = D2H(qk, pk+1), (7)
pk = D1H(qk, pk+1), (8)

where D1 denotes the derivative with respect to the first
argument, and D2 is defined similarly. For a given (q0, p1),
the optimal control u1 is determined by (5). Then, (q1, p2)
can be obtained by (7) and (8), respectively. These yield the
optimal flow (qk, pk+1, uk) → (qk+1, pk+1, uk+1) up to the
terminal state qN .

As such, the optimal control problem is interpreted as
a two-point boundary value problem to identify the initial
multiplier p1 that ensures the terminal state becomes its
desired value. Further, (5) can be utilized as an optimal
feedback control, if the value of pk+1 to satisfy the terminal
boundary condition can be computed in real-time.

Solving the two-point boundary value problem is compu-
tationally involved in general. However, it has been proposed
that we can construct an algebraic equation to relate the
current co-state and the terminal state exploiting that the nec-
essary conditions for optimality are given by a Hamiltonian
dynamics as presented in (7) and (8).

B. Discrete Hamilton-Jacobi Theory

More specifically, the transformation between (qk, pk) and
(qN , pN ) is canonical, and therefore it can be described
by a generating function. Depending on the choice of the
independent variables, there are several types of generating
functions. Here, we show one type of generating function
and the corresponding canonical transform that are useful
for the presented optimal control.

Proposition 1: [8] Define the generating function of Type
1 as follows.

G1(qk, qN ) = −
N−1∑
i=k

[pi+1 · qi+1 −H(qi, pk+1)], (9)

where two input arguments (qk, qN ) of the generating func-
tion are considered as independent variables, and the remain-
ing state/co-state are chosen according to (7) and (8).

The corresponding canonical transform is

pk = D1G1(qk, qN ), −pN = D2G1(qk, qN ). (10)

In (9), the dependency of the generating function on the
time step is suppressed, e.g., G1(qk, qN ) is a shorthand
for G1(k,N ; qk, qN ). In fact, as the discrete dynamics (1)
and the cost function (2) are time-invariant, the generating
function depends on the difference of time, N − k.

The generating function evolves according to the
Hamilton-Jacobi equations as follows.

Proposition 2: [8] The generating function satisfies the
following discrete Hamilton–Jacobi equation:

G1(qk−1, qN ) = G1(qk, qN )−D1G1(qk, qN ) · qk
+H(qk−1, D1G1(qk, qN )), (11)

with the boundary condition G1(qN , qN ) = 0.

C. Optimal Control with Generating Function

Consider a boundary value problem to find two unknown
variables of (qk, pk, qN , pN ) when the other two variables
are given. This can be easily addressed by the canonical
transforms between them. For example, if the current state
qk and the terminal boundary condition qN are given, the
corresponding co-state at the current time is simply given
by the first equation of (10), thereby addressing the two-
point boundary value problem of the indirect optimal control.
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TABLE I
PROCEDURES OF G-LEARNING

1: procedure Gnn = TRAINING(Q0, P0, QN , ndata)
2: Set D = {}
3: repeat
4: Sample (q0, p0) from (Q0, P0)
5: Generate trajectory (q0, p0, . . . , qN , pN ) from (7), (8)
6: if qN ∈ QN then
7: Compute (G1(q0, qN ), . . . , G1(qN−1, qN ) with (13)
8: D ← {(q0, p0, qN , pN , G(q0, qN )), . . .}
9: end if

10: until |D| = ndata

11: Train a neural network Gnn(q, p) with D
12: end procedure
13: procedure u=CONTROL(qk, qN , Gnn, α)
14: Set u′ = 0
15: repeat
16: Set u = u′

17: Compute u′ = U(qk, D1Gnn(f(qk, u), qN ))
18: Set u′ = (1− α)u+ αu′

19: until ∥u′ − u∥ < ϵ
20: end procedure

As such, the generating function yields the solution to the
optimal control as summarized below.

