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Abstract— This paper investigates the general regulator prob-
lem with an internal model capable of adapting to the unknown
parameters of persistent disturbances and/or reference signals
affecting the measured output. Specifically, the proposed archi-
tecture based on stable compensators of internal model (CIM)
allows to reduce the stabilization problem for an augmented
system (the plant plus internal model) to that of a process
without the internal model and with the complexity of the
plant. Then, it is shown that, under certain conditions on the
plant model, the proposed scheme makes the parameters of
the internal model affect the closed-loop dynamics affinely.
This, in turn, facilitates the incorporation of simple adaptation
mechanisms with a global convergence.

Index Terms— Parameter adaptation, internal model princi-
ple, regulator problem.

I. INTRODUCTION

Traditionally, for a continuous-time linear time-invariant
(LTI) plant, namely P : u 7→ y, with input u(t) ∈ Rm

and measured output y(t) ∈ Rp, addressing the regulator
problem consists of designing a stabilizing feedback con-
troller R : y 7→ u capable of asymptotically rejecting
persistent disturbances and/or reference signals of a known
class on the so-called regulated signal. Introducing a suitable
matrix E ∈ Rpe×p assumed to be normalized, i.e., such
that EE′ = I , such a regulated signal can be indicated as
e(t) = Ey(t) ∈ Rpe .

In the literature, Internal Model Principle [1] is a valid
solution to the regulator problem, whose idea is that of
including a pe × pe model of persistent exogenous signals,
namely M , into the controller, see e.g., [2, § 4.4]. Specif-
ically, condition for robust regulation is that each pole of
M has the geometric multiplicity pe, see [2], [3], and the
stabilizer, provided that no unstable cancellations occur, is
commonly designed for an augmented plant

Paug := (E′ME + I − E′E)P, (1)

including the internal model. This procedure presents how-
ever two significant drawbacks. On the one hand, the dimen-
sion of the augmented plant increases when the complexity
of the internal model increases (as for instance for repetitive
control [4] in case of periodic signals, whose model is infinite
dimensional). On the other hand, a complex dependence of
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the parameters of the stabilizer on those of the internal model
can occur.

Recently, alternative solutions to the mentioned issues
have been proposed. Inspired by the delay compensation in
repetitive control [5], a general internal model in the state-
feedback case with compensation has been introduced, for
instance, in [6]. Enhanced results have been presented then
in [7], where an original approach based on compensators
of internal model (CIM) is proposed. The main advantage
of such elements is that of reducing the stabilization of Paug
to that of a system having the same complexity as the non-
augmented plant P . One of those elements is in parallel to
the “central controller” in the regulation channel, while the
other one connects two measurement channels.

However, in [7], the parameters of the persistent dis-
turbances and/or reference signals affecting the measured
output are assumed constant and available, which is not
always true in practice. In this paper, we overcome this
assumption by extending the contribution to the case of
unknown parameters. Differently from [7], where no adaptive
internal model control elements are presented, here we show
that, under certain conditions for the plant, that should be
minimum-phase with a relative degree at most 2, the control
architecture proposed in [7] allows the reduction of the
stabilization problem to that of a simpler version of P , and
the parameters of the internal model affects the closed-loop
dynamics affinely. This, in turn, facilitates the incorporation
of simple adaptation mechanisms with a global convergence.
This is an advantage and it is worth to notice that having
parameters of the internal model which affect the closed-
loop dynamics affinely is more suitable for real-world control
problems, thus paving the way for the application of the
proposal to different domains, such as electro-mechanical
systems, as the case study illustrated in this work. Moreover,
while the number of parameters in early studies of adaptive
internal model control, see the book [8] and the references
therein, always equals the state dimension of the internal
model, in the proposed method the number of parameters has
the dimension of the number of the uncertain frequencies in
the internal model (sometimes it is even lower), thus making
the proposed parametrization more economic.

Notation: The closed right half of the complex plane is
denoted by sC0, while the sets of real and natural numbers are
indicated as R and N, respectively. The complex-conjugate
transpose of a matrix A is denoted by A′. The notation
spec(A) stands for the matrix spectrum when A is a square
matrix or for the set of poles if A is an LTI system. By H∞
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we denote the set of holomorphic and bounded functions in
the open right-half plane, whereas L2 is the set of square-
integrable functions. Linear systems in the time domain are
denoted by capital letters with no argument, like G, and G(s)
stands for the corresponding transfer function. The compact
notation [

A B
C D

]
:= D + C(sI −A)−1B

is used for transfer functions in terms of their state-space
realizations.

