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Abstract— This paper addresses the problem of safety-critical
control for non-affine control systems. It has been shown
that optimizing quadratic costs subject to state and control
constraints can be sub-optimally reduced to a sequence of
quadratic programs (QPs) by using Control Barrier Functions
(CBFs). Our recently proposed High Order CBFs (HOCBFs)
can accommodate constraints of arbitrary relative degree. The
main challenges in this approach are that it requires affine
control dynamics and the solution of the CBF-based QP is
sub-optimal since it is solved point-wise. To address these chal-
lenges, we incorporate higher-order CBFs into neural ordinary
differential equation-based learning models as differentiable
CBFs to guarantee safety for non-affine control systems. The
differentiable CBFs are trainable in terms of their parameters,
and thus, they can address the conservativeness of CBFs such
that the system state will not stay unnecessarily far away from
safe set boundaries. Moreover, the imitation learning model is
capable of learning complex and optimal control policies that
are usually intractable online. We illustrate the effectiveness of
the proposed framework on LiDAR-based autonomous driving
and compare it with existing methods.

I. INTRODUCTION

Optimal control problems with safety requirements are cen-
tral to increasingly widespread safety critical autonomous and
cyber physical systems. Control barrier functions enforcing
safety have received increased attention in recent years [1]
[2] [3] due to their high computational efficiency in dealing
with affine-control nonlinear systems.

Barrier functions (BFs) are Lyapunov-like functions [4],
[5], whose use can be traced back to optimization problems
[6]. More recently, they have been employed to prove set
invariance [7], [8], [9] and for multi-objective control [10].
Tee et al. [4] proved that if a BF for a given set satisfies
Lyapunov-like conditions, then the set is forward invariant.
A less restrictive form of a BF, which is allowed to decrease
when far away from the boundary of the set, was proposed
by in [1]. Control BFs (CBFs) are extensions of BFs for
control systems, and are used to map a constraint defined
over system states to a constraint on the control. The CBFs [1]
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and [2] work for constraints that have relative degree one
with respect to the system dynamics. Exponential CBFs [11]
for arbitrarily high relative degree constraints employ input-
output linearization and find a pole placement controller with
negative poles. The high order CBF (HOCBF) [3] is simpler
(to define) and more general than the exponential CBF [11].

Most works using CBFs to enforce safety are based on
the assumption that the control system is affine in controls
and the cost is quadratic in controls. The time domain is
discretized, and the state is assumed to be constant over each
time interval. The optimal control problem is sub-optimally
reduced to a quadratic program (QP) in each time interval
and the control is kept constant for the whole interval. There
are two main challenges in the aforementioned CBF-based
QP formulation: (i) the dynamics must be affine in control.
Otherwise, the CBF-based optimization would be a sequence
of nonlinear programs (NLPs) that are inefficient and hard
to solve [12] [13]. (ii) the solution of the CBF-based QP is
sub-optimal since the problem is solved point-wise.

In order to reformulate constrained optimal control prob-
lems as CBF-based QPs for non-affine control systems, one
can augment the system with auxiliary dynamics such that the
augmented dynamics would be affine in controls [14] [15].
This is achieved at the cost of higher-relative degree CBFs,
and the eventual CBFs become integral CBFs [16] since
the integral solution of the CBF-based QP is the control for
the original non-affine control system. However, there is no
formulaic procedure to define such auxiliary dynamics. The
second challenge mentioned above can be addressed using
the nonlinear model predictive control (NMPC) method [17]
or the inverse optimal method [18]. However, this may lead
to NLPs with computationally expensive solutions. Although
linearization is possible in NMPC to decrease the complexity,
it may come at the cost of loss of safety guarantees. Another
way to improve the optimality is to employ imitation learning
[19] [20]. This approach learns complex control policies that
are hard to solve online, and maps the learned policies to
system observations, such as the front-view RGB images
in driving. The limitation of imitation learning is that there
is no guaranteed safety. BarrierNet [21] has been proposed
to equip learning systems with guarantees, but it does not
work for non-affine control systems. CBFs have been used in
neural Ordinary Differential Equations (ODEs)-based learning
models [22] to equip them with guarantees [23] [24]. However,
these CBFs are either used to modify the model trainable
parameters such that CBFs are to be considered during
training [23] or not trainable in the model [24].

