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Efficient Solution of Mixed-Integer MPC Problems for
Obstacle Avoidance Using Hybrid Zonotopes

Joshua A. Robbins, Sean B. Brennan, and Herschel C. Pangborn

Abstract—Model predictive control (MPC) is a powerful
approach for autonomous vehicle motion planning. MPC can
account for both the vehicle dynamics and obstacle avoid-
ance constraints by iteratively solving constrained optimization
problems. Due to the non-convexities associated with obstacle
avoidance constraints, these optimization problems often take
the form of mixed-integer programs, which are challenging
to solve online in embedded applications. This paper presents
a mixed-integer quadratic program (MIQP) solution strategy
for obstacle avoidance MPC formulations based on a hybrid
zonotope set representation of the obstacle avoidance con-
straints. The structure of the hybrid zonotope constraints is
exploited within both a branch-and-bound mixed-integer solver
and an interior point method QP solver. For applications such
as automated driving, where the obstacle-free space can be
represented using an occupancy grid, the QP solution time is
not strongly affected by the complexity of the obstacle map.
For the examples considered in this paper, using 5 and 10 step
MPC horizons, the proposed MIQP solver with hybrid zonotope
constraints found the optimal solution 2-6 times faster on
average than general-purpose commercial solvers and up to 13
times faster than MIQP formulations using H-rep constraints.

I. INTRODUCTION

Obstacle avoidance is a fundamental problem in vehicle
autonomy, for which many different solution approaches ex-
ist [1]. This paper focuses on model predictive control (MPC)
strategies for autonomous vehicle (AV) motion planning
subject to obstacle avoidance constraints. MPC explicitly
accounts for the AV dynamics and constraints, and can
be formulated to guarantee obstacle avoidance subject to
disturbances or model uncertainty [2]. However, MPC for-
mulations for obstacle avoidance often require solving non-
convex optimization problems, which can be computationally
expensive. This has limited the practicality of applying MPC
to embedded systems.

Broadly, obstacle avoidance MPC formulations use one of
the following solution strategies: 1) approximate, local, or
heuristic solutions, 2) simplification of the problem domain,
or 3) global optimization. Approximate solution methods
are often more computationally tractable than global solu-
tion methods at the expense of optimality. One example is
sequential convex programming [3]-[5], which iteratively
solves convex approximations of the original non-convex
problem. Sequential convex programming converges to a lo-
cal minimum but will not in general find the global minimum
[6]. Other heuristic solution methods relevant to obstacle
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avoidance optimization problems have been proposed [7]-
[10].

Sampling-based methods, such as model predictive path
integral (MPPI) control, are also used to find approximate lo-
cal solutions to non-convex MPC problems [11], [12]. MPPI
approximates the optimal trajectory from a weighted sum of
sample trajectories that are generated in the neighborhood of
the optimal trajectory from the previous time step. This can
present challenges when the globally optimal trajectory for
the MPC problem changes significantly between time steps,
as in the case of a large disturbance or an obstacle suddenly
entering the field of view [13], [14].

Many authors simplify the problem domain in their MPC
formulations. In [15], the authors construct convex safe re-
gions for autonomous driving based on a list of different traf-
fic scenarios. Others have used optimization-based methods
to compute large convex regions of the obstacle-free space
[16], [17]. Additional approaches to domain simplification
include obstacle clustering [18] and the use of a neural
network to classify which obstacle avoidance constraints are
likely to be relevant to the MPC problem [19]. Methods
that seek inner approximations of the obstacle-free space can
be overly conservative, while methods that seek to remove
irrelevant constraints can be insufficiently conservative.

The last family of solution strategies for obstacle avoid-
ance MPC is global optimization over the non-convex con-
straints. Global optimization methods are not vulnerable to
poor quality solutions, as in the case of local or approximate
solution methods, and do not suffer from being overly con-
servative, as in the case of domain convexification methods.
The primary challenge with global optimization methods is
computational. Mixed-integer program (MIP) formulations
of the optimization problem are most frequently used [2],
[18], [20]-[24]. However, MIPs are NP-hard [25], and for
sufficiently complex environments it is often intractable to
solve MIPs online at update rates relevant to AV applications.

