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Abstract— Zero-sum Linear Quadratic (LQ) games are fun-
damental in optimal control and can be used (i) as a dy-
namic game formulation for risk-sensitive or robust control,
or (ii) as a benchmark setting for multi-agent reinforcement
learning with two competing agents in continuous state-control
spaces. In contrast to the well-studied single-agent linear
quadratic regulator problem, zero-sum LQ games entail solving
a challenging nonconvex-nonconcave min-max problem with
an objective function that lacks coercivity. Recently, Zhang
et al. [1] discovered an implicit regularization property of
natural policy gradient methods which is crucial for safety-
critical control systems since it preserves the robustness of the
controller during learning. Moreover, in the model-free setting
where the knowledge of model parameters is not available,
Zhang et al. proposed the first polynomial sample complexity
algorithm to reach an ϵ-neighborhood of the Nash equilibrium
while maintaining the desirable implicit regularization property.
In this work, we propose a simpler nested Zeroth-Order (ZO)
algorithm improving sample complexity by several orders of
magnitude. Our main result guarantees a Õ(ϵ−3) sample
complexity under the same assumptions using a single-point
ZO estimator. Furthermore, when the estimator is replaced by a
two-point estimator, our method enjoys a better Õ(ϵ−2) sample
complexity. Our key improvements rely on a more sample-
efficient nested algorithm design and finer control of the ZO
natural gradient estimation error.

I. INTRODUCTION

While policy optimization has a long history in control
for unknown and parameterized system models (see for
e.g., [2]), recent successes in reinforcement learning and
continuous control tasks have renewed the interest in direct
policy search thanks to its flexibility and scalability to high-
dimensional problems. Despite these desirable features, theo-
retical guarantees for policy gradient methods have remained
elusive until very recently because of the nonconvexity of
the induced optimization landscape. In particular, in contrast
to control-theoretic approaches which are often model-based
and estimate the system dynamics first before designing op-
timal controllers, the computational and sample complexities
of model-free policy gradient methods were only recently an-
alyzed. We refer the interested reader to a nice recent survey
about learning control policies [3]. For instance, while the
classic Linear Quadratic Regulator (LQR) problem induces
a nonconvex optimization problem over the set of stable
control gain matrices, the gradient domination property [4]
and the coercivity of the cost function respectively allow
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to derive global convergence to optimal policies for policy
gradient methods and ensure stable feedback policies at
each iteration [5]. As exact gradients are often unavailable
when system dynamics are unknown, derivative-free opti-
mization techniques using cost values have been employed
to design model-free policy gradient methods to solve LQR
problems [5]. Alternative approaches to solve LQR include
system identification [6], [7], iterative solution of Algebraic
Riccati Equation [8], [9] and convex semi-definite program
formulations [10]. However, such methods are not easily
adaptable to the simulation-based model-free setting.

Besides the desired stability constraint, other requirements
such as robustness and risk sensitivity constraints also play
an important role in the design of controllers for safety-
critical control systems. Indeed, system perturbations, model-
ing imprecision, and adversarial uncertainty are ubiquitous in
control systems and may lead to severe degradation in perfor-
mance [11], [12]. Robustness constraints can be incorporated
into control design via different approaches including using
statistical models for disturbances such as for linear quadratic
Gaussian design, adopting a game theory perspective via
designing ‘minimax’ controllers and incorporating an H∞
norm bound of input-output operators as in H∞ control [13].
Classical linear models for robust control include the LQ
disturbances attenuation problem and the linear exponential
quadratic Gaussian problem which are well-known to be
equivalent to zero-sum LQ games [13], [14], [15]. Besides its
relevance for robust control problem formulation, zero-sum
LQ games also constitute a benchmark problem for multi-
agent continuous control problems involving two competing
agents. However, solving this problem faces (at least) two
distinct challenges requiring to deal with (a) a constrained
nonconvex-nonconcave problem and (b) lack of coercivity,
unlike for the classic LQR problem for which descent over
the objective ensures feasibility and stability of the iterates
during learning.

While the formulation of zero-sum LQ games dates back
at least to the seventies [15]*, the sample complexity anal-
ysis of model-free policy gradient algorithms solving this
problem was only recently explored in the literature [1].
More precisely, Zhang et al. [1] showed that an ϵ-Nash
equilibrium of finite horizon zero-sum LQ games can be
learned via nested model-free Natural Policy Gradient (NPG)
algorithms with polynomial sample complexity in the accu-
racy ϵ. Interestingly, the aforementioned algorithms enjoy
an Implicit Regularization (IR) property which maintains

*This formulation is under the continuous-time setting.
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the robustness of the controllers during learning [1], [14].
In particular, the iterates of the algorithms are guaranteed
to stay in some feasible set where the worst-case cost is
finite without using any explicit regularization or projection
operation. In the present work, we show that significantly less
samples are required to guarantee both the IR property and
the convergence to an ϵ-Nash equilibrium of the zero-sum LQ
games problem while only having access to ZO information.
Our contributions can be summarized as follows:
Contributions. Our main result states that our derivative-free
nested policy gradient algorithm requires Õ(ϵ−3) samples to
reach an ϵ-neighborhood of the Nash equilibrium (NE) of
the zero-sum LQ games problem, improving over the best-
known-so-far Õ(ϵ−9)† total sample complexity established
in [1]. We also show that our algorithm enjoys the IR
property upon choosing adequate values for ZO estimation
parameters such as the batch sizes and the perturbation radius
which are less restrictive compared to prior work [1]. Our
improvement follows from (a) a simpler algorithm design
reducing the number of calls to the inner-loop maximizing
procedure, (b) a better sample complexity to solve the
inner maximization problem and (c) an improved sample
complexity for solving the resulting minimization problem
in our outer-loop procedure using a careful decomposition
of the estimation error caused by policy gradient estimation.
We further improve the sample complexity to Õ(ϵ−2) using
a two-point ZO estimator under a stronger sampling assump-
tion.
Paper organization. The rest of this paper is structured as
follows. In section II, we discuss related work. In section III,
we introduce the stochastic zero-sum LQ games problem
together with useful background. We present our model-free
nested natural policy gradient algorithm to solve the problem
in section IV and section V presents our main results along
with a proof sketch to highlight the key steps leading to
sample complexity improvement. In Section VI, we further
validate our results by numerical simulations. We conclude
this paper with possible future directions. The proofs of our
results and the detailed version of some results are deferred
to an extended version [16].