II.PRELIMINARIES ON INTERNAL MODEL COMPENSATION

In this section we recall some preliminaries about the
instrumental results presented in [7].

The considered control problem is that of designing a
stabilizer, namely Rs, inside the controller defined as

R = Rs(E
′ME + I − E′E), (2)

with internal model M for a plant P with proper transfer
function P (s). According to [7], the following assumptions
hold:

A1: spec(M) ∈ sC0, M−1 ∈ H∞, and M(∞) = I ,

A2: pe = m and EP (s) has full rank,

A3: spec((EP )−1) ∩ spec(M) = ∅.

This means that all poles of M are unstable, that the regu-
lated channel is neither underactuated nor has redundancies
and, finally, no unstable cancellations occur in Paug.

It is known that Rs internally stabilizes Paug if the system
(the gang of four)

T4,aug :=

[
I

−Rs

]
(I − PaugRs)

−1
[
I Paug

]
(3)

is stable. Now, apart from [5, Thm. 1] and [6, Thm. 1], it is
convenient to recall more in detail [7, Thm. 1] to introduce
the concept of internal model compensator. Consider the
matrix E⊥ ∈ R(p−pe)×p as any matrix satisfying

E′
⊥E⊥ = I − E′E,

so that, if p > pe, then every such E⊥ has full row rank
and satisfies E⊥

[
E′ E′

⊥
]
=

[
0 I

]
. [7, Thm. 1] says

that the problem of stabilizing Paug can be recast into that
of stabilizing an equivalent plant, namely

P̄ := (I + E′
⊥Υ2E)Paug(I +Υ1EPaug)

−1, (4)

by including two CIM terms, namely Υ1 and Υ2, into the
controller given by

Rs = R̄(I + E′
⊥Υ2E)−Υ1E. (5)

Looking at (5), differently from [5], [6], a cascade block
I + E′

⊥Υ2E is present together with the parallel element
−Υ1E. The former connects the regulated signal e with
its complement in y. Note that, if e = y, then E⊥ is no
more present, so is Υ2, and (5) coincides with the controller
structure in [5], [6].

III. STRUCTURE OF P̄

To better highlight the advantages of the considered con-
trol architecture, the simpler plant P̄ is now analyzed.

From the result recalled in the previous section, one of
the main advantages is that the regulator problem could be
simplified avoiding the stabilization of a high-dimensional
augmented plant Paug. Specifically, P̄ can always be chosen
to have the same complexity as the original plant P without
the dynamics of the internal model M . Qualitative arguments
supporting this claim, as well as a more useful relation
between P̄ and Υ1 and Υ2, are hereafter reported.

In fact, by exploiting (4), using (1) and relations[
E
E⊥

]
P̄ =

[
MEP

E⊥P +Υ2MEP

]
(I +Υ1MEP )−1,

one obtains[
EP̄
E⊥P̄

]
(I +Υ1MEP ) =

[
MEP

E⊥P +Υ2MEP

]
. (6)

Therefore, since EP and M are invertible by A1 and A2,
post-multiplying (6) by (EP )−1M−1one has[

EP̄
E⊥P̄

]
((EP )−1M−1+Υ1)=

[
I

E⊥P (EP )−1M−1 +Υ2

]
.

Taking EP (s) strictly proper, it always holds that I +
Υ1MEP and the first row of the expression above imply
that EP̄ is invertible as well, so P̄ has to be found such that[

Υ1

Υ2

]
=

[
I

E⊥P̄

]
(EP̄ )−1−

[
I

E⊥P

]
(EP )−1M−1. (7)

Looking at (7), we can report some considerations which
confirm the claim that the complexity of P̄ shall not exceed
that of P . The first observation is that the terms (EP̄ )−1

and E⊥P̄ (EP̄ )−1 should match unstable, non-proper, parts
of (EP )−1M−1 and E⊥P (EP )−1M−1, respectively. Then,
since M−1 is stable by virtue of A1, so instabilities above
are associated only with the plant P , without the internal
model. Note that, if EP is stably invertible, then one could
select P̄ = P , which is not always true in general.