Custom mixed-integer solvers for obstacle avoidance prob-
lems have been proposed to address these challenges. In [26],
the authors devise a branch-and-bound solver where branch-
ing corresponds to a clockwise versus counter-clockwise
obstacle avoidance decision. In [27], a branch-and-bound
method is introduced where branches are generated based
on detected collisions in the optimal solutions to the relaxed
sub-problems. An approximate branch-and-bound solver for
path planning problems with uncertainty is presented in [28].

Advanced set representations—namely zonotopes and
their extensions—have also been used to reduce the com-
plexity of the resulting MIP. These representations describe
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sets implicitly and have found significant use in reachability
analysis of dynamic systems [29]-[32]. In [33], zonotope
obstacle approximations are used to simplify a hyperplane
arrangement representation of the obstacle-free space. Poly-
nomial zonotopes and hybrid zonotopes have been proposed
for use as exact representations of the obstacle-free space
[34], [35]. In both cases, MPC solution times were reduced
as compared to more traditional obstacle avoiding MPC
formulations when using general-purpose solvers.

This paper leverages the properties of an advanced set
representation within a solution methodology for obstacle
avoidance MPC formulations. Hybrid zonotopes are used to
represent the obstacle-free region of the space and paired
with a custom mixed-integer quadratic program (MIQP)
solver tailored to exploit properties of hybrid zonotopes.
The MIQP solver implements a new branch-and-bound algo-
rithm that uses a notion of constraint region ‘“reachability”
to greatly reduce the number of infeasible branches that
are generated. This solver generates a series of quadratic
program (QP) sub-problems, which are solved with a multi-
stage primal-dual interior point method that exploits the box
constraint structure of hybrid zonotope inequality constraints
to reduce the number of Cholesky factorizations that need
to be computed. Obstacle-free spaces made up of repeating
zonotopes can be represented as hybrid zonotopes with
structure that is especially exploitable within the QP sub-
problems. Numerical results demonstrate that the proposed
MIQP solver often outperforms commercial solvers and
halfspace representations (H-reps) of obstacle avoidance con-
straints.

II. PRELIMINARIES

A. Notation

Unless otherwise stated, scalars are denoted by lowercase
letters, vectors by boldface lowercase letters, matrices by
uppercase letters, and sets by callié%raphic letters. 0 =

T
[0 -+ 0] and1 =11 --- 1] denote vectors con-
sisting entirely of zeroes and ones, respectively, of appropri-
ate dimensions. I denotes the identity matrix.

B. MPC Formulation

This paper considers the following MPC formulation:

N-1
)gnli ;0 [(xk — XZ)TQk(Xk —-x5) + u{Rkuk} +
(xn = x3) T Qn(xn — X}y) , (1)
stVkek =10, N1} :
Xpy1 = Axg + Bug , (1b)
yr = Hxy, yn = Hxn, x0 = x(0) , (1c)
Xp, X, € X, XN, Xy € XN, up €U, (1d)
Ve, YN € F. (le)

Here, xj, X, ug, and yy, are the AV state, reference, input,
and position, respectively, associated with time step k. A and
B are the linear dynamics matrices and H extracts the AV
position from x;. X C R" and &Y C R™ are the feasible

state and input sets, respectively, Xy C R"= is the terminal
constraint set, and F C R"» is the non-convex obstacle-free
space. Eq. (1) is solved over a receding horizon, such that
the current state xg is provided to the MPC controller at
each update time and the optimal input for the first step ug
is applied to the system.

Let O C R™ represent the obstacle space and V C R"»
the feasible position domain (e.g., the limits of the “map”
in which the AV operates). The following assumptions are
used throughout the rest of this paper.

Assumption 1: Qy, Ry, and Q are diagonal Vk € K.

Assumption 2: X, U, Xy, and V are polytopes.

Assumption 3: O is a union of polytopes.

Assumption 1 is required for the structural exploitation of
the hybrid zonotope constraints described in Sec. III-B.2.
Diagonal cost matrices are common in practice and can
often be achieved under a change of variables if necessary.
Assumptions 2 and 3 are typical for MPC formulations and
obstacle avoidance problems.