II. RELATED WORK

Policy optimization for LQ problems. Compared to zero-
sum LQ games, policy optimization for single-agent LQ
problems is a well-understood topic. Theoretical guarantees
for model-based and model-free algorithms searching for the
optimal policy were established in [5] for the discrete-time
infinite-horizon setting. Several subsequent works improved
over the polynomial sample complexity in [5] using single
and two-point ZO estimation [17], [18]. Additionally, the LQ
model has been studied under different settings including
finite-horizon [19] and continuous-time [20], [21], [22].
First-order methods have also been recently investigated for
solving LQR [23], [24]. Bu et al. [25] provided conver-
gence analysis for possibly indefinite infinite-horizon LQR

†Notice that the total sample complexity was not provided in [1] but
can be easily derived from their results, see Remark 4 for more details.

problems. Guo et al. [26] designed Goldstein subdifferential
algorithms to solve the nonsmooth H∞ control problem and
left sample complexity analysis in the model-free setting as
an important future direction. Other related problems include
Markovian jump systems [27], output control design [20] ,
decentralized control [28] and nonlinear dynamics [29]. In-
terested readers are referred to the thorough review paper [3]
on policy optimization methods for learning control policies.
Zero-sum LQ games and beyond. Recent research efforts
have been devoted to studying the more challenging zero-
sum LQ games problem [14], [30], [31], [1]. Zhang et
al. [30] proposed projected nested gradient-based algorithms
in which the projection step is difficult to implement in
practice. Later, Bu et al. [31] removed the projection step,
but their analysis requires access to the exact solution of the
inner maximization problem and cannot be easily extended to
the model-free case. Meanwhile, Zhang et al. [14] introduced
a nested natural gradient-based algorithm that demonstrates
the IR property for the infinite-horizon H2/H∞ control
problem in the model-based case. In the model-free setting,
Al-Tamimi et al. [32] proposed a Q-learning-based method
to solve zero-sum LQ games without providing a sample
complexity analysis. In the context of mean-field games,
counterparts of LQR and zero-sum LQ games were devel-
oped in [33], [34], where the formulation of mean-field zero-
sum LQ games reduces to two zero-sum LQ games problems.
Recently, a N -player general-sum game formulation of LQR
was studied in [35], [36], [37]. However, such a problem in
the 2-player case is different from our zero-sum formulation.

III. PRELIMINARIES

Notations. For any matrix M ∈ Rn×n, we denote by ∥M∥
and ∥M∥F its operator and Frobenius norms respectively.
The spectral radius of a matrix M is denoted by ρ(M) and
a matrix is said to be (Schur) stable if ρ(M) < 1, i.e.,
all the absolute values of the eigenvalues of the matrix M
are (strictly) smaller than 1. The smallest eigenvalue of
a symmetric matrix M is denoted by λmin(M). For N
diagonal matrices Xi for i ∈ {0, · · ·N − 1} for some
integer N ≥ 1, the block-diagonal matrix with diagonal
entries X0, · · · , XN−1 is denoted by diag(X0−(N−1)). The
uniform distribution over a set S is denoted as Unif(S).
Stochastic Zero-Sum Linear Quadratic Dynamic Games.
We consider the zero-sum LQ games problem (following the
exposition in [1]) where the system state evolves as follows:

xh+1 = Ahxh +Bhuh +Dhwh + ξh, h ∈ {0, · · · , N − 1},
(1)

where N is a finite nonzero horizon, x0 ∈ Rm is an initial
random state and where for any stage h ∈ {0, · · · , N − 1},
xh ∈ Rm is the system state, uh ∈ Rd and wh ∈ Rn are
the control inputs of the min and max players respectively‡

and ξh is a random variable describing noisy perturbations to

‡These controls depend on the history of state-control pairs at each
time step h for now, stationary control policies will be sufficient as will be
mentioned later on.
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the system while Ah, Bh, Dh are (possibly) time-dependent
system matrices with appropriate dimensions.