Proposition 3: [8] Consider the optimal control problem
of (1) and (2). Let G1 be the generating function satisfying
the Hamilton-Jacobi equations (11), respectively for given
(6), (7), and (8). Then, the optimal control is determined by

uk = U(qk, D1G1(f(qk, uk), qN )). (12)

Furthermore, the optimal cost-to-go function to transfer the
state qk at tk to qk+j at tk+j is given by

J(qk, qk+j) =

k+j−1∑
i=k

L(qi, ui) = −G1(qk, qk+l). (13)

III. LEARNING GENERATING FUNCTION

According to the Hamilton-Jacobi theory, the optimal feed-
back control can be constructed once the generating function
is obtained. The previous approaches include approximating
it with a Taylor series expansion or using a quadratic form
for the linear dynamics. As it is relatively straightforward
to generate sample optimal trajectories from (7) and (8) and
to compute the value of the generating function from (13),
it is reasonable to utilize deep neural network to model the
generating function. This is referred to as G-learning.

A. G-Learning

The training procedure of the G-learning is summarized
in Table I. The objective is to generate the set of optimal
trajectories and the value of the generating function to be
used for training and tests of deep learning. We choose the
set of initial states Q0 ⊂ Q and the set of terminal states
QN ⊂ Q, in which the controlled system would operate. We
further choose P0 ⊂ T∗Q from which the initial co-state is
sampled. Then, we propagate the initial condition (q0, p0)
along the Hamilton’s equations (7) and (8). If the terminal
state belongs to the desired operating range represented by
QN , the corresponding value of the generating function is

computed by (13) and they are saved in the data set D. This
is repeated until the desired number of data ndata is reached.

Then, a neural network Gnn : R×Q×Q → R that takes
the time step k and (qk, qN ) as the input is trained with the
following loss function:

L =
∑
D

∥G1(qk, qN )−Gnn(qk, qN )∥2

+ c1∥pk −D1Gnn(qk, qN )∥2 + c2∥pN +D2Gnn(qk, qN )∥2,
for weighting parameters c1, c2 > 0. In other words, it is
trained to satisfy the value of G1 and its derivatives. Instead
of the L2 norm presented above, any other loss function can
be utilized.

Once Gnn is constructed, the optimal control can be
constructed via (12) for the given current state qk and the
desired terminal state qN . Here, we have to solve the implicit
equation for (12) for uk. Depending on the specific structure
of U or f , (12) may have an explicit solution. Otherwise,
(12) is naturally written as a form of fixed-point iteration.
The procedure to solve (12) for uk with fixed-point iteration
is presented in the second part of Table I. One can show
that if f is Lipschitz continuous and the gradients of U and
Gnn are bounded, the presented iteration yields a contraction
for a sufficiently small α, and therefore, it converges to the
unique solution.

Compared with the policy gradient in reinforcement learn-
ing, one distinct feature of G-Learning is that the optimal
control is given as a function of the current state qk and the
terminal state qN . Consequently, it provides optimal feedback
controls for varying terminal state qN . Also, the terminal
boundary condition does not have to be enforced through an
additional penalty at the objective function. Another benefit
is that the iteration is to satisfy the terminal boundary con-
dition, while the optimality is naturally enforced by (7) and
(8). As such, this is contrast to the policy gradient, where the
optimality is achieved gradually and approximately. Further,
other kinds of the terminal boundary conditions or constraints
can be addressed by utilizing different types of generating
function [8].

B. Equivariant G-Learning

The presented G-Learning is to approximate the generating
function on the domain of R×Q×Q. In this section, we show
that the domain of the learning can be reduced if there exits
a symmetry in the dynamics and the cost function, thereby
improving the sampling efficiency of the G-Learning.

Suppose that there is a Lie group G acting on the config-
uration manifold Q by its left action Φ : G×Q → Q. For a
given g ∈ G, we denote Φ(g, q) = Φg(q) = g ◦ q. The group
action is lifted into the cotangent bundle T∗Q by its cotangent
lift T∗

gqΦg−1 : G × T∗
qQ → T∗

gqQ. In the subsequent devel-
opment, we assume that the group action can be represented
by a left matrix multiplication for simplicity. This results in
g ◦ q = gq and g ◦ p = T∗

gqΦg−1(p) = g−T p. Further, it is
considered that for each g ∈ G, there is the corresponding
group action on the control input. This is denoted by the
same symbol after slight abuse of notation, i.e., g ◦ u = gu.
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Suppose that the discrete dynamic is g-equivariant, or g ◦
f = f ◦ g. This implies

gqk+1 = f(gqk, guk), (14)

for any (sk+1, sk, uk) satisfying (1). It follows that if
(q0, u0, q1, u1, · · · ) is a trajectory of the state and the control
following the discrete equations of motion, the transformed
pair of state and control (gq0, gu0, gq1, gu2, · · · ) is another
trajectory.