C. Common Mixed-Integer Obstacle Avoidance Constraint
Representations

By Assumption 3, the obstacle space can be expressed
using H-rep by
no
0 =J{y 4oy <bo,} - )
j=1
The obstacle-free space is F = V \ O. By Assumptions 2
and 3, a convex partition of F can be constructed such that
nr
F=J{v|Ary <br} . 3)
j=1
One common method used to embed F in a mixed-integer
program is hyperplane arrangements [2], [20]. Using the
“Big-M” method [36] to capture conditional logic with scalar
M > 1, a hyperplane arrangement representation of F is

7 = | |40y =2 boj — MI,,doj, 1"doj <nj—1
Y dOj € {Ovl}njv ] € {]-a T 7n0} (;‘-)

where no is the number of obstacles and n; is the number
of hyperplanes associated with the j** obstacle.

Alternatively, the union of H-rep polytopes in (3) can be
described using the Big-M method [20] as

np
Aij—I—M (E 5,jidFi) 1< ij + M1

F= =1
]-TdF::lang{O?l}nFaje{la"' 7TLF}

4)
where §;; is the Kronecker delta. The elements of the
binary variable vector d z correspond to polytopes rather than
hyperplanes. 17dr = 1 is a “choose one” constraint.

D. Hybrid Zonotope Obstacle Avoidance Constraints

Next, the zonotope, constrained zonotope, and hybrid
zonotope set representations are briefly reviewed. A set Z C
R™ is a zonotope if 3 G, € R"*"s, ¢ € R™ such that

Z={Gk.+c|&cBx}, (6)
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where Bod = {¢. € R™ | [|&.]l < 1} is the infinity-norm
ball. Zonotopes are convex, centrally symmetric sets [37].
A set Zc C R™ is a constrained zonotope if 4 G, €

R"*"s ¢ e R", A, € R"*™s b e R™ such that
ZC:{Gc£c+C|€c€nga Acéc:b} . @)

Constrained zonotopes can represent any polytope and can
be constructed from a halfspace representation [30, Thm 1].
Hybrid zonotopes extend (7) by including binary factors
&p. A set Zyy C R™ is a hybrid zonotope if in addition to
G., ¢, A., and b, 3 G € R"*™ A, € R™*™ gych that

56] € By x {0,1}™
} +c {gb

e A A Eb] b

G Gl|g

b

®)
The factors &, in this paper are constrained to the set
{0,1}™ rather than {—1,1}™ as used in [32]. These forms
are equivalent and one can easily convert between them
with linear algebra manipulations. Analogously, constrained
zonotopes for which & = [¢Z ZHT, €ee € [—1,1]0e,
&b € [0, 1]"9%, nge + ng, = ng, are equivalent to (7).
Hybrid zonotopes can represent unions of convex poly-
topes [32] and as such can be used to represent F. In [35], the
authors generate a hybrid zonotope representation of F by
taking the complement of a hybrid zonotope representation of
O. In this paper, for the case of general polytopic obstacles,
an algorithm for converting from a collection of polytopes
in vertex representation (V-rep) to a single hybrid zonotope
is used for its reduced complexity as compared to hybrid
zonotope complements [38, Thm 5]. The V-rep partition
of F is generated using the efficient Hertel and Mehlhorn
algorithm [39], and the zonoLAB toolbox [40] is used to
generate and represent the hybrid zonotope representation of
F. The resulting hybrid zonotope has dimensions ny = 2n,,,
ny, = ng, and n. = n, + 2 with n, the total number
of vertices and np the number of polytopes in the V-rep
partition of F. In Sec. IV, a different method of constructing
a hybrid zonotope representation of F 1is presented for
occupancy grid obstacle avoidance, where n. = 1, ny, = np,
and ng = 2.

E. Multi-Stage MIQP

Based on Assumptions 2 and 3, any of the obstacle
avoidance constraint representations can be used to write
Eq. (1) as the multi-stage MIQP

N

1
7* = arg;ninkz_;) §Z£szk + q{zk , (9a)
s.t. 0 = Crzp + Dk+1zk+1 +ci, VE €K, (9b)
Grzy < Wi, VEe CUN R (9¢)

. T
with z;, = [xf ul ol abT,J . Vectors o, and o

denote continuous and integer variables, respectively, needed
to represent F. o may also be used to represent slack
variables. Eq. (9b) accounts for the system dynamics and
initial condition constraints as shown in [41].