Assumption 1: The initial state x0 and the noise ξh for
h ∈ {0, · · · , N − 1} are independent random variables
following a distribution with zero-mean and positive-definite
covariance. Moreover, there exists a positive scalar ϑ such
that for all h ∈ {0, · · · , N − 1}, ∥x0∥ ≤ ϑ and ∥ξh∥ ≤ ϑ
almost surely.§

Our objective is to solve the following zero-sum game:

inf
(uh)

sup
(wh)

Eξξξ

[
N−1∑
h=0

(x⊤
hQhxh + u⊤

hR
u
huh − w⊤

h R
w
hwh) + cN

]
(2)

where cN := x⊤
NQNxN and ξξξ :=

[
x⊤
0 , ξ

⊤
0 , · · · , ξ⊤N−1

]⊤
and the system states follow the linear time-varying system
dynamics described in (1) and for every h ∈ {0, · · · , N −
1}, Qh ⪰ 0, Ru

h, R
w
h ≻ 0 are symmetric matrices defining the

quadratic objective. In view of our robust control motivation,
the two players can be seen as a min controller and a max
disturbance. Under standard assumptions which we do not
mention here for brevity¶, the saddle-point control policies
solving (2) are unique and have the linear state-feedback
form. Thus, we can restrict our search to gain matrices Kh ∈
Rd×m and Lh ∈ Rn×m such that the controls are given
by uh = −Khxh, wh = −Lhxh for h ∈ {0, · · · , N − 1}.
Therefore, we will mainly focus on solving the following
min-max policy optimization problem resulting from (2):

min
(Kh)

max
(Lh)

Eξξξ

[
N−1∑
h=0

x⊤
hMhxh + cN

]
, (3)

where Mh := Qh + K⊤
h Ru

hKh − L⊤
hR

w
hLh and the sys-

tem state follows the dynamics xh+1 = (Ah − BhKh −
DhLh)xh + ξh for h ∈ {0, · · · , N − 1} .

a) Compact reformulation: To simplify the exposition
and our analysis, we rewrite problem (3) under a more
compact form following the reformulation proposed in [1].
Consider the following notations:

xxx := [x⊤
0 , · · · , x⊤

N ]⊤,uuu := [u⊤
0 , · · · , u⊤

N−1]
⊤,

www := [w⊤
0 , · · · , w⊤

N−1]
⊤, ξξξ = [x⊤

0 , ξ
⊤
0 , · · · , ξ⊤N−1]

⊤,

AAA :=

[
000m×mN 000m×m

diag(A0−(N−1)) 000mN×m

]
, QQQ := diag(Q0−N ),

DDD :=

[
000m×nN

diag(D0−(N−1))

]
, BBB :=

[
000m×dN

diag(B0−(N−1))

]
,

RRRu := diag(Ru
0−(N−1)), RRR

w := diag(Rw
0−(N−1)),

KKK :=
[
diag(K0−(N−1)) 000dN×m

]
, (4)

LLL :=
[
diag(L0−(N−1)) 000nN×m

]
. (5)

We denote by S1 ⊂ RdN×m(N+1) and S2 ⊂ RnN×m(N+1)

the matrix subspaces induced by the sparsity patterns de-
scribed in (4), (5) for the gain matrices KKK and LLL respec-
tively. The subspaces S1, S2 where we search for the NE

§The almost sure boundedness can be relaxed to consider sub-Gaussian
distributions as noticed in prior work [17], [38].

¶See Assumption 2.4 in [1] for instance and the explanations in
Remark 2.5 therein for further details, see also [13].

solution (KKK∗,LLL∗), are of dimensions dKKK := dmN and
dLLL := nmN respectively. Then, problem (3) can be rewritten
as:

min
KKK∈S1

max
LLL∈S2

G(KKK,LLL) := Eξξξ[xxx
⊤(QQQ+KKK⊤RRRuKKK −LLL⊤RRRwLLL)xxx] ,

(6)
where the transition dynamics are described by xxx = AAAxxx +
BBBuuu +DDDwww + ξξξ = (AAA − BBBKKK −DDDLLL)xxx + ξξξ. Notice that our
search for gain matrices KKK,LLL is restricted to the matrices of
the form described in (4), (5) as this set of sparse matrices
is sufficient to find the NE we are looking for. For any gain
matrices KKK and LLL, we can rewrite the objective function
value G(KKK,LLL) as follows:

G(KKK,LLL) = Eξξξ[Gξξξ(KKK,LLL)] = Tr(PPPKKK,LLLΣΣΣ0)

= Tr
(
(QQQ+KKK⊤RRRuKKK −LLL⊤RRRwLLL)ΣΣΣKKK,LLL

)
,

where Gξξξ(KKK,LLL) := ξξξ⊤PPPKKK,LLLξξξ, ΣΣΣ0 := Eξξξ[ξξξξξξ
⊤] ≻ 0

(see Assumption 1) and the matrices PPPKKK,LLL, ΣΣΣKKK,LLL :=
Eξξξ[diag(x0x

⊤
0 , · · · , xNx⊤

N ] are the unique solutions to the
recursive Lyapunov equations

PPPKKK,LLL = AAA⊤
KKK,LLLPPPKKK,LLLAAAKKK,LLL +QQQ+KKK⊤RRRuKKK −LLL⊤RRRwLLL,

(7)
ΣΣΣKKK,LLL = AAAKKK,LLLΣΣΣKKK,LLLAAA

⊤
KKK,LLL +ΣΣΣ0 , (8)

where AAAKKK,LLL := AAA −BKBKBK −DLDLDL. The objective G(KKK,LLL) is
nonconvex-nonconcave in general (see Lemma 3.1 in [1]).
From the above compact formulation, we observe that the
finite-horizon case can be seen as a special case of infinite-
horizon zero-sum LQ games with special constraints on
sparsity patterns of matrices defined in (4), (5). Using this
perspective, the time-varying case where model parameters
such as Ah, Bh vary over h ∈ {0, · · · , N − 1} is included
in the compact formulation as shown in [1].

b) Policy Gradients.: The gradients of G w.r.t. KKK,LLL
(see [1]) are given by the following expressions:

∇KKKG(KKK,LLL) = 2FFFKKK,LLLΣΣΣKKK,LLL , (9)

FFFKKK,LLL := (RRRu +BBB⊤PPPKKK,LLLBBB)KKK −BBB⊤PPPKKK,LLL(AAA−DLDLDL) ,

∇LLLG(KKK,LLL) = 2EEEKKK,LLLΣΣΣKKK,LLL , (10)

EEEKKK,LLL := (−RRRw +DDD⊤PPPKKK,LLLDDD)LLL−DDD⊤PPPKKK,LLL(AAA−BKBKBK) .