Now, before analyzing the parameter in the internal model,
it is convenient to define the state-space expressions for
the system, as in [7]. More precisely, let the state-space
realizations of P and M be

P (s) =

[
A B
C D

]
and M(s) =

[
Am Bm

Cm I

]
,

whose state dimensions are n and nm, respectively, and
where we assume that ED = 0, and zeros of M(s) and
EP (s) are disjoint. Letting matrices B# ∈ Rm×n and
B⊥ ∈ R(n−m)×n so that[

B⊥

B#

]
B =

[
0
I

]
and det

[
B⊥

B#

]
̸= 0,

one can write[
Υ1(s)
Υ2(s)

]
=

 Am −BmCm Bm

C0 0
E⊥CX + E⊥DC0 0

 , (8)
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where C0 := B#X(Am −BmCm)−B#AX , and

P̄ (s) =

[
A+XBmEC B

C D

]
(9)

satisfying (7), with X ∈ Rn×nm being the unique bounded
solution of the generalized Sylvester equation[

B⊥

0

]
X(Am −BmCm)−

[
B⊥A
−EC

]
X =

[
0
Cm

]
. (10)

Moreover, since we are interested in the effects of the
CIM elements on closed-loop system functions, in particular
we introduce the closed-loop sensitivity, S, and disturbance
sensitivity, Td, given by[

S Td
]
:= (I − PR)−1

[
I P

]
, (11)

whose counterparts associated with P̄ and R̄ in (4) and (5)
are

[
S̄ T̄d

]
:= (I − P̄R̄)−1

[
I P̄

]
.

In the following, we will show that, under certain con-
ditions for EP , the considered control structure makes
the parameters of the internal model affect the closed-loop
dynamics affinely.

IV. PARAMETER IN THE INTERNAL MODEL

In this section we will explicitly consider the dependence
of the internal model on some unknown parameter to design
an adaptation mechanism to estimate it.

A. Structure of M

First, assume that

M−1(s) = M0(s) +M1(s)Θ, (12)

for some M0,M1 ∈ H∞ and the static unknown parameter
Θ ∈ Rν×m, with ν ∈ N. Specifically, assume M0(s) be
bi-proper and M1(s) be strictly proper, with relative degree
2. For example, consider an exogenous signal having a DC
component and two harmonics at ω1 > 0 and ω2 > 0. If
only ω1 is uncertain (i.e., ν = 1), one can select M(s) =
ϕ(s)/(s2 +ω2

1) for some monic second-order Hurwitz ϕ(s),
so that

M0(s) =
s2

ϕ(s)
, M1(s) =

1

ϕ(s)
, and Θ = ω2

1 .

If instead both the harmonics are unknown (i.e., ν = 2),
and M(s) = ϕ(s)/(s(s2 + ω2

1)(s
2 + ω2

2)) for some monic
5th-order Hurwitz ϕ(s), then

M0(s) =
s5

ϕ(s)
, M1(s) =

1

ϕ(s)

[
s3 s

]
,

and
Θ =

[
ω2
1 + ω2

2

ω2
1ω

2
2

]
.

Therefore, equation (7) reads[
Υ1

Υ2

]
=

[
I

E⊥P̄

]
(E1P̄ )−1 −

[
I

E⊥P

]
(EP )−1M0

−
[

I
E⊥P

]
(EP )−1M1Θ. (13)

The logic in the choice of P̄ is to cancel all instabilities in
the last two terms in the right-hand side of (13). If we also
want it to be independent of Θ, then we need to assume that
both (EP )−1M1 and E⊥P (EP )−1M1 are stable. To this
end, the following sufficient assumption is introduced.

A4: EP (s) is minimum-phase with a relative degree of at
most 2, and E⊥P (s) has no unstable poles that are not
poles of EP (s).

If this is indeed the case, then P̄ is as in (9) modulo the
replacement

M−1(s) =

[
A0 B0 +B1Θ
C0 I

]
→ M0(s) =

[
A0 B0

C0 I

]
in its derivation (so that Bm there is B0, rather than B0 +
B1Θ). Also, Υ1 and Υ2 from (7) shall then be complemented
with the last term in (13), which might increase their dimen-
sions. Hence, under assumption A4, we could always choose
P̄ independent of Θ.