Algorithm 1 General branch-and-bound framework

Result: optimal solution z, j to MIP j = f(z)

1: nodes, j < root, +00

2: while nodes not empty do

3: pop node from nodes

4 JTnodes Znode <— solve node

5 if j,o4e > j or infeasible(node) then continue
6: else if integer-feasible(z,,q4.) then

7 if j,0de < j then

8 JyZ 4 Jnode; Znode

9: prune nodes(j,oqe > 7) from nodes
10: else continue

11: else append branch(node) to nodes

To represent (1e) in (9), hyperplane arrangements (4) result
in o € Z™#* and introduce 3nyy; inequality constraints
in (9¢), where nppp = ;’21 n;. H-rep (5) results in oy, €
Z** and introduces 2np + Y 7" np; inequality constraints
in (9¢), where br; € R"#i. Hybrid zonotopes (8) result
in o € R, o € Z™, introduce n. + n, equality
constraints in (9b), and introduce 2(ngy + nyp) inequality
constraints in (9c). In all cases, (9c) includes the binary
integer variable constraint 0 < oy < 1.

In contrast with hyperplane arrangements and unions of
H-rep polytopes, hybrid zonotopes do not employ the Big-
M method. This can improve the numerical conditioning
of (9) and eliminates the challenge of needing to select an
appropriate value for M [36]. Furthermore, all of the obstacle
avoidance inequality constraints using a hybrid zonotope
MPC formulation are box constraints (i.e., of the form 1 <
zr < u). This structure can be exploited as described below.

III. MIQP SOLVER FOR OBSTACLE AVOIDANCE MPC

This section presents a solution strategy for MIQPs arising
in obstacle avoidance MPC formulations. This strategy is
designed to exploit the structure of a hybrid zonotope repre-
sentation of the obstacle-free space F. Sec. III-A describes a
novel branch-and-bound mixed-integer solver that branches
along “reachable” combinations of polytopic regions of F to
reduce the complexity of the mixed-integer search. Sec. III-
B describes an interior point QP solver that efficiently
computes Newton steps by exploiting the box constraint form
of the hybrid zonotope inequality constraints.

A. Mixed-Integer Solver

A branch-and-bound mixed-integer solver is used to find
the optimal selection of binary variables. Branch-and-bound
methods solve mixed-integer programs to global optimality
by searching along a tree of “relaxed” convex sub-problems.
The root “node” of the tree is constructed by turning all
integer variables into continuous ones and restricting them
to the appropriate domain (e.g., z; € {0,1} — z; € [0,1]).
Subsequent nodes are created by applying constraints to the
relaxed integer variables (e.g., z; = 0 and 2; = 1). The
optimal objective for a node is a lower bound on the objective
of that node’s children. Algorithm 1 is a general branch-and-
bound framework with min, f(z) a generic MIP [25].
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Fig. 1. Obstacle avoidance map with convex sub-regions displayed around
white obstacles. The current AV position is displayed using a green diamond
and the blue dots show point-to-region reachability for regions 2, 3, and 5.
The red dots show region-to-region reachability for regions 3, 5, 6, and 12
from region 9. Referencing Definition 1, the red and blue dots are spaced
at a an interval of dpqaq for time steps less than k. At time step k, the
spacing is dr — (k — 1)dmax.

Branch-and-bound algorithm performance can vary signif-
icantly based on how nodes are selected and how branches
are generated (lines 3 and 11 in Algorithm 1 respectively). A
review of common node selection and branching strategies is
presented in [42]. The branch-and-bound algorithm proposed
here implements a branching strategy for obstacle avoidance
problems for which the obstacle-free space is partitioned into
convex sub-regions as in the case of halfspace and hybrid
zonotope representations. At each time step of the MPC
problem, the position of the AV is constrained to lie in one of
these sub-regions. Integer variables are used to select which
sub-region constraint is active at each time step.