To address the problem of safety-critical control for non-
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affine control systems and improve the optimality of the
solution, this paper contributes a continuous optimization
learning method that employs imitation learning with guaran-
tees. The proposed learning model is based on neural ODEs
that excel in learning control policies [22]. We define CBFs
enforcing safety for non-affine control systems to higher-order
CBFs such that the eventual CBF constraints would be linear
in decision variables. Then, we incorporate these higher-order
CBFs into the neural ODEs as differentiable CBFs (in terms
of the CBF parameters) that are trainable to address the
conservativeness of CBFs. Finally, we show that this method
works efficiently for non-affine control systems with safety
guarantees. We illustrate our approach and compare with other
methods on a LiDAR-based autonomous driving problem.

II. PRELIMINARIES

In this paper, we omit the definitions of class K functions,
forward invariance, and relative degree for CBFs. Please refer
to [3] for interested readers.

Consider an affine control system (assumed to be affine in
control only in this section) of the form:

ẋ = f(x) + g(x)u (1)

where x ∈ X ⊂ Rn, f : Rn → Rn and g : Rn → Rn×q

are Lipschitz continuous, and u ∈ U ⊂ Rq is the control
constraint set defined as (umin,umax ∈ Rq):

U := {u ∈ Rq : umin ≤ u ≤ umax}, (2)

where the inequalities are interpreted element-wise.

A. Control Barrier Functions and BarrierNet

We first introduce the concept of CBFs that are control
synthesis tools for safe autonomous systems, and then briefly
introduce BarrierNet that enables end-to-end safe learning.

For a constraint b(x) ≥ 0 with relative degree m, b : Rn →
R, and ψ0(x) := b(x), we define a sequence of functions
ψi : Rn → R, i ∈ {1, . . . ,m}:

ψi(x) := ψ̇i−1(x) + αi(ψi−1(x)), i ∈ {1, . . . ,m}, (3)

where αi(·), i ∈ {1, . . . ,m} denotes a (m − i)th order
differentiable class K function.

We further define a sequence of sets Ci, i ∈ {1, . . . ,m}
associated with (3) in the form:

Ci := {x ∈ Rn : ψi−1(x) ≥ 0}, i ∈ {1, . . . ,m}. (4)

Definition 1: (High Order Control Barrier Function
(HOCBF) [3]) Let C1, . . . , Cm be defined by (4) and
ψ1(x), . . . , ψm(x) be defined by (3). A function b : Rn → R
is a High Order Control Barrier Function (HOCBF) of relative
degree m for system (1) if there exist (m − i)th order
differentiable class K functions αi, i ∈ {1, . . . ,m− 1} and
a class K function αm such that

sup
u∈U

[Lm
f b(x) + LgL

m−1
f b(x)u+O(b(x)) + αm(ψm−1(x))] ≥ 0,

(5)
for all x ∈ C1∩, . . . ,∩Cm. In (5), the left part is actually
ψm(x), Lm

f (Lg) denotes Lie derivatives along f (g) m (one)
times, and O(b(x)) =

∑m−1
i=1 Li

f (αm−i ◦ ψm−i−1)(x).

The HOCBF is a general form of the relative degree one
CBF [1], [2], i.e., setting m = 1 reduces the HOCBF to
the common CBF form, and it is also a general form of the
exponential CBF [11].

Theorem 1: ([3]) Given an HOCBF b(x) from Def. 1 with
the associated sets C1, . . . , Cm defined by (4), if x(0) ∈
C1∩, . . . ,∩Cm, then any Lipschitz continuous controller
u(t) ∈ U that satisfies the constraint in (5), ∀t ≥ 0 renders
C1∩, . . . ,∩Cm forward invariant for system (1).