If PPPKKK,LLL ⪰ 0 and RRRw − DDD⊤PPPKKK,LLLDDD ≻ 0 for a stationary
point (KKK,LLL) of G, then this stationary point is the unique
NE of the game (see Lemma 3.2 in [1]).

Remark 1: In our finite-horizon scenario, ρ(AAAKKK,LLL) = 0
since AAAN+1

KKK,LLL = 0. This means that the pair (K,LK,LK,L) defined in
(4)-(5) is always stable. This property leads to the existence
and uniqueness of the solution of the Lyapunov equation.

IV. NESTED DERIVATIVE-FREE NATURAL POLICY
GRADIENT (NPG) ALGORITHM

In this section, we present our model-free and derivative-
free nested NPG algorithm inspired from the recent work [1].
We start with the deterministic exact version of the algorithm
assuming access to exact natural policy gradients.
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A. Exact Nested NPG Algorithm

To prepare the stage for the model-free setting, we briefly
introduce the nested NPG algorithm in the deterministic
setting, i.e., when we have access to the policy gradients
w.r.t. both control variables KKK,LLL as reported in (9). This
algorithm was considered for example in [1] and we follow
a similar exposition in this subsection. We first solve the
inner maximization problem in (6) for any fixed control
gain matrix KKK to obtain a solution LLL(KKK) before solving the
outer-loop minimization problem with the resulting objec-
tive G(KKK,LLL(KKK)). The following proposition that we report
here from Lemma 3.3 in [1] guarantees that there exists a
unique solution LLL(KKK) to the inner maximization problem
whenever the control gain matrix KKK lies in a set which is
known to contain the optimal control gain matrix solving the
min-max problem.

Lemma 1: (Inner-loop well-definedness condition [1])
Consider the Riccati equation

PPPKKK,LLL(KKK) =QQQ+KKK⊤RRRuKKK +AAA⊤
KKKP̃PPKKK,LLL(KKK)AAAKKK , (11)

where AAAKKK := AAA − BKBKBK and P̃PPKKK,LLL(KKK) := PPPKKK,LLL(KKK) +
PPPKKK,LLL(KKK)DDD(RRRw−DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK) and define
the set

K :=
{
KKK ∈ S1 |(11) admits a solution PPPKKK,LLL(KKK) ⪰ 0,

and RRRw −DDD⊤PPPKKK,LLL(KKK)DDD ≻ 0
}
. (12)

Then, for any KKK ∈ K, there exists a unique solution LLL(KKK)
to the inner maximization problem in 6 given by

LLL(KKK) = (−RRRw +DDD⊤PPPKKK,LLL(KKK)DDD)−1DDD⊤PPPKKK,LLL(KKK)(AAA−BKBKBK).

Moreover, for any KKK ∈ K and any LLL ∈ S2, PPPKKK,LLL ⪯
PPPKKK,LLL(KKK) .

We are now ready to introduce the nested NPG algo-
rithm which can be written as follows using positive step-
sizes τ1, τ2 and indices k ≥ 0, t ≥ 0 for the inner and outer
loops respectively:

Inner loop: LLLk+1 = LLLk + τ1EEEKKKt,LLLk
, k = 0, 1, . . . (13)

Outer loop: KKKt+1 =KKKt − τ2FFFKKKt,LLL(KKKt), t = 0, 1, . . . (14)

With the choice of natural policy gradients, careful choice
of inner-loop problem accuracy ϵ1, and the deployment of
the nested structure, our algorithm achieves an important
IR effect: The iterates remain in the feasible set defining
admissible stable controls without any explicit regularization
of the problem, as shown in [1]. Maintaining the feasibility
of the iterates during learning is important since it translates
to preserving the robustness of the controllers in the face
of adversarial perturbations. More formally, it was shown in
Theorem 3.7 in [1] that (a) the sequence (PPPKKKt,LLL(KKKt))t is
well-defined, satisfies the conditions in (12) for every t ≥ 0
and is (most importantly) non-increasing and bounded below
in the sense of positive definiteness; and as a consequence (b)
for every t ≥ 0,KKKt ∈ K when KKK0 ∈ K.

B. Derivative-Free Nested NPG Algorithm

In this section, we describe our algorithm to solve prob-
lem (6) in the model-free setting where we do not have
access to exact gradients. In this setting for which system
parameters are unknown, namely AAA,BBB,DDD,QQQ,RRRu,RRRw, we
can simulate system trajectories, (xh)h=0,··· ,N , using a pair
of control gain matrices (KKK,LLL) and we have access to
ZO information consisting of the (stochastic) cost Gξξξ(KKK,LLL)
incurred by this pair of controllers. In Algorithms 1 and 2,
we denote by (1P) and (2P) the single-point and two-point
ZO estimation procedures respectively.
Inner loop ZO-NPG algorithm (see Algorithm 1). In
the light of the update rule (13) in the deterministic exact
setting, for any fixed matrix KKK and any time index k,
we replace the gradient ∇LLLG(KKK,LLLk) and the covariance
matrix ΣΣΣKKK,LLLk

by ZO estimates denoted as ∇̃LLLG(KKK,LLLk)

and Σ̃ΣΣKKK,LLLk
respectively. A brief pseudocode of the inner-loop

algorithm is described in Algorithm 1. Its detailed sampling
and computation procedures can be found in Algorithm 1
of [1] and hence omitted here.