The proposed “reachability”’-constrained branching opera-
tion significantly reduces the number of infeasible branches
that are generated, simplifying the mixed-integer search. This
novel branching operation is then paired with branching
variable selection and node selection algorithms similar to
existing approaches in the literature that reduce the total
number of nodes that need to be solved.

1) Branching Constraints: To reduce the size of the
branch-and-bound integer variable tree, the branching op-
eration is constrained to only generate sequences of convex
sub-region selections that are “reachable” from each other
and from the AV’s starting position. We define this notion
of reachability as follows.

Definition 1: A region r; is k steps reachable from a point
yo (or another region 7;) if |(d,/dmqs)| > k, where d, is
the length of the shortest line segment from yq (or ;) to r;
and d,,4, 1S the maximum distance that the AV can travel
in a single time step of the MPC problem.

This is illustrated in Fig. 1, where region 3 is 2 steps
reachable from the AV’s current position (indicated by the
green diamond), and region 3 is 5 steps reachable from region
9 and vice-versa. Algorithm 2 shows how the set of reachable
regions is computed. Lines 6 and 9 require the solution of
a QP. In this implementation, the “region” case QPs are
solved offline because the obstacle map is assumed to be
fully known and not changing, while the “point” case QPs
are solved at the start of every MPC iteration. Reachability
is only re-computed for regions that were reachable within
the MPC horizon in the previous iteration and regions that
are | step reachable from those regions.

Algorithm 3 gives the branching operation (line 11 in

Algorithm 2 Function to compute reachable regions

Input: input “region” or “point”

number of time steps n

max distance AV can travel in a time step d,qq
Result: list of reachable regions

1: function REACHABLE(input, n¢, dpmaz)

2: regions <— empty

3 for region, in all regions do

4: switch input do

5 case region

6 yo,yi « argming, . (|lyo —yill3 |

Yo € region, y; € region,)

7: case point
8 y( < point
: 2
y; « argminy, (/ly; — yill3 |
yi € region,)
10: distance < ||y§ — y7 1|2
11: if distance < d,,,q - ¢ then
12: append region; to regions
13: return regions

Algorithm 3 Reachability-constrained branching

Input: branching node and time step (nodey, kp)
current AV position yg
max distance AV can travel in a time step d,qz
Result: updated nodes list “nodes”
1: regions <— REACHABLE(yo, kb, dmaz)
2: for region, k < constraints(node;) do

3: regions < regions \ [all regions \
REACHABLE(region, |k — k|, dimaq)]

4: for region in regions do

5: node < nodey

6: append (region, k) to constraints(node)

7: append node to nodes

Algorithm 1) for this reachability-constrained branch-and-
bound algorithm. Line 6 in Algorithm 3 is implemented by
adding the equality constraint sz, —1 = 0 to ¢, and Cy,
or Dy, as appropriate in the QP relaxation of (9). s, selects
the binary variable corresponding to the sub-region constraint
and has " element s,; = §,; with §,; the Kronecker delta.

2) Branching Variable Selection: In this formulation,
branching variable selection corresponds to selecting an
MPC time step at which to impose sub-region constraints.
Algorithm 4 does this using logic similar to that proposed in
[27]. The branching node may be identified as integer feasi-
ble, triggering the corresponding conditional in Algorithm 1.
An H-rep description of the obstacle-free space (5) is used
to check whether y;, belongs to region,. H is defined such
that y, = H,zj referencing (1) and (9).

3) Node Selection: Algorithm 5 gives a depth-then-best
node selection strategy [43]. A tie-breaker is implemented
based on the node solution z,ge. Znode,, denotes the value
of the relaxed binary variable corresponding to the most
recently applied constraint pair (region, ky).