Next, assume that the running cost L is g-invariant, i.e.,
L ◦ g = L, or

L(gq, gu) = L(g, u). (15)

Then, the resulting optimal trajectories and the generating
function exhibit invariance or equivariance as summarized
below.

Proposition 4: Consider the optimal control problem of
(1) and (2), and the group action g ∈ G. Suppose f is g-
equivariant and L is g-invariant as presented in (14), and
(15). Then, the following properties hold:
(i) The Hamiltonian (3) and the optimal Hamiltonian (6)

are g-invariant, i.e., H ◦ g = H .
(ii) The optimal control of (4) is g-equivariant, i.e., u ◦ g =

g ◦ u.
(iii) The discrete Hamilton’s equations (7) and (8) are g-

equivariant, i.e., DiH ◦ g = g ◦DiH for i ∈ {1, 2}.
(iv) The generating function is g-invariant, i.e., G1◦g = G1.

Proof: Due to the page limit, the proof is omitted.
The property (iii) implies that if (q0, p1, q1, p2, . . .) is

an optimal trajectory satisfying (7) and (8) for a given
boundary condition (q0, qN ), then g ◦ (q0, p1, q1, p2, . . .) =
(gq0, g

−T p1, gq1, g
−T p2, . . .) is another optimal trajectory

with the transformed boundary condition (gq0, gqN ). In other
words, the set of optimal trajectories is closed under the
group action g, and this provides an equivalent relation ∼
for the optimal trajectories.

Also, as the generating function is invariant under g from
the property (iv), it can be formulated on the reduced space
of (Q× Q)/G. For example, G1 is evaluated by

G1(q0, qN ) = G̃1([q0, qN ]), (16)

where [q0, qN ] = {(gq0, gqN ) ∈ Q × Q | g ∈ G} is the
equivalent class, and G̃1 is a reduced form of the generating
function. There are several options to formulated the reduced
generating function, G̃1:

• Perhaps most naively, define G̃1 by a neural network
on Q×Q, but provide additional training data from the
equivalent class;

• Formulate G̃1 with an invariant neural network on Q×Q
such that the g-invariance is satisfied inherently;

• Identify a canonical projection (or surjection)
ϕ(q0, qN ) = [q0, qN ] to the equivalent class, and
let G1 = G̃1 ◦ ϕ, where G̃1 is formulated by a neural
network on (Q× Q)/G.

Depending on the particular configuration space and the Lie
group considered, one of these method can be selected.

Additionally, in case the group G acts on Q transitively,
the third option can be simplified as follows. The transitivity
implies that for any qN , q̃N ∈ Q, there exists a group element
g̃ ∈ G such that qN = g̃q̃N . To utilize this property, we
train a reduced generating function G̃1 : R×Q → R, which
corresponds to the generating function with the fixed terminal
state q̃N :

G̃1(q̃k) ≜ G1(q̃k, q̃N ). (17)

The corresponding optimal feedback control is

ũk = U(q̃k, DG̃1(f(q̃k, ũk))), (18)

which yields ũk = ũk(q̃k) to steer the controlled trajectory
to the fixed q̃N . In other words, this generates the optimal
trajectory (q̃k, p̃k+1, . . . , q̃N ) from any varying q̃k to the
fixed q̃N according to Proposition 3. The choice of q̃N is
arbitrary, and for example, it can be chosen as the origin of
Q for convenience.