Many existing works [1], [11] combine CBFs with
quadratic costs to form optimization problems. Time is
discretized and an optimization problem with constraints
given by the CBFs (inequalities in (5)) is solved at each
time step. Note that these constraints are linear in control
since the state value is fixed at the beginning of the interval,
therefore, each optimization problem is a quadratic program
(QP) if the cost is quadratic in the control. Formally, suppose
we wish to minimize a cost function uTHu for system (1),
where H ∈ Rq×q is positive definite, the CBF-based QP is
defined as follows. We partition a time interval [0, T ] into
a set of equal time intervals {[0,∆t), [∆t, 2∆t), . . . }, where
∆t > 0. In each interval [ω∆t, (ω+1)∆t) (ω = 0, 1, 2, . . . ),
we assume the control is constant (i.e., the overall control
will be piece-wise constant). Then at t = ω∆t, we solve the
QP:

min
u(ω∆t)∈U

uT (ω∆t)Hu(ω∆t), s.t.

Lm
f b(x) + [LgL

m−1
f b(x)]u+O(b(x)) + αm(ψm−1(x)) ≥ 0.

(6)
This method works conditioned on the fact that the dynamics
(1) are affine in control. Otherwise, the above optimization
would be a sequence of NLPs that are hard and inefficient to
solve. However, there are many systems whose dynamics are
not affine in control, such as the bicycle and drone models. In
this paper, we show how we can efficiently guarantee safety
for such systems, as well as directly infer safe control from
high dimensional observations using imitation learning.
BarrierNet. A BarrierNet [21] is based on the CBF-based
QP (6), and it incorporates the optimization as a trainable
layer in the neural network. We can find the loss of the output
(solution) of the optimization layer with respect to all the op-
timization hyper parameters using the Karush–Kuhn–Tucker
conditions. Thus. all the parameters in the cost, such as H ,
and the class K functions in the HOCBF can be trained by
the data instead of by hand-tuning. In this way, we can make
the HOCBF adaptive to the observation of the system, as well
as addressing the conservativeness introduced by HOCBFs.
The HOCBF is differentiable in terms of its parameters in a
BarrierNet, and thus, we call it a differentiable CBF. Similar
to existing CBF methods, one significant limitations of the
BarrierNet is that it cannot work for non-affine systems.

B. Neural ODEs

A neural ordinary differential equation (ODE) [22] is
defined as :

ẋ(t) = fϑ(x(t)), (7)
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where x ∈ Rn is the state and ẋ denotes the time derivative
of x, n ∈ N is state dimension, fϑ : Rn → Rn is a neural
network model parameterized by ϑ. The output of the neural
ODE is the integral solution of (7). It can also include external
input (e.g. observation vector), where the model is defined
as:

ẋ(t) = f
′

ϑ(x(t), I(t)), (8)

where I(t) ∈ Rd, d ∈ N is external input dimension, f
′

ϑ :
Rn ×Rd → Rn is a neural network model parameterized by
ϑ.

The limitation of neural ODEs is that they have no
safety guarantees for control systems, which prevents their
applications for safety-critical systems. In this work, we
address this issue using the proposed learning framework.

III. PROBLEM FORMULATION AND APPROACH

We consider a non-affine control system whose dynamics
are defined as:

ẋ = h(x,u), (9)

where h : Rn × Rq → Rn is locally Lipschitz continuous.
Objective: (Minimizing cost) Consider an optimal control

problem for system (9) with the cost:

min
u(t)

∫ T

0

C(||u(t)||)dt+ p0||x(T )−K||2 (10)

where T > 0, p0 > 0,K ∈ Rn, || · || denotes the 2-norm of
a vector, C(·) is a strictly increasing function of its argument.
We may consider penalizing the errors of all the states with
respect to K in the above to make it more general.

Safety requirements: System (9) should always satisfy a
safety requirement:

b(x(t)) ≥ 0,∀t ∈ [0, T ], (11)

where b : Rn → R is continuously differentiable and has
relative degree m ∈ N with respect to system (9).

Control constraints: The control of the real system should
always satisfy control bounds in the form of (2).

Problem 1: Given a real-time observation I ∈ Rd (I
could be the sensor information or the state x, d ∈ N is
the dimension of the observation) for system (9), find an
online control policy for system (9) such that the cost (10)
is minimized, and constraints (11) and (2) are satisfied.