Algorithm 1 Model-free Inner-loop ZO-NPG Algorithm

Input: Given KKK ∈ K and LLL0, number of iterations Tin,
stepsize τ1, sample size M1, perturbation radius r1.

Output: LLLTin

1: for k = 0, 1, · · · , Tin do
2: Sample trajectories and estimate gradients and covari-

ance matrices using (1P)/(2P) ZO estimation.
3: Update LLLk+1 = LLLk + τ1ẼEEKKK,LLLk

where

ẼEEKKK,LLLk
:=

1

2
∇̃LLLG(KKK,LLLk)Σ̃ΣΣ

−1

KKK,LLLk

4: end for

Outer loop ZO-NPG (see Algorithm 2). Similarly to
the inner loop procedure, we now replace the unknown
quantities ∇KKKG(KKKt,LLL(KKKt)) and ΣΣΣKKKt,LLL(KKKt) in (14) by ZO
estimates. As for the exact solution LLL(KKKt) to the inner
maximization problem, we use the output of the inner loop
ZO-NPG algorithm instead. Notice that the zeroth-order
single-point estimate ∇̃KKKG(KKK,LLL) as defined in Algorithm 2
is an unbiased estimate of the gradient of the smoothed ob-
jective Gr in the sense that: E[∇̃KKKG(KKK,LLL)] = ∇KKKGr(KKK,LLL),
Gr(KKK,LLL) := E[G(KKK + r2VVV ,LLL)], where VVV is uniformly
sampled on a unit ball in S2.
Comparison to the derivative free NPG algorithm in [1].
We would like to point out here an important difference
between our proposed algorithm and the zeroth order NPG
algorithm in [1] which inspired this work. This difference
lies in the outer loops of the algorithms: namely comparing
Algorithm 2 and Algorithm 2 in [1]. In their work, at each
time step t of the outer loop, Algorithm 1 (which provides an
approximate solution of the maximization problem) is called
for each perturbation KKKm

t (for m = 0, · · · ,M2 − 1) of the
control gain matrix KKKt (see step 6: in their Algorithm 2) in
order to control the gradient estimation error. In contrast to
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their work, observe that we only call Algorithm 1 once at
each outer loop iteration t in Algorithm 2 and use the approx-
imate maximizer LLLt to compute our zeroth order estimates
for updating the control gain matrix sequence (KKKt). This ob-
servation is crucial for our sample complexity improvement
as will be discussed in the next section.

Remark 2: The single-point estimation [39] might suffer
high variance for a small smoothing radius r. We can reduce
the variance and hence the sample complexity by using two-
point estimation.

Algorithm 2 Outer-loop Nested Natural Policy Gradient

Input: KKK0 ∈ K, number of iterations T , sample size M2,
perturbation radius r, stepsize τ2, horizon N , dimension
dKKK = dmN .

Output: KKKout =KKKi where i ∼ Unif({0, · · · , T − 1}).
1: for t = 0, 1, · · · , T do
2: Call Algorithm 1 to obtain LLLt.
3: for m = 0, 1, · · · ,M2 − 1 do
4: Sample policies

• (1P): Sample KKKm
t = KKKt + rVVV m where VVV m is

uniformly drawn from S1 with ∥VVV m∥F = 1.
• (2P): Sample KKK1,m

t =KKKt+rVVV m, KKK2,m
t =KKKt−

rVVV m where VVV m is uniformly drawn from S1 with
∥VVV m∥F = 1.

5: Simulate trajectories
• (1P): Simulate a first trajectory using control

(KKKm
t ,LLLt) for horizon N under one realization

of noises ξξξm and collect the cost Gξξξm(KKKm
t ,LLLt).

• (2P): Simulate two trajectories using controls
(KKK1,m

t ,LLLt) and (KKK2,m
t ,LLLt) for horizon N under

the same realization of noises ξξξm and collect
Gξξξm(KKK1,m

t ,LLLt), Gξξξm(KKK2,m
t ,LLLt) .

6: Simulate another independent trajectory using con-
trol (KKKt,LLLt) for horizon N starting from x0,m and
compute

Σ̃ΣΣ
m

KKKt,LLLt
= diag

(
x0,mx⊤

0,m, · · · , xN,mx⊤
N,m

)
7: end for
8: Update KKKt+1 = KKKt − τ2∇̃KKKG(KKKt,LLLt)Σ̃ΣΣ

−1

KKKt,LLLt
where

∇̃KKKG(KKKt,LLLt) equals

(1P):
1

M2

M2−1∑
m=0

dKKK
r

Gξξξm(KKKm
t ,LLLt)VVV m,

(2P):

1

M2

M2−1∑
m=0

dKKK
2r

(
Gξξξm(KKK1,m

t ,LLLt)− Gξξξm(KKK2,m
t ,LLLt)

)
VVV m,

and Σ̃ΣΣKKKt,LLLt
= 1

M2

∑M2−1
m=0 Σ̃ΣΣ

m

KKKt,LLLt
.