Now, this optimal control for the fixed terminal state q̃N
can be transformed into the optimal control from any current
state qk to any desired state qN . For given qk and qN , choose
g̃ such that

qN = g̃q̃N , (19)

and let q̃k = q̃−1qk. Then, the optimal trajectory from
q̃k = g̃−1qk to q̃N can be generated by (18) to obtain
(q̃k, p̃k+1, . . . , q̃N ). This is transformed by the group action
g̃ into

g̃ ◦ (q̃k, p̃k+1, . . . , q̃N ) = (qk, pk+1, . . . , qN ),

which corresponds to the desired optimal trajectory from the
current state qk and the desired terminal state qN . According
to the property (ii) of Proposition 4, the optimal control u
is obtained by u = gũ. These procedures are summarized
at Table II. As the neural network is trained on the domain
of R×Q instead of R×Q×Q, the data collection and the
training of neural networks can be completed substantially
more efficiently.

IV. NUMERICAL EXAMPLE

A. Dubin’s Vehicle

We consider a variable-speed Dubin’s vehicle, which is
a kinematic model for a two-dimensional non-holonomic
vehicle whose turning rate and speed can be controlled
directly. The discrete state equations are given by

xk+1 = xk + hvk cos θk, (20)
yk+1 = yk + hvk sin θk, (21)
θk+1 = θk + hwk, (22)

where the state q = (x, y, θ) ∈ Q = R2 × S1 corresponds
to the location of the vehicle in the two-dimensional plane
and the heading angle. The control input u = (v, w) ∈ R2 is
composed of the linear velocity and the angular velocity, and
the constant h > 0 represents the step size. This is rearranged
into a matrix form as

qk+1 = f(qk, uk) = qk +B(qk)uk, (23)
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TABLE II
PROCEDURES OF EQUIVARIANT G-LEARNING

1: procedure G̃nn = TRAINING(q̃N , Q0, PN , ndata)
2: Set D = {}
3: repeat
4: Sample (p̃N ) from PN

5: Generate trajectory (q̃0, p̃0, . . . , q̃N , p̃N ) by propagating
(q̃N , p̃N ) backward with (7), (8)

6: if q̃0 ∈ Q0 then
7: Compute (G1(q̃0, q̃N ), . . . , G1(q̃N−1, q̃N ) with (13)
8: D ← {(q̃0, p̃0, q̃N , p̃N , G(q̃0, q̃N )), . . .}
9: end if

10: until |D| = ndata

11: Train a neural network G̃nn(q̃) with D
12: end procedure
13: procedure u=CONTROL(q̃N , qk, qN , G̃nn, α)
14: Find g̃ ∈ G such that qN = g̃q̃N
15: Set q̃k = g̃−1qk
16: Set ũ′ = 0
17: repeat
18: Set ũ = ũ′

19: Compute ũ′ = U(q̃k, DG̃nn(f(q̃k, ũ)))
20: Set ũ′ = (1− α)ũ+ αũ′

21: until ∥ũ′ − ũ∥ < ϵ
22: Set u = gũ
23: end procedure

where B(qk) ∈ R3×2 is

B(qk) = h

cos θk 0
sin θk 0
0 1

 . (24)

We consider a minimum control to transfer the vehicle
from a given initial state q0 to a terminal state qN over a
fixed time step N , while minimizing the sum of the following
running cost:

L(uk) =
1

2
uT
kRuk, (25)

for a positive-definite and symmetric matrix R ∈ R2×2.

B. Necessary Conditions for Optimality

From (3), the Hamiltonian is given by

H(qk, pk+1, uk) = −1

2
uT
kRuk + pTk+1(qk +B(qk)uk),

(26)

The control input that extremizes the Hamiltonian is obtained
by solving ∂H

∂u = 0 for u as follows.

uk = R−1BT (qk)pk+1. (27)

Substituting this back into (26), the optimal Hamiltonian of
(6) is given by

H(qk, pk+1) =
1

2
pTk+1B(qk)R

−1BT (qk)pk+1 + pTk+1qk.

(28)

Next, we derive Hamilton’s equations. For any x ∈ R3,

∂(B(q)Tx)

∂q
= CT (q)xeT3 ,

where e3 = [0, 0, 1]T ∈ R3 and the matrix C(q) ∈ R2×3 is

C(q) = h

− sin θ 0
cos θ 0
0 0

 .