Approach: Our approach to solve Problem 1 is based on
the proposed safety-guaranteed machine learning method.
Specifically, we employ the Nonlinear Model Predictive
Control (NMPC) method to estimate the optimal control
u∗ of Problem 1 offline given an observation I . In this way,
we collect labeled training data set in the form of (x, I,u∗)
where u∗ is the optimal control label corresponding to (x, I).
Then, we construct a continuous optimization learning model
using neural ODEs and BarrierNet that is trained by the
collected data, and that can be deployed for online control.
We provably show the safety guarantees of the learning-based
control for the non-affine control system (9).

IV. SAFE NEURAL CONTROL

In this section, we show how we can solve Problem 1
using a machine learning-based method that can guarantee
system safety. We start with a motivation example showing
why existing CBF methods may fail to work for system (9).

A. Motivating Example

Consider a bicycle model defined as:

ẋ = v cos θ, ẏ = v sin θ, θ̇ =
v

l
tanu1, v̇ = u2, (12)

where x = (x, y, θ, v), (x, y) ∈ R2 denotes the location of
the vehicle, v ∈ R denotes its linear speed, θ ∈ R denotes its
heading, u1 ∈ R, u2 ∈ R are the two controls corresponding
to steering wheel angle and acceleration, respectively. l > 0
denotes the distance between front and rear wheels.

Suppose we have a safety constraint for (12) defined as:

(x− x0)
2 + (y − y0)

2 ≥ r2, (13)

where (x0, y0) ∈ R2 denotes the location of the circular
obstacle, and r > 0 denotes its size.

The relative degree of (13) is two. Thus, we may use a
HOCBF with m = 2 as in Def. 1 to enforce it. Choosing the
class K functions α1, α2 as linear functions, the corresponding
HOCBF constraint in (5) in this case is:

(−2(x− x0) sin θ + 2(y − y0) cos θ)
v2

l
tanu1

+(2(x− x0) cos θ + 2(y − y0) sin θ)u2 + 2ḃ(x) + b(x) ≥ 0,
(14)

where b(x) = (x− x0)
2 + (y − y0)

2 − r2.
Note that the HOCBF constraint (14) is a nonlinear function

of u1. Therefore, the eventual CBF-based optimization would
be a sequence of NLPs instead of QPs, which makes it hard
to solve. One may argue that we can take tanu1 as a decision
variable instead of u1 to make the HOCBF constraint linear
in decision variables. However, part of the cost function is to
minimize u21 instead of tan2 u1. As a result, we may have
a nonlinear cost function that still makes it become NLPs.
Moreover, in some systems, like the quadrotor, the dynamics
may include both the control and its quadratic term, which
makes the decision variable transformation method further
intractable. We show how we may efficiently guarantee safety
for non-affine control systems in this work.

B. Continuous Optimization Learning Model

Given a safety constraint b(x) ≥ 0 whose relative degree
is m for non-affine control system (9), we use a HOCBF
to enforce it. We still define a sequence of ψi(x), i ∈
{1, . . . ,m} functions as in (3), where ψm(x) is involved with
the control u when combining it with system (9). Therefore,
we rewrite ψm(x) as ψm(x,u), where

ψm(x,u) = ψ̇m−1(x,u) + αm(ψm−1(x)). (15)

The above constraint corresponds to the HOCBF constraint
in (5) for affine-control system (1). The difference is that (15)
is a nonlinear function of u, while the HOCBF constraint in
(5) is a linear function of u given the state x.
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Fig. 1. A continuous optimization learning system with safety guarantees. We may define more trainable parameters, such as cost weights, in the BarrierNet
(19). The model can guarantee safety that is enforced by dCBFs during training or inference in a non-overly-conservative way.

In order to address the issue that the constraint (15) is a
nonlinear function of u, we may take an additional derivative
of ψm(x,u) such that the derivative of ψm(x,u) would be
linear in u̇ following the chain rule. Formally, we introduce
a higher order CBF based on (15) in the form:

ψm+1(x,u, u̇) = ψ̇m(x,u, u̇) + αm+1(ψm(x,u)), (16)

where αm+1(·) is also a class K function. The above function
is linear in u̇.