9: end for

V. SAMPLE COMPLEXITY ANALYSIS

In this section, we analyze the sample complexity of
the algorithm introduced in Section IV, i.e., the number

of samples of system trajectories required to reach an ϵ-
neighborhood of the NE.

When using estimated natural gradients, the monotonicity
of the sequence (PPPKKKt,LLL(KKKt))t≥0 is violated and the iter-
ates (KKKt) are no longer guaranteed to lie in the set K as we
previously described in Section IV-A for the deterministic
counterpart of the algorithm. In the following, we consider a
subset K̂ of K for which we prove that IR holds (with high
probability) similarly to the result we reported in Lemma 1
for good enough ZO estimates as we shall precisely state
later in this section. Consider an initial point KKK0 ∈ K and
define the set

K̂ :=

{
KKK ∈ S1 | (11) admits a solution PPPKKK,LLL(KKK) ⪰ 0

and PPPKKK,LLL(KKK) ⪯ PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥2
· III

}
,

(15)

where HHHKKK,LLL := RRRw −DDD⊤PPPKKK,LLLDDD. Notice that K̂ ⊂ K since

RRRw −DDD⊤PPPKKK,LLL(KKK)DDD

⪰ RRRw −DDD⊤(PPPKKK0,LLL(KKK0) +
λmin(HHHKKK0,LLL(KKK0))

2∥DDD∥2
· III)DDD

⪰
λmin(HHHKKK0,LLL(KKK0))

2
· III ≻ 0. (16)

As can be observed from (15), we need to control the
error induced by the inner loop solver which provides an
approximation of LLL(KKK) in order to show the recurrence of
the iterates KKKt in the set K̂ with high probability. This
inner maximization problem which takes the form of an
LQR problem has been previously addressed in the literature
in several works using for example a gradient ascent or a
natural gradient ascent algorithm in both model-based and
model-free settings [5], [1], [17]. We report in the next result
an informal version of Theorem 4.1 in [1] for the inner
maximization problem in view of deriving the total sample
complexity of our nested algorithm.

Lemma 2: (Inner-loop sample complexity [1])
Let δ1, ϵ1 ∈ (0, 1) and let KKK ∈ K. Using Õ(ϵ−2

1 log δ−1
1 )

samples, Algorithm 1 outputs with probability at least 1−δ1
a control gain matrix LLL satisfying: G(KKK,LLL(KKK))−G(KKK,LLL) ≤
ϵ1, ∥LLL(KKK)−LLL∥F ≤

√
λ−1
min(HHHKKK,LLL(KKK)) · ϵ1.

Remark 3: This Õ(ϵ−2
1 ) sample complexity reported in

Lemma 2 can be further improved to Õ(ϵ−1
1 ) using ZO two-

point estimation [40].
It follows from Lemma 2 that any control gain matrix LLL

produced by Algorithm 1 lies in the following bounded set:

L̂ :=
{
LLL ∈ S2 | ∥LLL(KKK)−LLL∥F ≤ H, KKK ∈ K̂

}
, (17)

H := sup
KKK∈K̂

λ−1
min(HHHKKK,LLL(KKK)) ≤ 2λ−1

min(HHHKKK0,LLL(KKK0)).

Using the sets K̂ and L̂ respectively defined in (15)
and (17), we are now ready to state the IR of our model-
free nested natural gradient algorithm w.r.t. both control
gain matrices KKK and LLL. More specifically, we will prove
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that the pair of iterates (KKKt,LLLt) generated by Algorithms 1
and 2 will be maintained in the bounded set K̂ × L̂ with
high probability for every t if we properly choose the batch
sample size M2, the smoothing radius r and the inner-loop
accuracy ϵ1. Before stating the IR result, we state some
nice Lipschitzness properties over the set K̂ × L̂ that will
contribute to our analysis.

Proposition 1: Let KKK0 ∈ K and consider the correspond-
ing set K̂. For any (KKK,LLL) ∈ K̂ × L̂, KKK ′ ∈ K,LLL′, there exist
positive constants D1, D2 such that if ∥KKK ′ − KKK∥ ≤ D1,
∥LLL′−LLL∥ ≤ D2, then there exist positive constants l1, l2 such
that ∥FFFKKK′,LLL−FFFKKK,LLL∥ ≤ l1∥KKK ′−KKK∥, and ∥FFFKKK,LLL′−FFFKKK,LLL∥ ≤
l2∥LLL′ −LLL∥. Similar results also hold when replacing FFFKKK,LLL

by EEEKKK,LLL,ΣΣΣKKK,LLL, and PPPKKK,LLL.

The smoothness and continuity over the set K̂ × L̂ naturally
motivate us to borrow the ideas from stochastic optimization.
In particular, it is tempting to follow the analysis of stochastic
nested algorithms for global Lipschitz smooth functions, see
for instance [41]. Unfortunately, such analysis is not directly
applicable since the properties stated in Proposition 1, only
hold locally within the set K̂ × L̂, therefore one needs
to ensure that the iterates of Algorithm 2 remain in this
set. This can be achieved by controlling the value ma-
trix PPPKKK,LLL(KKK) along the iterations. When the exact (natural)
gradients are available, [1] utilize this idea to show that the
sequence (PPPKKKt,LLL(KKKt)) is monotone along the trajectory in
the positive semi-definite sense and refer to this property as
implicit regularization. However, in the case when the esti-
mated gradients (from ZO estimation) are used, the situation
is more challenging. Such sequence is no longer monotone
and the deviation from monotonicity must be controlled.