8202



Algorithm 4 Collision-detecting branching variable selection

Algorithm 5 Depth-then-best node selection

Input: solved node “node;”

Result: branching time step k; or node, is integer feasible
1: k, cons < 0, empty
2: while £k < N do
3: zy, < nodey, solution at time step k

4 if k not in constraints(node;) then
5 find region,;, such that H,z; in region,
6: if region,, is empty then break
7 append (region,, k) to cons
8 k+—Fk+1
9: if kK < N then k, < k
10: else
11: append cons to constraints(nodey)
12: integer-feasible(node;) < true
B. QP Solver

A custom implementation of Mehrotra’s primal-dual inte-
rior point method [44], [45] is used to solve the QP sub-
problems generated by the mixed-integer solver (Sec. III-
A). As described in [46] and [41], MPC QPs have a multi-
stage structure that can be exploited in interior point solvers.
Interior point methods solve a large linear system to compute
the Newton step at each iteration. This is typically the
costliest operation in the solver. Multi-stage algorithms break
this linear system into a series of smaller linear systems that
can be solved much more efficiently. With respect to the QP
sub-problems, a contribution of this paper is the recognition
that the Newton step solution strategy provided in [41] can
be accelerated by using constrained zonotopes to represent
any polytopic constraints.

1) Efficient Solution of Multi-Stage QPs: Here, the pro-
cedure to solve for the Newton step, following [41], is
described. For conciseness, Mehrotra’s algorithm is not pre-
sented here, and the interested reader is directed to [45].
Consider a QP relaxation of (9) with ay relaxed from
Z™ — R™. In primal-dual interior point methods, the
Newton step is given by the solution to the linear system

P CT GT 0] [Az ro
cC 0 0 0| |Av| _ rp
¢ o o I||ax|T " |g| 4O
0 0 S Al | As rs
where
P = blkdiag ([Po PN}) , (11a)
Co Dy - 0
C=1|¢ . 0| (11b)
0 --- Cnx_1 Dy
G = blkdiag ([Go GN}) , (11¢)
rc =Pz+q+CTv+ G, (114d)
rg=Cz+c, (11e)
r;=(Gz—w)+s, (11f)
rs = SA. (11g)

Input: nodes list “nodes”
Result: node selected for branching node;,
1: if j = +o0 then
2: depth-nodes + argmax,, . [depth(nodes)]
3: node, <— BESTNODE(depth-nodes)
4: else node, + BESTNODE(nodes)
5: function BESTNODE(nodes)
6: best-nodes < argmin,, ;.s [Jnode(nodes)]
7 return argmaxy,q;_ nodeslZnodes,, (best-nodes)]

Here, z are the primal variables, v and A are the dual vari-
ables for the equality and inequality constraints, respectively,
and s are the inequality constraint slack variables. S and A
are diagonal matrices constructed from s and A.

Solving (10) directly generally requires an LU decompo-
sition, which has a cost of (2/3)n® flops where n is the
dimension of the linear system matrix. Although sparse linear
algebra techniques can be used to reduce the computational
cost, solving (10) remains the primary computational chal-
lenge in primal-dual interior point methods.

For multi-stage problems, (10) can be written concisely as

YAv =3, (12)

with
Y=Co"'C" €S8y, (13a)
B=rp—Cd! (rc +GTS 'Ar; — GTS_lrS) , (13b)

and S~ denoting the set of positive definite matrices. Y has
block-banded structure given by

Yk =Cr1®, ' CF_| + D@, ' DY
Vke{l,---,N}, (14a)
Yiks1 =Dp®, 'O Ve e {1,--- N -1}, (14b)
Visrk =Yg Y =0Vi ¢ {k— 1k k+1}, (l4c)

and ® = blkdiag ([®o ®y]) with blocks

&y = Py + GE S, 'ALGy (15)

Matrices Sy and Ay correspond to the inequality constraints
at time step k.

To construct the Yj; matrices, it is necessary to first
compute Cholesky factorizations of the (N 4 1) & matri-
ces. Yy; can then be constructed by substitution. Each @y,
factorization has a cost of (1/3)n3, ~flops where 7y, is the
number of inequality constraints for the k' MPC time step.

Once the Y matrix has been constructed, it is factorized
to solve (12). This requires N Cholesky factorizations at a
cost of (1/3)n3, flops where ncg, is the number of equality
constraints in the C} matrix.