In (16), u̇ is undefined. We use a neural ODE to model it:

u̇ = πϑ(x,u, I), (17)

where πϑ : Rn × Rq × Rd → Rq is any neural network,
such as multi-layer perception (MLP), convolutional neural
network (CNN), long-short term memory (LSTM) network,
parameterized by ϑ. Recall that I is the observation of system
(9).

We can then use training data set to train the neural ODE
(17) that makes (16) non-negative. Thus, we can provably
show the safety guarantees of this neural ODE controller.
However, the neural ODE is not guaranteed to make (16)
non-negative due to the uncertainties in training or the model
generalization issue. In order to address this, we incorporate
(16) into the neural ODE using a BarrierNet, and obtain what
we call the continuous optimization learning model:

u̇ = BarrierNet(x,u,y),

y = πϑ(x,u, I),
(18)

where y ∈ Rq is a latent variable. The above model is
continuous in the sense that the number of layers could be
interpreted as infinite and we could solve it in continuous time,
which is usually compared with discrete learning models (such
as CNNs, LSTMs, etc.) that have finite number of layers. For
more discussions about continuous versus discrete learning
models, please refer to [22]. BarrierNet(x,u,y) is defined
as

BarrierNet(x,u,y) = argmin
ŷ

||ŷ − y||2, s.t.

ψ
ϑp

m+1(x,u, ŷ)≥0, bmin(u, ŷ)≥0, bmax(u, ŷ)≥0,
(19)

where ŷ = u̇ and ψ
ϑp

m+1(x,u, ŷ) = ψ̇m(x,u, ŷ) +
ϑpαm+1(ψm(x,u)) corresponds to the CBF (16) with an
additional trainable parameter ϑp > 0 that can address the
conservativeness of the CBF method [21]. In addition, we
can make ϑp dependent on the observation I such that it

is adaptive to the observation. We would also add trainable
parameters to all the class K functions αi, i ∈ {1, . . . ,m}
in ψm(x,u). Since the CBF is differentiable in terms of the
parameter ϑp in the BarrierNet, we call it a differentiable
CBF (dCBF). The model structure is shown in Fig. 1.

Further, in the BarrierNet (19), bmin(u, ŷ) = ŷ+u−umin

and bmax(u, ŷ) = −ŷ + umax − u are CBF constraints
that enforce the lower control bound u ≥ umin and upper
control bound u ≤ umax as given in (2), respectively. The
inequalities are interpreted component-wise.

Let odeint(·) denote an ODE solver. Now, we provably
show the safety guarantees of the continuous optimization
learning model (18).

Theorem 2: Given an initial state x(0) that is safe to
system (9) (i.e., b(x(0)) > 0), and an initial control u(0)
such that ψm(x(0),u(0)) ≥ 0 as given in (15), any control
u(t), t ≥ 0 with

u(t) = odeint(equation (18)), (20)

guarantees the safety (i.e., b(x(t)) ≥ 0,∀t ≥ 0) and control
bound satisfaction of system (9).
The proof can be found at [25]. The initial control u(0)
usually takes a zero vector. The selection of u(0) depends
on the generalization of the model.

Remark 1 (Feasibility guarantees and robustness): The
BarrierNet may become infeasible at a certain time due to
the conflict between the CBFs for safety and control bound.
This is still a challenging problem in the CBF method. One
possible solution is to find an analytical feasibility constraint
that is added to the optimization [26]. The system dynamics
become affine in u̇ inside the neural ODEs. Thus, this
feasibility constraint method may still work. Neural ODEs
are generally robust to model uncertainties if the training
data is reasonably sampled [22].

Example revisited. We reconsider the example in Sec. IV-
A. Within the model (18), we introduce a higher order of CBF
ψ2(x,u) := (−2(x−x0) sin θ+2(y− y0) cos θ)

v2

l tanu1+

(2(x−x0) cos θ+2(y−y0) sin θ)u2+2ḃ(x)+b(x) ≥ 0. The
HOCBF constraint corresponding to (16) in this case would
take another derivative of ψ2(x,u), and it is linear in u̇1, u̇2
that we choose as decision variables in (19), i.e., ŷ = (u̇1, u̇2).
Therefore, the CBF-based optimization becomes a sequence
of QPs within the neural ODE (18).
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C. Training of the Model

In this subsection, we introduce how we may train the
continuous optimization learning model (18). In this work,
we focus on the imitation learning method.