In the following, we state one of our key technical results,
which ensures that the iterates will remain in the set K̂ × L̂
with high probability. The key technical improvement over
the similar result in Theorem 4.2 of [1] is that we require
a much smaller number of samples for achieving this. This
improvement is crucial for achieving our better total sample
complexity stated in Theorems 1 and 2.

Proposition 2: (Implicit regularization using single-point
estimation) Let Assumption 1 hold. LetKKK0 ∈ K and consider
the corresponding K̂ set defined in (15). For any δ1 ∈
(0, 1), ϵ1 > 0 and for any KKK ∈ K, Algorithm 1 with
single-point estimation outputs LLL such that G(KKK,LLL(KKK)) −
G(KKK,LLL) ≤ ϵ1 with probability at least 1 − δ1 using M1 =
Õ(ϵ−2

1 ) samples. Moreover for any δ2 ∈ (0, 1) and any
integer T ≥ 1, if the estimation parameters in Algorithm 2
satisfy M2 = Õ

(
T 2

)
, τ2 = O(1), r2 = O(T−1/2), ϵ1 =

O(T−1), δ1 = O(δ2/T ), then, it holds with probability at
least 1− δ2 that KKKt ∈ K̂ for all t = 1, · · · , T .

Proof: The key step in the proof is a descent-like
inequality for the value matrix sequence (PPPKKKt,LLL(KKKt)) (in
the positive semi-definite sense) which holds with high

probability :

PPPKKKt+1,LLL(KKKt+1) −PPPKKKt,LLL(KKKt)

⪯ τ2(c1 · r22 + c2 · ϵ1 + c3 · ∥V (F̃FFKKKt,LLLt
)∥) · I

− τ2
4
FFF⊤

KKKt,LLL(KKKt)
FFFKKKt,LLL(KKKt) (18)

where c1, c2, c3 are positive constants and V (F̃FFKKKt,LLLt
) :=

(F̃FFKKKt,LLLt
− E[F̃FFKKKt,LLLt

])⊤(F̃FFKKKt,LLLt
− E[F̃FFKKKt,LLLt

]). From (18),
we can observe that the deviation can be upperbounded by
three sources of estimation errors: a O(r22) bias term induced
by the ZO estimate, the inner-loop error ϵ1, and a variance-
like term induced by the ZO estimation procedure. Hence, the
deviation can be controlled by choosing ϵ1 = O(1/T ), r2 =

O(T−1/2) and a large enough M2 such that V (F̃FFKKKt,LLLt
) =

O(1/T ). This control allows to show that KKKt+1 can be kept
in K̂ for t = 0, · · · , T − 1. Inequality (18) follows from the
Lipschitzness properties in Proposition 1 and borrows ideas
from the analysis of stochastic double-loop algorithms for
functions with similar curvature properties such as Lipschitz
smoothness and continuity (see supplementary material of
[41], for example).

Theorem 1: Under the setting of Proposition 2, for every
integer T ≥ 1, it holds with probability at least 1− δ2 that

1

T

T−1∑
t=0

∥FFFKKKt,LLL(KKKt)∥
2
F = O

(
1

T

)
.

In other words, Algorithm 2 reaches with high probability an
ϵ-stationary point (i.e., ∥FFFKKKout,LLL(KKKout)∥2F ≤ ϵ) and hence an
ϵ-neighborhood of the NE|| with a total sample complexity
given by T (TinM1 +M2) = Õ(ϵ−3).

Proof: The convergence rate result follows from mul-
tiplying (18) by Σ0, taking the trace, and computing the
telescoping sum.

Remark 4: Our Õ(ϵ−3) total sample complexity result
improves over the Õ(ϵ−9) sample complexity shown in [1].
The improvement of our algorithms comes from three el-
ements: (a) we have a looser requirement for the inner-
loop problem accuracy ϵ1 = O(T−1) while in [1] ϵ1 =
O(T−2); (b) we achieve a better sample complexity for
the outer-loop problem using a more careful decomposition
of the estimation error caused by the estimated natural
gradients: we only require r2 = O(T−1/2) while [1] chose
r2 = O(T−1) and (c) we reduce the number of inner-
loop algorithm calls with a more natural version of the
model-free nested algorithm (see the comparison at the end
of Section IV). Hence the outer-loop sample complexity is
improved from O(ϵ−5) to TM2 = Õ(ϵ−3). Combining all of
these three elements, we improve the total sample complexity
provided in [1] which is given by: T (TinM1M2+TinM1) =
O(ϵ−9)**.

||Here the correspondence between stationary point and NE can be
found in Lemma 3.2 of [1].

**Notice that the total sample complexity for inner and outer loops
together was not explicitely stated in [1], but can be inferred from their
intermediate results.
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In the following theorem, we utilize the two-point zeroth
order estimation method which enjoys smaller variance and
hence leads to improved sample complexity.

Theorem 2: (Sample complexity using two-point estima-
tion) Let Assumption 1 hold. Let KKK0 ∈ K and consider
the corresponding set K̂ defined in (15). For any δ1 ∈
(0, 1), ϵ1 > 0 and for any KKK ∈ K, Algorithm 1 with
two-point estimation outputs LLL such that G(KKK,LLL(KKK)) −
G(KKK,LLL) ≤ ϵ1 with probability at least 1 − δ1 us-
ing M1 = Õ(ϵ−1

1 ) samples. Moreover for any δ2 ∈ (0, 1)
and any integer T ≥ 1, if the estimation parameters in
Algorithm 2 satisfy M2 = Õ

(
T
)
, τ2 = O(1), r2 =

O(T−1/2), ϵ1 = O(T−1), δ1 = O(δ2/T ). Then, it holds
with probability at least 1 − δ2 that KKKt ∈ K̂ for all
t = 1, · · · , T and 1

T

∑T−1
t=0 ∥FFFKKKt,LLL(KKKt)∥2F = O

(
1
T

)
. In

other words, Algorithm 2 returns an ϵ-stationary point (i.e.,
∥FFFKKKout,LLL(KKKout)∥2F ≤ ϵ) after O(ϵ−1) iterations. The total
sample complexity is given by T (Tin M1 +M2) = Õ(ϵ−2).