2) Efficient QP Solution with Constrained Zonotope Con-
straints: When using hybrid zonotopes to represent the
obstacle-free space, QP relaxations of (9) have constrained
zonotope constraints as defined in (7). Constraints of the
form y, € Z¢ with Z¢ a constrained zonotope can be
exploited when computing the Cholesky factorizations of the
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®;, matrices during the Newton step computation. As pointed
out in [41], the ®; matrices are diagonal for the case of
diagonal quadratic cost Py and box constraints G. For the
constraint y, € Z¢, the inequality constraints are always box
constraints.

By Assumptions 1 and 2, the MPC formulation (1) can be
constructed so that @ is diagonal using a hybrid zonotope
representation of F. If X and U are not already box
constraints, then they can be represented as constrained zono-
topes to achieve diagonal ®y. In the QP solver implemented
here, the @, are inverted when needed rather than computing
their Cholesky factors.

The computational penalty in the QP solver for using
constrained zonotopes is the inclusion of additional equal-
ity constraints and primal optimization variables in (9) as
described in Sec. II-E. The equality constraints will increase
the computational cost of factorizing the Y}, , matrices. The
&, and relaxed &5 will increase the overall size of the linear
system in (10). In the multi-stage formulation however, the
operations with the worst scaling (Cholesky factorizations at
(1/3)n?® flops) are in terms of n;y,, and neg,. As such, the
addition of the &.; and & variables does not significantly
affect the QP solution time for large problem sizes.

IV. REPEATED ZONOTOPE OBSTACLE MAPS WITH
APPLICATION TO AUTOMATED DRIVING

For the QP solver described in Sec. III-B, the compu-
tational benefits to using a hybrid zonotope obstacle-free
space representation are most significant when the number
of hybrid zonotope equality constraints is minimal. This is
the case for obstacle maps where the obstacle-free space F
can be represented as a repeating zonotope.

Consider a template zonotope Z as defined in (6) with
G. = Gp and ¢ = 0. Referencing (8), an obstacle-free space
F consisting of repeated instances of this zonotope is given
by the hybrid zonotope with the following parameters:

Gc:G07 Gb = [Cbl Cbng]» C:07
A.=0", 4,=1". b=1.

(16a)
(16b)

The cp; denote the centers of each repeated zonotope.

The hybrid zonotope described in (16) has only a sin-
gle equality constraint. Referring back to Sec. III-B.2, this
implies that the operations with the worst scaling in the QP
solver will have a small, fixed increase in computational cost
due to the hybrid zonotope constraints that is independent of
the map complexity.

Repeated zonotope maps arise naturally in automated
driving applications with occupancy grids [47]. The tem-
plate zonotope in this case has the form Gy =
diag([d¢/2 d,/2]) with d¢ and d,, giving the dimensions
of a cell in the occupancy grid. This technique could be used
to efficiently represent complex roadway traffic patterns [48].

V. NUMERICAL RESULTS

This section compares the proposed obstacle avoidance
MPC solution strategy to several general-purpose MIQP

Fig. 2. Simulation results for a 10 step horizon. The red square denotes
the start point and the green star is the reference x”. The discrete time
trajectory of the double integrator model is given by the blue dots. The
black regions are obstacles and the gray lines show the convex partition of
the free space. Map (a) has 14 sub-regions, (b) has 12, (¢) has 18, and (d)
has 48.

solvers in simulation. These examples additionally demon-
strate the advantages of using a hybrid zonotope represen-
tation of the obstacle-free space as compared to a halfspace
representation (see Sec. II-C). Hyperplane arrangements are
not considered because they cannot be accommodated by the
proposed mixed-integer solver. The complexity of hyperplane
arrangements is discussed in Sec. II-E. These representations
have general polytopic inequality constraints and would not

be amenable to acceleration in the QP solver.
An AV with constrained double-integrator motion dynam-
ics is simulated. The MPC formulation (1) is specified with

xe =[Gk Ck M ﬁk]T, e = [¢ ﬁ]T7 (17a)
1 At 0 0 0 0
0 1 0 0 At 0
A=1o 0 1 at|"B=]0 ol (17b)
0 0 0 1 0 At
X=Xy = {xk‘ [-100 -1 -100 -1]" <
xe <[100 1 100 1]}, (17¢)
u={w|[1 " <w<t 17}, (17d)
V= {Yk (- n-]" <ye<[Cr n+]T} , (17e)
Qr = Oaxa, R =101, Qn = diag([10 0 10 0)), (170

(-, n—, (4, and 14 are given by the map bounds in Fig. 2.
Position constraints in (17c) ensure that the ®; matrices in
Sec. III-B are full rank. A time step of At =1 is used. The
reference is taken to be a fixed value xj, = x". To ensure
feasibility of the MPC optimization problem, softening is
applied to the obstacle avoidance constraints (1e) with a slack
cost of 1e6 - o2 for each required slack variable o;.