B. Internal model compensation

Let now the model M be such that in (12) M−1 = M0+
M1Θ̂, where Θ̂ ∈ Rν×m is the estimate of the unknown
parameter Θ, and

[
M0(s) M1(s)

]
=

[
A0 B0 B1

C0 I 0

]
. (14)

One can define P̄ as a system independent of Θ̂, such that it
satisfies the following relation achieved from (7) and (12):[
Υ̂1

Υ̂2

]
:=

[
I

E⊥P̄

]
(EP̄ )−1−

[
I

E⊥P

]
(EP )−1M0 ∈ H∞,

(15)
where Υ̂1 and Υ̂2 are the CIM elements such that no
dependence on Θ̂ occurs. To compute these compensators we
only need to replace Bm in (8) with B0, as already mentioned
at the end of § IV-A.

Our goal becomes therefore to derive a state-space real-
ization of the system

Ψ :=

[
Ψ11 Ψ12

Ψ21 Ψ22

]
,

where

Ψ11 := R̄+ (I − R̄P )(EP )−1E − (ET̄d)
−1M−1

0 E,

Ψ12 := (ET̄d)
−1M−1

0 M1,

Ψ21 := M−1
0 E,

Ψ22 := −M−1
0 M1.

Taking into account that (ET̄d)
−1 = (I − R̄P̄ )(EP̄ )−1 and

P̄ (EP̄ )−1 = E′ + E′
⊥E⊥P̄ (EP̄ )−1, it can be shown that

Ψ =

[
I R̄ 0
0 0 I

]
Ψ0,
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Fig. 1. Proposed control scheme.

where

Ψ0 :=

 −Υ̂1 (EP̄ )−1

E′ + E′
⊥Υ̂1 −E′ − E′

⊥E⊥P̄ (EP̄ )−1

I −I

×

[
M−1

0 E 0

0 M−1
0 M1

]
+

 0 0
E′

⊥E⊥ 0
0 0

 . (16)

Therefore, it results that the parameters of the internal
model affinely affect the closed-loop dynamics such that,
letting v1, v2, and ζ the outputs of system Ψ0, with e and η
being the inputs (see Fig. 1), one has

η = Θ̂ζ, (17)

with ζ = Me, and both ζ and e directly measurable. The
following assumption needs to be introduced.

A5: ∃Θ = Θ̄ in (12) such that e = ē ∈ L2.

In other words, the previous assumption implies that there
is a value Θ̄ coherent with the actual persistent components
of exogenous signals, such that the internal model with (12)
ensures asymptotic regulation. This condition implies that
the expression of the error becomes

e = M1Θ̃ζ + ē, (18)

with Θ̃ := Θ̂−Θ̄ and ē decaying to zero. Hence, this relation
is the instrumental base to design an adaptation scheme, as
detailed in the next section.

V. ADAPTION OF THE INTERNAL MODEL

We are now in a position to describe the adaptation method
included in the proposed scheme. In the previous section,
although relation (18) is instrumental to this end, a clear
dependence on the unknown parameters still appears, thus
preventing the application of adaptation mechanisms.

Without loss of generality, take now m = 1 such that the
regulation error satisfies (18) for a measurable ζ : R+ → R
and an unknown Θ ∈ Rν , and in (14) A0 is Hurwitz and
(A0, B1) controllable.

Then, the state-space relation (18) can be written as[
ẋM1

ẋθ

]
=

[
A0 −B1ζ
0 0

] [
xM1

xθ

]
+

[
B1

0

]
Θ̂ζ,

e(t) =
[
C0 0

] [ xM1

xθ

]
,

with xM1
and xθ being the internal model and parameter

states, respectively, while
[ xM1

(0)

xθ(0)

]
=

[
0
Θ

]
.

Now, introduce the function z : R+ → Rn0×ν , where
n0 is the dimension of xM1 and ν is the dimension of Θ,
satisfying

ż(t) = A0z(t) +B1ζ(t), z(0) = 0,

and the auxiliary variable x1 := xM1 + zxθ. In this case,
applying the similarity transformation with

[
I z(t)
0 I

]
, the state

equation reads[
ẋ1

xθ

]
=

[
A0 0
0 0

] [
x1

xθ

]
+

[
B1

0

]
Θ̂ζ,

where
[ x1(0)
xθ(0)

]
=

[
0
Θ

]
, and the output equation reads

e(t) = C0x1(t)− C0Z(t)xθ(t)

= C0x1(t)− C0Z(t)Θ̂(t) + C0Z(t)Θ̃(t).

Hence, we have the static relation

e1 = C0zΘ̃ or e′1 = Θ̃′(C0z)
′, (19)

where
e1 := e+ C0zΘ̂−M1Θ̂ζ

can be measured. The latter can now be adopted to apply a
suitable (in whatever appropriate sense) adaptation law.