Remark 5: (Two-point estimation) To obtain Theorem 2,
we assume to have access to cost values at two different con-
trollers KKK1

t and KKK2
t under the same realization of noise ξξξm.

This assumption can be limiting since it implies that ξξξm is
generated in advance. Recently developed techniques of first-
order estimation for single agent LQR (instead of ZO) [23]
might help to avoid this assumption in the future.

VI. SIMULATIONS

In this section, we present simulation results†† to further
validate our contribution. We mainly present simulation
results to show that (i) Algorithm 2 in [1] (benchmark
algorithm) and Algorithm 2 converge when solving the same
zero-sum LQ game using the same set of algorithm param-
eters; (ii) Algorithm 2 is more sample-efficient compared to
the benchmark algorithm.

a) Simulation setup: All the experiments are executed
with Python 3.8.5 on a high-performance computing cluster
where the reserved memory for executing experiments is
2000 MB. For the sake of comparison, we adopt the same
set of model parameters as [1]. Here we repeat the setting for
completeness. We use single-point zeroth-order estimation in
the following simulations. The horizon length H is set to 5
and At = A, Bt = B, Dt = D, Qt = Q, Ru

t = Ru, and
Rw

t = Rw, where

A =

 1 0 −5
−1 1 0
0 0 1

 , B =

 1 −10 0
0 3 1
−1 0 2

 ,

D =

0.5 0 0
0 0.2 0
0 0 0.2

 , Q =

 2 −1 0
−1 2 −1
0 −1 2

 ,

Ru =

 4 −1 0
−1 4 −2
0 −2 3

 , Rw = 5 · I.

††The codes can be found at https://github.com/wujiduan/
Zero-sum-LQ-Games.git.
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Fig. 1: Comparison between Algorithm 2 and the benchmark algorithm when using a
fixed number of inner-loop iterations, exact inner-loop natural gradient, and estimated
outer-loop natural gradients with M2 = 5 × 105, τ1 = 0.1, τ2 = 2 ×
10−3, and r2 = 0.02. In the figure, we show the convergence in terms of
T−1 ∑T−1

t=0 ∥FFFKKKt,LLL(KKKt)
∥2
F .

Using the Nash equilibrium solution (KKK∗,LLL∗) of the above
game, we have G(KKK∗,LLL∗) ≈ 3.2330 and λmin(HHHKKK∗,LLL∗) ≈
4.2860. For the purpose of comparison, we choose the same
set of parameters for both the benchmark algorithm and
Algorithm 2 in this paper. We choose ΣΣΣ0 = 0.05 · I , and
default values of other parameters are as follows r2 = 0.08,
M2 = 5× 105, ϵ1 = 10−4, τ1 = 0.1, τ2 = 4.67× 10−4,

KKK0 =
[
diag(K,K,K,K,K) 00015×3

]
,

K :=

−0.08 0.35 0.62
−0.21 0.19 0.32
−0.06 0.10 0.41

 , LLL0 = 00015×18.

b) Sample complexity improvement: In the implemen-
tation of Algorithm 2, we adopt a constant number Tin

with default value 10 of inner-loop iterations instead of
assuming access to ϵ1 to determine when to terminate the
inner-loop iterations‡‡. In Figure 1, our algorithm shows a
comparable convergence rate compared to the benchmark al-
gorithm when using exact inner-loop natural gradients. These
results indicate that Algorithm 2 is more sample-efficient
than the benchmark algorithm. Indeed, in the benchmark
algorithm, an inner-loop problem needs to be solved using
samples at each sample step m = 0, · · · ,M2−1, which will
demand many more samples to solve inner-loop problems
when the exact inner-loop solutions are not accessible. Hence
the comparable rates imply the advantage of our algorithm
compared with the benchmark algorithm.

VII. CONCLUSION

In this work, we showed a Õ(ϵ−3) sample complexity
for a derivative-free nested natural policy gradient algo-
rithm for solving the stochastic zero-sum linear quadratic
dynamic game problem, improving over prior work. We
further improved this sample complexity to Õ(ϵ−2) using
zeroth order two-point estimation. Possible future research
directions include (a) extending our analysis to continuous-
time and infinite-horizon settings beyond our finite-horizon
setting using techniques such as sensitivity analysis for stable

‡‡In the implementation of the benchmark algorithm, we assume exact
access to the solution of the inner-loop problem given each perturbed KKKm

t ,
i.e., LLL(KKKm

t ) m = 0, · · · ,M2 − 1 for the efficiency of the simulations.
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continuous-time Lyapunov equations [42], (b) improving the
dependence on problem dimensions and considering more
general noise distributions since the boundedness of noises
is not required by the stability constraint under the finite-
horizon setting, and (c) establishing lower bounds for solving
this problem. Designing theoretically grounded single-loop
algorithms for zero-sum LQ games and considering more
involved dynamics such as certain nonlinear dynamics [29],
[43] offer avenues of future research that merit further
investigation.
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