In imitation learning, we need to have a nominal controller
(such as nonlinear MPC) to generate optimal controls as
training labels. The objective is to make the model imitate
the nominal controller. The model input includes the system
observation I , state x, and control u, as shown in (18). The
inclusion of the control u in the input is to equip the model
with short memory. For each of the observation data I with
the corresponding state x, we can find an optimal control
using the nominal controller that label this data. As a result,
we can collect training data set in a diverse set of scenarios
that system (9) may encounter.

The training of the model (18) involves solving the
following optimization problem

(ϑ∗, ϑ∗p) = argmin
ϑ,ϑp

Ex(ℓ(u,unominal)) (21)

where u is from the solution of (18)—parameterized by
ϑ, ϑp in (19)—and unominal is the optimal control from the
nominal controller. ℓ(·, ·) is a similarity measurement, and
Ex is the expectation over all the training data. It has been
shown that both the neural ODE and the BarrierNet could be
trained using gradient descent in [22] and [21], respectively,
which eventually enables end-to-end (from observation I to
control u) training of the model.

Synthesized Model. Existing CBF methods assume piece-
wise constant controls across discretized time intervals. Our
proposed model (18) could relax this piece-wise constant
assumption. This is achieved by incorporating the dynamics
(9) into the model (18):

u̇ = BarrierNet(x,u,y),y = πϑ(x,u, I), ẋ = h(x,u).
(22)

Then, the neural ODE solver could export safe controls
corresponding to each state. The resolution of the control
depends on the solver. Specifically, adaptive ODE solvers,
such as adaptive adams, dopri5 [22], could ensure the
solution to be within certain error bounds.

V. CASE STUDIES

In this section, we consider a high-way driving scenario
where the ego vehicle overtakes a vehicle in front of it referred
to as the preceding vehicle. We use fmincon to solve the NLP
for NMPC, use QPFunction [27] to solve the BarrierNet,
and use torchdiffeq [22] with method dopri5 to solve the
neural ODE. All the code is implemented in PyTorch [28]
and runs on a AMD Ryzen Threadripper PRO 3975WX 32-
Cores computer.
Problem setup. The ego vehicle dynamics are defined as in
(12). The ego vehicle has onboard LiDAR observation I (100
distance points around the ego vehicle, as shown in Fig. 2(a))
to detect obstacles. The preceding vehicle is assumed to have
a constant moving speed. The safety constraint between the
ego and its preceding vehicle is obtained by a disk-covering
approach. In other words, we use an off-the-center disk to

cover the preceding vehicle, as shown in Fig. 2(a). The disk
is designed such that no collisions will happen when the
center of the ego vehicle stays outside the disk, and the
corresponding safety constraint is b(x) = (x− x0)

2 + (y −
(y0 − yoff))− r2 ≥ 0, where (x0, y0) ∈ R2 is the location of
the preceding vehicle, and yoff ∈ R is the offset of the disk.
The objective of the ego vehicle is to achieve a desired speed
while overtaking its preceding vehicle.

LiDAR

Ego 

Preceding vehicle

Covering 

disk

Road/lane

boundaries

(a) Highway overtaking. (b) Open-loop validation.

Fig. 2. Highway overtaking problem setup and end-to-end learning model
validation with testing data set.

Training data generation. We randomly sample initially
safe positions with random heading and speed for the ego
vehicle around the preceding vehicle. Then, we use a NMPC
to find optimal controls for the ego vehicle that can make it
safely overtake the preceding vehicle. We collect 201 different
initial states, and each initial state will further generate 100
trajectory points using NMPC. The sampling time is 0.1s.
Thus, each trajectory corresponds to 10s driving. In summary,
the data includes 200 trajectories with optimal control labels
as training data and 1 trajectory as validation data.

(a) Closed-loop control profiles. (b) Closed-loop safety profiles.