As an example, consider the strategy in [9, § 3.A], where
a normalized least square estimation algorithm is designed
as

˙̂
Θ =

Π(C0z)
′e1

N
+Q, (20)

where e1 is defined in (19), Q ≥ 0 (with Q = 0 corre-
sponding to the pure least square approach) , and Π such
that trace(Π) < ∞ solving

Π̇ = −Π(C0z)
′(C0z)Π

N
+ 2α

Π

N
, Π(0) = k0I > 0.

with α > 0, k0 > 0, and the scalars

N = c+ (C0z)(C0z)
′ + (C0z)Π(C0z)

′, c > 0.

The analysis of the algorithm follows from the selection of
the non-negative function V = Θ̃′Π−1Θ̃, thus ensuring that
˙̃Θ is bounded and ˙̃Θ ∈ L2, see [9, § 3.A].

VI. NUMERICAL EXAMPLE

In this section the proposed approach is assessed relying
on an armature-controlled DC motor connected to a rigid
mechanical load, see [10, § 6.5]. Let the shaft angle θsh
and its angular velocity ωsh measurable, and the output
y =

[
θsh
ωsh

]
, while the control input is u representing the

armature voltage. The controlled plant is instead captured
by

P (s) =

[
Pθ(s)
Pω(s)

]
=

[
1/s
1

]
Km

(Js+ f)Ra +K2
m
,

with Km being the motor torque coefficient, Ra the armature
resistance (the inductance is neglected), and J and f being
the moment of inertia and viscous friction coefficient of the
rigid load, respectively. The load disturbance is given by an
external torque, namely τe, and is equal to kττe, with kτ :=
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Ra/Km. The regulated signal is the shaft angle θsh, such
that E =

[
1 0

]
. The motor numerical data are reported in

Table I.

TABLE I
MOTOR AND LOAD PARAMETERS

Km [N m/A] Ra [Ω] J [kg m2] f [N m s/rad] τmax [N m]
0.126 2.08 0.008 0.005 0.235

Considering the scheme in Fig. 1, let yref and ureq represent
the nominal command following requirements, such that,
given a feedback controller R, it holds[

y
u

]
=

[
yref
ureq

]
+

[
S
RS

] (
Pkττe − yref + Pureq

)
,

where S is the sensitivity function in (11), and in nominal
conditions (i.e., without uncertainties and disturbances) one
has yref = Pureq, τe = 0, implying y = yref. Since instead the
disturbance affects the closed-loop system, a suitable design
of R is required so that, if at some ωi

ES(jωi) = 0 and ETd(jωi) = 0, (21)

then, the corresponding harmonic of τe, yref, and ureq do not
affect the regulated signal. For the regulator design we rely
on the same procedure described in [7, § IV.A], with form (2)
and an internal model M(s) having poles at each s = jωi.
We will focus now on the design of the internal model and
the discussion on the adaptation algorithm.

A. Choice of P̄ , Υi and adaptation design

Consider that (21) has to be fulfilled for three frequencies,

ω0 = 0, ω1 =
1

2
π, and ω2 =

8

3
π.

so that the internal model can be chosen as

M(s) =
(s+ am)

5

s(s2 + ω2
1)(s

2 + ω2
2)
,

with am > 0, satisfying A1 and A3. Then, making reference
to (8), P̄ , Υ1, and Υ2 are such that, given

P (s) =

[
1
s

]
7.5672

s(s+ 1.578)
and kτ = 16.5187,

and am = 4, one has

P̄ (s) =

[
1

s− 20

]
7.5672

s2 − 18.42s+ 281.1
,

and the internal model compensators are

Υ1(s) =
422.84(s2 + 4.88s+ 6.28)(s2 + 5.84s+ 14.33)

(s+ 4)5
,

Υ2(s) = −312.65(s2 + 3.56s+ 3.83)(s2 + 4.63s+ 17.09)

(s+ 4)5
.

Pose now the closed-loop poles at s = −2 by selecting in
(2) the stabilizer R̄(s) = −

[
22.6436 2.9631

]
. Finally, in

the following, the reference yref is chosen to be the time-
optimal one (also known as bang-bang) to achieve θ1 under
a limited torque τmax/4, with τmax as indicated in Table I.