Using this and from (7) and (8), Hamilton’s equations are

qk+1 = qk +B(qk)R
−1BT (qk)pk+1, (29)

pk = pk+1 + (pTk+1C(qk)R
−1BT (qk)pk+1)e3. (30)

Due to the factor e3 of (30), the first two elements of p =
[px, py, pθ] remain fixed, i.e.,

pxk
= pxk+1

, pyk
= pyk+1

. (31)

As such, we drop the subscript for the time step in px and py
in the subsequent development. Suppose R is diagonal such
that R = diag[r1, r2] for r1, r2 > 0. Then, the third element
of (30) is written as

pθk = pθk+1
+

1

2r1
((p2y − p2x) sin 2θk + 2pxpy cos 2θk).

(32)

In short, the Hamilton’s equations describing the evolution
of the optimal (q, p) are given by (29), (31), and (32).

C. Equivariarnce

Consider a group action g ∈ SE(2) on q = (x, y, θ) ∈ Q,
parameterized by (∆x,∆y,∆θ) ∈ R2 × [−π, π) as

g(∆x,∆y,∆θ)q = (R(∆θ)

[
x
y

]
+

[
∆x
∆y

]
, θ +∆θ), (33)

where R(θ) ∈ SO(2) is

R(∆θ) =

[
cos∆θ − sin∆θ
sin∆θ cos∆θ

]
. (34)

This corresponds to rotating the vehicle about the origin by
∆θ and translating it by (∆x,∆y). The corresponding group
action on the control is the identity map, i.e., g ◦ u = u.

Since (33) is not written as the form of matrix multiplica-
tion, the cotagent lift cannot be simplify obtained by g−T as
discussed in III-B. Instead, from the geometric formulation
of the cotangent lift (see, for example, [11]), we can show
that

T∗
gqΦg−1 · p = (R(∆θ)

[
px
py

]
, pθ), (35)

for p = (px, py, pθ) ∈ T∗
qQ, i.e., in the preceding develop-

ment, the operation denoted by g−T p can be replaced by
(35).

The resulting equivariance properties of the Dubin’s vehi-
cle are summarized as follows.

Proposition 5: Consider the Dubin’s vehicle dynamics,
given by (23) and the group action of (33) and (35). Then,
the following properties hold:
(i) The state equation f is g-equivariant, and the running

cost is g-invariant, i.e., f ◦ g = g ◦ f and L ◦ g = L.
(ii) The optimal control of (27) is g-invariant, i.e., u◦g = u
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(iii) The modified Hamiltonian H ′(qk, pk+1) =
H(qk, pk+1)− pTk+1qk is g-invariant, i.e., H ′ ◦ g = H ′.

(iv) The discrete Hamilton’s equations (29), (31), and (32)
are g-equivariant.

(v) The generating function is g-invariant, i.e., G1◦g = G1.
Proof: Due to the page limit, the proof is omitted.

While we cannot directly apply Proposition 4 due to the
group action represented by (33) and (35), the equivariance
of the Hamilton’s equations and the invariance of the gen-
erating function hold as indicated by (iv) and (v). As such,
the equivariant G-learning can be utilized.

D. Numerical Example

We choose R = diag[1, 10], h = 0.1, and N = 100. The
fixed terminal state is q̃N = [0, 0, 0]. The neural network
G̃nn is modeled as a multi-layer perceptron with two hidden
layers of the size 32, and the soft L1 activation function. It
is trained with ndata = 10000 over 6000 epochs with the
batch size of 50 and the learning rate of 10−4. These are
implemented by pytorch. The numerical results to steer the
vehicle into qN = (2, 1π

4 ) from five initial conditions are
presented at Figure 1.

E. Discussion

These illustrate the feasibility of the proposed G-learning
in data-driven indirect optimal control. One particular point
for improvements is that the generating function is trained
in prior for a preselected samples. As such, the performance
may degrade if the actual states encountered during the
implementation stage are not well reflected by the training
data. In fact, this is a well understood issue in the behavior
cloning of imitation learning: if there is a distribution mis-
match between the training data and the test data, the pre-
trained network performs poorly, and to address it, several
techniques, such as [12], have been presented to update the
training data distribution. The presented numerical examples
exhibits the error in the terminal state at the level of 0.01 ∼
0.03 in two norm, potentially due to the above issue. The
presented G-learning algorithm can be improved by updating
the generating function online, and it is currently being
investigated.
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