Simulations using two types of obstacle maps are given.
The first case (maps (a) and (b)) considers randomly gen-
erated polytopic obstacles with a convex partitioning of F
as described in Sec. II-C. The second case (maps (c) and
(d)) considers repeated zonotope maps. In both cases, the
full map is included in the MPC constraints. MPC horizons
of N =5, 10, and 15 time steps are examined. Simulation
results for the 10 time step case are shown in Fig. 2.

The solution time of the proposed MIQP solver is com-
pared to general-purpose commercial solvers Gurobi [49]
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Fig. 3.

and MOSEK [50]. All three solvers were given the same
MIQP using a hybrid zonotope (HZ) representation of F
and configured to find the global optimum. Hybrid zonotope
representations are compared to H-rep using the proposed
MIQP solver. Fig. 3 plots the average and maximum solution
times for each map, MPC horizon, and solution approach.

The proposed branch-and-bound solver (Sec. III-A) is im-
plemented in MATLAB and modified from the open source
miOSQP solver [43]. The proposed QP solver (Sec. III-B) is
implemented in C++ using the Eigen linear algebra library
[51]. Simulations were conducted on a desktop computer
with a 2.1 GHz Intel i7 processor and 16 GB of RAM.
All solvers were configured not to use parallelization. MPC
solution times were averaged over 5 trials. A maximum of
100 seconds was allowed for an individual MPC solution.
Cases where this limit was violated are marked as “N/A”.

When using the proposed MIQP solver, hybrid zonotope
representations of the obstacle-free space consistently result
in reduced solution times as compared to H-rep. This is most
pronounced for repeated zonotope maps ((c) and (d)) due to
the efficiency of the hybrid zonotope representation in those
cases, as discussed in Sec. IV. As an example, for the 10 step
horizon case, the average QP solution time is 1.7 ms for (c)
and 3.3 ms for (d) using hybrid zonotopes. For H-rep, those
times are 19.1 ms and 115.8 ms, respectively.

The proposed MIQP solver finds the optimal solution to
the MPC obstacle avoidance problem faster than MOSEK
for all tested cases. The solver is faster than Gurobi for the
shorter MPC horizons but becomes slower for larger MPC
horizons. This performance discrepancy can be attributed
in part to the fact that the proposed branch-and-bound
solver is implemented in MATLAB while Gurobi is entirely
implemented in C. For maps (c) and (d) in these examples,
63-82% of the overall MIQP solution time was spent in the
MATLAB-based branch-and-bound solver. Solution times
for the proposed solver increase by up to an order of
magnitude when moving from a 10 step horizon to a 15 step
horizon. Future work will seek to improve scalability via
parallelization, a more efficient code implementation using

MPC solution times for obstacle maps given in Fig. 2.

C++, and potentially further exploitation of the sub-region
reachability constraints.

VI. CONCLUSION

This paper leverages hybrid zonotopes as a non-convex
constraint representation for use in obstacle avoidance MPC
problems and develops an MIQP solver to exploit the struc-
ture of these constraints. The proposed MIQP solver achieves
better solution times than highly optimized commercial
solvers for most of the test cases considered, particularly
at shorter prediction horizons.

The proposed approach can be used to efficiently solve
motion planning problems for autonomous vehicles without
being subject to poor quality approximate or local solutions.
These techniques can be applied to both general polytopic
obstacle maps and to repeated zonotope maps (i.e., occu-
pancy grids), which are commonly encountered in automated
driving applications. Future work will include implementing
the proposed solver fully in C++ and adding support for
parallelization. Additionally, the applicability of this solver to
automated driving problems will be validated in experiments
or high-fidelity simulations using a representative embedded
processor.
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