The optimal torque is instead designed for the load dynamics
Jθ̈sh + fθ̇sh = τ under θsh(0) = θ̇sh(0) = 0 [11, Ch. 7].
Therefore, letting tsw and tfin be the switching and final times,
respectively, one obtains

yref(t) =

[
θopt(t)
ωopt(t)

]
=

 0 tsw tfin

�1

0 tsw tfin

 ,

where ωopt = θ̇opt, whereas the required voltage ureq =
(1/Pθ)θopt is of the form

ureq(t) =
Ra

Km
τopt(t) +Km ωopt(t) =

0 tsw

tfin ,

and τopt is bang-bang in the range [−τmax/3, τmax/3].
As for the adaptation of the internal model, starting from

(19), letting ω̄ ∈ Rν be the nominal frequency and ω ∈ Rν

be the actual frequency, the parameter Θ is defined as

Θ = ω2 − ω̄2

if ν = 1, and as

Θ =

[
ω2
1 + ω2

2 − ω̄2
1 − ω̄2

2

ω2
1ω

2
2 − ω̄2

1ω̄
2
2

]
if ν = 2. Then, according to [9, § 3.A], the normalized least
square estimation algorithm in (20) is adopted, selecting Q =
0, α = k0 = 1 and c = 0.1.

B. Simulations

In the following, we consider two different scenarios to
assess the proposed scheme with adaptation of the internal
model.

Fig. 2. Simulations in the Scenario 1.
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Scenario 1: In this scenario we assume that the external
(disturbance) torque applied to the motor shaft contains the
three frequencies ω0, ω1 and ω2 previously introduced, while
the nominal ones are

ω̄0 = 0, ω̄1 =
3π

2
, ω̄2 = π,

and it has the following form:

τe(t) = 0.05[1 + sin(ω1t)− cos(ω2t)].

Considering a fifth-order internal model, the simulated re-
sponses of the controller are illustrated in Fig. 2. Specifically,
the trajectory of the output is illustrated (top left), where the
optimal reference (dashed line) is perfectly tracked despite
the presence of the external disturbance (top right). The
latter is compensated by the control action (bottom left)
which replicates the opposite shape of the external torque
overlapped to the optimal input ureq (dashed line), by virtue
of the proposed stabilizer with adaptive internal model.
The two components of Θ̂ (bottom right) indeed adapt to
the actual values by virtue of the adaptation mechanism
introduced in (20).

Fig. 3. Simulations in the Scenario 2.

Scenario 2: In this scenario we assume that the distur-
bance torque applied to the motor shaft contains always three
frequencies, but, to assess the robustness of the proposed
method in a more realistic and complex setting, the nominal
ones are only the following:

ω̄0 = 0, ω̄1 =
3π

2
,

whereas the shape of the external torque is

τe(t) = 0.05

{
sin(ω1t) + 1 if 0 < t < 5

cos(ω2t)− 1 if t > 5
.

Considering a third-order internal model, the simulated re-
sponses of the controller are reported in Fig. 3. Analogously

to the previous case, although the internal model contains
only two out of the three frequencies of the disturbance, the
parameter (bottom right) perfectly adapts to the variation of
the load, again assessing the validity of the proposed scheme.
Hence, again the trajectory of the output (top left) perfectly
tracks the optimal reference (dashed line) despite the pres-
ence of the external disturbance (top right), compensated by
the control action (bottom left).

Note that, while in early studies of adaptive internal model
control (see, e.g., [8]), the number of parameters is equal
to the state dimension nm of M , the parameter Θ in (12)
has the dimension of the number of uncertain frequencies
in the internal model. The latter is always upperbounded
by ⌊nm/2⌋, as in the examples above. In other words, our
parametrization is more economic.

VII. CONCLUSIONS

The paper has proposed a novel procedure of designing
adaptive internal model controllers. First, a control scheme
is defined showing its capability of recasting the stabilization
problem of high-dimensional augmented systems into that
of simpler plants. Then, under the assumption of minimum
phase plant and relative degree at most 2, it can be shown
that the static parameter of the internal model affects the
closed-loop dynamics affinely, paving the way to incorporate
adaptation mechanisms, whose purpose is to tune the model
to uncertain or changing exosystems.

The future work is to extend the proposed adaptive internal
model controller architecture to a wider class of plants. In
particular, we plan to relax the conditions adopted in this
work about the plant zeros and relative degree, while keeping
the static parameter of the internal model affinely affecting
the closed-loop dynamics.
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