Fig. 3. Highway overtaking closed-loop testing comparisons between NMPC,
neural ODE and our models. Safety is guaranteed if b(x(t)) ≥ 0, ∀t

Model and training setup. The model πϑ in (18) is defined as
a 6-layer MLP with shape (104, 128, 256, 64, 16, 2) followed
by a BarrierNet and a neural ODE integration layer, as shown
in Fig. 1. In addition to the LiDAR I and control u, we take
the heading θ and speed v of the ego vehicle as input for the
model while ignoring its location since this is captured by
the LiDAR. We use the RMSprop in the package torch.optim
as our optimizer during training [28]. The training batch size
is 20, and each batch has 10 time sequence trajectory points.
Results. We first compare the open-loop (Fig. 2(b)) and
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closed-loop (Fig. 3) testing results. The open-loop testing
is based on the test data set without feedback states from
dynamics, and it is actually not a good indicator for the
performance. In the closed-loop testing, the trajectory from
our model can stay close to the NMPC one, while the
trajectory from neural ODE could easily violate the safety
constraint, as shown in Fig. 3(b). Both our model and NMPC
can guarantee safety.

We further present quantitative comparisons in Table I.
The testing results are based on noisy LiDAR (40% noise
magnitude of the LiDAR range), and are from 100 overtaking
scenarios. The neural ODE model fails to guarantee safety.
The NMPC is very computationally expensive, preventing it
from real-time applications. Although linearization is possible
in NMPC to decrease its complexity, it may lose guarantees.
Our model is computationally efficient under both adaptive
(dopri5) and fixed-time-step (fixed adams) ODE solvers,
which is tractable for online safe control. Moreover, our
model will not make the system conservative (measured by
the average value of the minimum distance with respect to
the obstacle among all testing trajectories). The snapshots of
one overtaking example can be found in [25].

TABLE I
SELF-DRIVING WITH NMPC, NEURAL ODE AND OUR MODEL. ITEMS

ARE SHORT FOR CONSERVATIVENESS MEASUREMENT (CONSER.) THAT

IS DEFINED BY THE AVERAGE OF THE MINIMUM DISTANCE WITH RESPECT

TO THE OBSTACLE AMONG ALL TESTINGS, SAFETY MEASUREMENT

(SAFETY), COMPUTATION TIME AT EACH STEP UNDER ADAPTIVE

/FIXED-TIME-STEP SOLVERS (COMPUTATION TIME), RESPECTIVELY.

METHOD CONSER.
(≥ 0 & ↓)

SAFETY
(≥ 0)

COMPUTATION
TIME (S)

NMPC 4.8 4.8 1.235
NEURAL ODE −42.4±4.0 -51.6 0.007/0.001

OURS 1.3±0.2 0.7 0.038/0.006

VI. CONCLUSION & FUTURE WORK
This paper proposes a continuous optimization learning

method with safety guarantees for safety-critical systems.
The proposed method leverages differentiable control barrier
functions and neural ordinary differential equations, and it
works efficiently even for non-affine control systems. In the
future, we will study the simultaneous modelling of the system
dynamics, safety constraints, and control policy using the
proposed framework.

REFERENCES

[1] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function
based quadratic programs with application to adaptive cruise control,”
in Proc. of 53rd IEEE Conference on Decision and Control, 2014, pp.
6271–6278.

[2] P. Glotfelter, J. Cortes, and M. Egerstedt, “Nonsmooth barrier functions
with applications to multi-robot systems,” IEEE control systems letters,
vol. 1, no. 2, pp. 310–315, 2017.

[3] W. Xiao and C. Belta, “Control barrier functions for systems with high
relative degree,” in Proc. of 58th IEEE Conference on Decision and
Control, Nice, France, 2019, pp. 474–479.

[4] K. P. Tee, S. S. Ge, and E. H. Tay, “Barrier lyapunov functions for the
control of output-constrained nonlinear systems,” Automatica, vol. 45,
no. 4, pp. 918–927, 2009.

[5] P. Wieland and F. Allgower, “Constructive safety using control barrier
functions,” in Proc. of 7th IFAC Symposium on Nonlinear Control
System, 2007.

[6] S. P. Boyd and L. Vandenberghe, Convex optimization. New York:
Cambridge university press, 2004.

[7] J. P. Aubin, Viability theory. Springer, 2009.
[8] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case

and stochastic safety verification using barrier certificates,” IEEE Trans.
on Automatic Control, vol. 52, no. 8, pp. 1415–1428, 2007.

[9] R. Wisniewski and C. Sloth, “Converse barrier certificate theorem,” in
Proc. of 52nd IEEE Conference on Decision and Control, Florence,
Italy, 2013, pp. 4713–4718.

[10] D. Panagou, D. M. Stipanovic, and P. G. Voulgaris, “Multi-objective
control for multi-agent systems using lyapunov-like barrier functions,”
in Proc. of 52nd IEEE Conference on Decision and Control, Florence,
Italy, 2013, pp. 1478–1483.

[11] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for
enforcing high relative-degree safety-critical constraints,” in Proc. of
the American Control Conference, 2016, pp. 322–328.

[12] T. D. Son and Q. Nguyen, “Safety-critical control for non-affine
nonlinear systems with application on autonomous vehicle,” in 2019
IEEE 58th Conference on Decision and Control (CDC). IEEE, 2019,
pp. 7623–7628.

[13] J. Seo, J. Lee, E. Baek, R. Horowitz, and J. Choi, “Safety-critical
control with nonaffine control inputs via a relaxed control barrier
function for an autonomous vehicle,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 1944–1951, 2022.

[14] J.-J. E. Slotine, W. Li et al., Applied nonlinear control. Prentice hall
Englewood Cliffs, NJ, 1991, vol. 199, no. 1.

[15] W. Xiao, C. G. Cassandras, C. A. Belta, and D. Rus, “Control barrier
functions for systems with multiple control inputs,” in 2022 American
Control Conference (ACC), 2022, pp. 2221–2226.

[16] A. D. Ames, G. Notomista, Y. Wardi, and M. Egerstedt, “Integral
control barrier functions for dynamically defined control laws,” IEEE
control systems letters, vol. 5, no. 3, pp. 887–892, 2020.

[17] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model Predictive
Control: Theory, Computation, and Design. Nob Hill Publishing,
2018.

[18] M. Krstic, “Inverse optimal safety filters,” IEEE Transactions on
Automatic Control, 2023.

[19] T.-H. Wang, A. Amini, W. Schwarting, I. Gilitschenski, S. Karaman,
and D. Rus, “Learning interactive driving policies via data-driven
simulation,” in 2022 International Conference on Robotics and
Automation (ICRA). IEEE, 2022, pp. 7745–7752.

[20] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates:
A survey of neural lyapunov, barrier, and contraction methods for
robotics and control,” IEEE Transactions on Robotics, 2023.

[21] W. Xiao, T.-H. Wang, R. Hasani, M. Chahine, A. Amini, X. Li, and
D. Rus, “Barriernet: Differentiable control barrier functions for learning
of safe robot control,” IEEE Transactions on Robotics, vol. 39, no. 3,
pp. 2289–2307, 2023.

[22] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud, “Neural
ordinary differential equations,” in Proceedings of the 32nd Interna-
tional Conference on Neural Information Processing Systems, 2018,
pp. 6572–6583.

[23] W. Xiao, T.-H. Wang, R. Hasani, M. Lechner, Y. Ban, C. Gan, and
D. Rus, “On the forward invariance of neural odes,” in International
conference on machine learning. PMLR, 2023, pp. 38 100–38 124.

[24] Y. Huang, I. D. J. Rodriguez, H. Zhang, Y. Shi, and Y. Yue, “Fi-ode:
Certified and robust forward invariance in neural odes,” arXiv preprint
arXiv:2210.16940, 2022.

[25] W. Xiao, R. Allen, and D. Rus, “Safe neural control for non-affine
control systems with differentiable control barrier functions,” in preprint
in arXiv:2309.04492, 2023.

[26] W. Xiao, C. Belta, and C. G. Cassandras, “Sufficient conditions for
feasibility of optimal control problems using control barrier functions,”
Automatica, vol. 135, p. 109960, 2022.

[27] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a
layer in neural networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 136–145.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

3371


